This is an outdated version published on 01-07-2025. Read the
most recent version.
Review Articles
Early Access
Edible coatings: A sustainable approach to protect perishable fruits and vegetables
Department of Vegetable Science, Horticultural College and Research Institute, Tamil Nadu Agriculture University, Coimbatore 641 003, Tamil Nadu, India
Turmeric Research Center, Tamil Nadu Agriculture University, Bhavanisagar 638 451, Tamil Nadu, India
Department of Horticulture, Horticultural College and Research Institute, Tamil Nadu Agriculture University, Coimbatore 641 003, Tamil Nadu, India
Department of Crop Physiology, Tamil Nadu Agriculture University, Coimbatore 641 003, Tamil Nadu, India
Centre for Agricultural Nanotechnology, Tamil Nadu Agriculture University, Coimbatore 641 003, Tamil Nadu, India
Abstract
Fruits and vegetables are crucial to a nutritious diet but are highly perishable, posing challenges in maintaining freshness during storage and transportation. This comprehensive review aims to provide insights into the influence of edible coatings on the postharvest preservation of fruits and vegetables. Edible coatings, made from natural polymers such as proteins, polysaccharides and lipids, have gained attention as an effective method to extend shelf life. These coatings form a protective barrier that reduces moisture loss, gas exchange and microbial growth, thereby delaying senescence and preserving quality attributes like firmness, colour, texture and nutritional content. Application methods include dipping, spraying and brushing to ensure uniform coverage. The efficacy of edible
coatings depends on factors such as composition, concentration and specific characteristics of the produce. Additionally, incorporating antimicrobial agents like essential oils and plant extracts enhances food safety by inhibiting spoilage microorganisms. Beyond shelf life extension, edible coatings help reduce postharvest losses, improve marketability and decrease reliance on chemical preservatives and synthetic packaging. However, challenges related to formulation optimization, scalability, cost and consumer acceptance must be addressed to enable broader adoption. Overall, edible coatings offer a promising strategy for preserving fruits and vegetables, warranting further research to fully realize their potential in the food industry.
References
- 1. Raghav PK, Agarwal N, Saini M. Edible coating of fruits and vegetables: A review. Int J S Res Modern Edu. 2016;1(1):188-204.
- 2. Gutiérrez TJ, Álvarez K. Physico-chemical properties and in vitro digestibility of edible films made from plantain flour with added Aloe vera gel. J Funct Foods. 2016;26:750-62. https://doi.org/10.1016/j.jff.2016.08.054
- 3. Sapper M, Chiralt A. Starch-based coatings for preservation of fruits and vegetables. Coatings. 2018;8(5):152. https://doi.org/10.3390/coatings8050152
- 4. Nain N, Katoch GK, Kaur S, Rasane P. Recent developments in edible coatings for fresh fruits and vegetables. J Hortic Res. 2021;29(2):127-40. https://doi.org/10.2478/johr-2021-0022
- 5. Singh S, Dubey A, Gangwar V, Kumar A, Kumar A, Kumar M, et al. Edible coatings for improving the storability of fresh fruits and vegetables: A review. Pharma Innov. 2023;12(6):3992-4002.
- 6. Sharma HP, Chaudhary V, Kumar M. Importance of edible coating on fruits and vegetables: A review. J Pharmacog and Phytochem. 2019;8(3):4104-10.
- 7. Prasad K, Guarav A, Preethi P, Neha P. Edible coating technology for extending market life of horticultural produce. Acta Scientific Agric. 2018;2(5):55-64.
- 8. Nawab A, Alam F, Hasnain A. Mango kernel starch as a novel edible coating for enhancing shelf-life of tomato (Solanum lycopersicum) fruit. Int J Biol Macromol. 2017;103:581-6. https://doi.org/10.1016/j.ijbiomac.2017.05.057
- 9. Tiwari VK, Verma VC, Khushboo A, Kumar K, Tsewang T, Verma A, et al. Edible coating for postharvest management of fruits and vegetables. Pharm Innov J. 2022;11:970-8.
- 10. Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M. Development of edible films and coatings from alginates and carrageenans. Carbohyd Polym. 2016;137:360-74. https://doi.org/10.1016/j.carbpol.2015.10.074
- 11. Guilbert S, Gontard N, Cuq B. Technology and applications of edible protective films. Packaging Technol Sci. 1995;8(6):339-46. https://doi.org/10.1002/pts.2770080607
- 12. Karunanayake K, Liyanage K, Jayakody L, Somaratne S. Basil oil incorporated beeswax coating to increase shelf life and reduce anthracnose development in mango cv. Willard. Ceylon J Sci. 2020;49(5):355-61. https://doi.org/10.4038/cjs.v49i5.7802
- 13. Panwar S, Mishra B, Goyal P. Permeability of Aloe vera composite coatings and their effect on quality of peeled carrots. Curr Sci. 2016:2031-5. https://doi.org/10.18520/cs/v111/i12/2031-2035
- 14. Sharma H, Chaudhary V, Kumar M. Importance of edible coating on fruits and vegetables: A review. J Pharmacogn Phytochem. 2019;8(3):4104-10.
- 15. Hassan B, Chatha SAS, Hussain AI, Zia KM, Akhtar N. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Int J Biolo Macromol. 2018;109:1095-107. https://doi.org/10.1016/j.ijbiomac.2017.11.097
- 16. Wang B, Yan L, Guo S, Wen L, Yu M, Feng L, et al. Structural elucidation, modification, and structure-activity relationship of polysaccharides in Chinese herbs: A review. Front Nutri. 2022;9:908175. https://doi.org/10.3389/fnut.2022.908175
- 17. Motlagh F, Quantick P. Effect of permeable coatings on the storage life of fruits. I. Pro‐long treatment of limes (Citrus aurantifolia cv. Persian). Int J Food Sci Technol. 1988;23(1):99-105. https://doi.org/10.1111/j.1365-2621.1988.tb00555.x
- 18. Nešić A, Cabrera-Barjas G, Dimitrijević-Branković S, Davidović S, Radovanović N, Delattre C. Prospect of polysaccharide-based materials as advanced food packaging. Molecules. 2019;25(1):135. https://doi.org/10.3390/molecules25010135
- 19. Cruz-Monterrosa RG, Rayas-Amor AA, González-Reza RM, Zambrano-Zaragoza ML, Aguilar-Toalá JE, Liceaga AM. Application of polysaccharide-based edible coatings on fruits and vegetables: Improvement of food quality and bioactivities. Polysaccharides. 2023;4(2):99-115. https://doi.org/10.3390/polysaccharides4020008
- 20. Alvarez MV, Bambace MF, Quintana G, Gomez-Zavaglia A, del Rosario Moreira M. Prebiotic-alginate edible coating on fresh-cut apple as a new carrier for probiotic lactobacilli and bifidobacteria. LWT. 2021;137:110483. https://doi.org/10.1016/j.lwt.2020.110483
- 21. Whistler RL, BeMiller JN, Paschall EF. Starch: Chemistry and technology: Academic Press; 2012.
- 22. Cazón P, Velazquez G, Ramírez JA, Vázquez M. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids. 2017;68:136-48. https://doi.org/10.1016/j.foodhyd.2016.09.009
- 23. Tester RF, Karkalas J, Qi X. Starch-composition, fine structure and architecture. J Cereal Sci. 2004;39(2):151-65. https://doi.org/10.1016/j.jcs.2003.12.001
- 24. Versino F, Lopez OV, Garcia MA, Zaritzky NE. Starch‐based films and food coatings: An overview. Starch‐Stärke. 2016;68(11-12):1026-37. https://doi.org/10.1002/star.201600095
- 25. Dhall R. Advances in edible coatings for fresh fruits and vegetables: A review. Crit Rev Food Sci Nutri. 2013;53(5):435-50. https://doi.org/10.1080/10408398.2010.541568
- 26. Adetunji C, Fadiji A, Aboyeji O. Effect of chitosan coating combined Aloe vera gel on cucumber (Cucumis Sativa L.) post-harvest quality during ambient storage. J Emerg Trends in Engin Appl Sci. 2014;5(6):391-97.
- 27. Lee P, Rogers M. Effect of calcium source and exposure-time on basic caviar spherification using sodium alginate. Int J Gastronomy Food Sci. 2012;1(2):96-100. https://doi.org/10.1016/j.ijgfs.2013.06.003
- 28. Valero D, Díaz-Mula HM, Zapata PJ, Guillén F, Martínez-Romero D, Castillo S, et al. Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biol Technol. 2013;77:1-6. https://doi.org/10.1016/j.postharvbio.2012.10.011
- 29. Park HJ, Rhim JW, Jung ST, Kang SG, Hwang KT, Park YK. Mechanical properties of carrageenan-based biopolymer films. Korean Journal of Packaging Sci Technol. 1995;1(1):38-50.
- 30. Elsabee MZ, Abdou ES. Chitosan based edible films and coatings: A review. Materials Sci Engin: C. 2013;33(4):1819-41. https://doi.org/10.1016/j.msec.2013.01.010
- 31. Pavinatto A, de Almeida Mattos AV, Malpass ACG, Okura MH, Balogh DT, Sanfelice RC. Coating with chitosan-based edible films for mechanical/biological protection of strawberries. Int J Biol Macromol. 2020;151:1004-11. https://doi.org/10.1016/j.ijbiomac.2019.11.076
- 32. Pereda M, Ponce A, Marcovich N, Ruseckaite R, Martucci J. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocol. 2011;25(5):1372-81. https://doi.org/10.1016/j.foodhyd.2011.01.001
- 33. Kocira A, Kozłowicz K, Panasiewicz K, Staniak M, Szpunar-Krok E, Hortyńska P. Polysaccharides as edible films and coatings: Characteristics and influence on fruit and vegetable quality-A review. Agronomy. 2021;11(5):813. https://doi.org/10.3390/agronomy11050813
- 34. Lacroix M, Vu KD. Edible coating and film materials: Proteins. Innovations in food packaging: Elsevier; 2014. p. 277-304. https://doi.org/10.1016/B978-0-12-394601-0.00011-4
- 35. Purkayastha MD, Kumar S. Protein‐based films and coatings. Biopolymer‐Based Food Packaging: Innov Technol Appl. 2022:178-224. https://doi.org/10.1002/9781119702313.ch6
- 36. Bourtoom T. Edible protein films: Properties enhancement. Int Food Res J. 2009;16(1):1-9.
- 37. Perez‐Gago M, Rojas C, DelRio M. Effect of lipid type and amount of edible hydroxypropyl methylcellulose‐lipid composite coatings used to protect postharvest quality of mandarins cv. fortune. J Food Sci. 2002;67(8):2903-10. https://doi.org/10.1111/j.1365-2621.2002.tb08836.x
- 38. Hall DJ. Edible coatings from lipids, waxes, and resins. Edible coatings and films to improve food quality, 2nd edition. CRC Press, USA. 2012:79-101. https://doi.org/10.1201/b11082-4
- 39. Robertson PK. Interpretation of cone penetration tests-A unified approach. Can Geotech J. 2009;46(11):1337-55. https://doi.org/10.1139/T09-065
- 40. Quezada-Gallo JA, Debeaufort F, Voilley A. Mechanism of aroma transfer through edible and plastic packagings: Are they complementary to solve the problem of aroma transfer? : ACS Publications; 2000. https://doi.org/10.1021/bk-2000-0753.ch012
- 41. Senturk Parreidt T, Schmid M, Müller K. Effect of dipping and vacuum impregnation coating techniques with alginate based coating on physical quality parameters of cantaloupe melon. J Food Sci. 2018;83(4):929-36. https://doi.org/10.1111/1750-3841.14091
- 42. Jiao W, Shu C, Li X, Cao J, Fan X, Jiang W. Preparation of a chitosan-chlorogenic acid conjugate and its application as edible coating in postharvest preservation of peach fruit. Postharvest Biol Technol. 2019;154:129-36. https://doi.org/10.1016/j.postharvbio.2019.05.003
- 43. Sun X, Wu Q, Picha DH, Ferguson MH, Ndukwe IE, Azadi P. Comparative performance of bio-based coatings formulated with cellulose, chitin, and chitosan nanomaterials suitable for fruit preservation. Carbohyd Polym. 2021;259:117764. https://doi.org/10.1016/j.carbpol.2021.117764
- 44. Ali S, Khan AS, Nawaz A, Anjum MA, Naz S, Ejaz S, et al. Aloe vera gel coating delays postharvest browning and maintains quality of harvested litchi fruit. Postharvest Biol Technol. 2019;157:110960. https://doi.org/10.1016/j.postharvbio.2019.110960
- 45. Lo'ay A, Rabie M, Alhaithloul HA, Alghanem SM, Ibrahim AM, Abdein MA, et al. On the biochemical and physiological responses of 'Crimson seedless' grapes coated with an edible composite of pectin, polyphenylene alcohol, and salicylic acid. Horticulturae. 2021;7(11):498. https://doi.org/10.3390/horticulturae7110498
- 46. Thakur R, Pristijono P, Golding JB, Stathopoulos CE, Scarlett C, Bowyer M, et al. Effect of starch physiology, gelatinization, and retrogradation on the attributes of rice starch‐ι‐carrageenan film. Starch‐Stärke. 2018;70(1-2):1700099. https://doi.org/10.1002/star.201700099
- 47. Feng Z, Wu G, Liu C, Li D, Jiang B, Zhang X. Edible coating based on whey protein isolate nanofibrils for antioxidation and inhibition of product browning. Food Hydrocol. 2018;79:179-88. https://doi.org/10.1016/j.foodhyd.2017.12.028
- 48. Kumar P, Székely D, Szabó-Nótin B, Szalóki-Dorkó L, Máté M. Effect of gelatin based edible coatings on minimally processed carrot (Daucus carota l.) slices. J Int Sci Pub: Agric Food. 2021;9:255-64.
- 49. Farswan K, Singh O, Karakoti R, Rehan. Effect of zein based edible coatings in litchi fruits cv rose scented. Environ Ecol. 2023;41(2A):1040-44.
- 50. Chiumarelli M, Hubinger MD. Stability, solubility, mechanical and barrier properties of cassava starch-Carnauba wax edible coatings to preserve fresh-cut apples. Food hydrocol. 2012;28(1):59-67. https://doi.org/10.1016/j.foodhyd.2011.12.006
- 51. Hu H, Zhou H, Li P. Lacquer wax coating improves the sensory and quality attributes of kiwifruit during ambient storage. Scientia Hortic. 2019;244:31-41. https://doi.org/10.1016/j.scienta.2018.09.026
- 52. Oregel-Zamudio E, Angoa-Pérez MV, Oyoque-Salcedo G, Aguilar-González CN, Mena-Violante HG. Effect of candelilla wax edible coatings combined with biocontrol bacteria on strawberry quality during the shelf-life. Scientia Hortic. 2017;214:273-9. https://doi.org/10.1016/j.scienta.2016.11.038
- 53. Kumar N, Pratibha, Prasad J, Yadav A, Upadhyay A, Neeraj, et al. Recent trends in edible packaging for food applications-Perspective for the future. Food Engin Rev. 2023;15(4):718-47. https://doi.org/10.1007/s12393-023-09358-y
- 54. Paidari S, Zamindar N, Tahergorabi R, Kargar M, Ezzati S, Shirani N, et al. Edible coating and films as promising packaging: A mini review. J Food Measur Charact. 2021;15(5):4205-14. https://doi.org/10.1007/s11694-021-00979-7
- 55. Kumar N, Upadhyay A, Shukla S, Bajpai VK, Kieliszek M, Yadav A, et al. Next generation edible nanoformulations for improving post-harvest shelf-life of citrus fruits. J Food Measur Charact. 2024;18(3):1825-56. https://doi.org/10.1007/s11694-023-02287-8
- 56. Duarte M, Duarte R, Rodrigues R, Rodrigues M. Essential oils and their characteristics. Essential oils in food processing: Chemistry, safety and applications. John Wiley & Sons Ltd.;2017:1-19. https://doi.org/10.1002/9781119149392.ch1
- 57. Wu Z, Zhou W, Pang C, Deng W, Xu C, Wang X. Multifunctional chitosan-based coating with liposomes containing laurel essential oils and nanosilver for pork preservation. Food Chem. 2019;295:16-25. https://doi.org/10.1016/j.foodchem.2019.05.114
- 58. Azevedo AN, Buarque PR, Cruz EMO, Blank AF, Alves PB, Nunes ML, et al. Response surface methodology for optimisation of edible chitosan coating formulations incorporating essential oil against several foodborne pathogenic bacteria. Food Control. 2014;43:1-9. https://doi.org/10.1016/j.foodcont.2014.02.033
- 59. Donsì F, Ferrari G. Essential oil nanoemulsions as antimicrobial agents in food. J Biotech. 2016;233:106-20. https://doi.org/10.1016/j.jbiotec.2016.07.005
- 60. Acevedo-Fani A, Soliva-Fortuny R, Martín-Belloso O. Nanoemulsions as edible coatings. Curr Opin Food Sci. 2017;15:43-9. https://doi.org/10.1016/j.cofs.2017.06.002
- 61. Valdés A, Ramos M, Beltrán A, Jiménez A, Garrigós MC. State of the art of antimicrobial edible coatings for food packaging applications. Coatings. 2017;7(4):56. https://doi.org/10.3390/coatings7040056
- 62. Tang X, Yan X. Dip-coating for fibrous materials: Mechanism, methods and applications. J Sol-Gel Sci Technol. 2017;81:378-404. https://doi.org/10.1007/s10971-016-4197-7
- 63. Dhanapal A. Edible films from polysaccharides. Food Sci Qual Manag. 2012;3:9.
- 64. Kumar N. Polysaccharide-based component and their relevance in edible film/coating: A review. Nutri Food Sci. 2019;49(5):793-823. https://doi.org/10.1108/NFS-10-2018-0294
- 65. Kumar N, Ojha A, Upadhyay A, Singh R, Kumar S. Effect of active chitosan-pullulan composite edible coating enrich with pomegranate peel extract on the storage quality of green bell pepper. LWT. 2021;138:110435. https://doi.org/10.1016/j.lwt.2020.110435
- 66. Silva WB, Silva GMC, Santana DB, Salvador AR, Medeiros DB, Belghith I, et al. Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chem. 2018;242:232-38. https://doi.org/10.1016/j.foodchem.2018.06.005
- 67. Asiamah E, Arthur W, Kyei-Barfour V, Sarpong F, Ketemepi HK. Enhancing the functional and physicochemical properties of tomato (Solanum lycopersicum L.) fruit through polysaccharides edible dipping technique coating under various storage conditions. Bioactive Carbohyd Dietary Fibre. 2023;30:100373. https://doi.org/10.1016/j.bcdf.2023.100373
- 68. Gutiérrez-Pacheco MM, Ortega-Ramírez LA, Silva-Espinoza BA, Cruz-Valenzuela MR, González-Aguilar GA, Lizardi-Mendoza J, et al. Individual and combined coatings of chitosan and carnauba wax with oregano essential oil to avoid water loss and microbial decay of fresh cucumber. Coatings. 2020;10(7):614. https://doi.org/10.3390/coatings10070614
- 69. Bleoanca I, Lanciu A, Patrașcu L, Ceoromila A, Borda D. Efficacy of two stabilizers in nanoemulsions with whey proteins and thyme essential oil as edible coatings for zucchini. Membranes. 2022;12(3):326. https://doi.org/10.3390/membranes12030326
- 70. Al-Naamani L, Dutta J, Dobretsov S. Nanocomposite zinc oxide-chitosan coatings on polyethylene films for extending storage life of okra (Abelmoschus esculentus). Nanomaterials. 2018;8(7):479. https://doi.org/10.3390/nano8070479
- 71. Thakur R, Pristijono P, Bowyer M, Singh SP, Scarlett CJ, Stathopoulos CE, et al. A starch edible surface coating delays banana fruit ripening. LWT. 2019;100:341-47. https://doi.org/10.1016/j.lwt.2018.10.055
- 72. Basumatary IB, Mukherjee A, Katiyar V, Dutta J, Kumar S. Chitosan-based active coating for pineapple preservation: Evaluation of antimicrobial efficacy and shelf-life extension. LWT. 2022;168:113940. https://doi.org/10.1016/j.lwt.2022.113940
- 73. Hira N, Mitalo OW, Okada R, Sangawa M, Masuda K, Fujita N, et al. The effect of layer-by-layer edible coating on the shelf life and transcriptome of 'Kosui'Japanese pear fruit. Postharvest Biol Technol. 2022;185:111787. https://doi.org/10.1016/j.postharvbio.2021.111787
- 74. Poverenov E, Danino S, Horev B, Granit R, Vinokur Y, Rodov V. Layer-by-layer electrostatic deposition of edible coating on fresh cut melon model: Anticipated and unexpected effects of alginate-chitosan combination. Food Bioproc Technol. 2014;7:1424-32. https://doi.org/10.1007/s11947-013-1134-4
- 75. Jurić S, Bureš MS, Vlahoviček-Kahlina K, Stracenski KS, Fruk G, Jalšenjak N, et al. Chitosan-based layer-by-layer edible coatings application for the preservation of mandarin fruit bioactive compounds and organic acids. Food Chem: X. 2023;17:100575. https://doi.org/10.1016/j.fochx.2023.100575
- 76. Panahirad S, Dadpour M, Peighambardoust SH, Soltanzadeh M, Gullón B, Alirezalu K, et al. Applications of carboxymethyl cellulose-and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends Food Sci Technol. 2021;110:663-73. https://doi.org/10.1016/j.tifs.2021.02.025
- 77. Valencia-Chamorro SA, Palou L, Del Río MA, Pérez-Gago MB. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Crit Rev Food Sci Nutri. 2011;51(9):872-900. https://doi.org/10.1080/10408398.2010.485705
- 78. Hamann D, Puton BMS, Colet R, Steffens J, Ceni GC, Cansian RL, et al. Active edible films for application in meat products. Res Soc Develop. 2021;10(7):e13610716379-e. https://doi.org/10.33448/rsd-v10i7.16379
- 79. Gennadios A, Hanna MA, Kurth LB. Application of edible coatings on meats, poultry and seafoods: A review. LWT-Food Sci Technol. 1997;30(4):337-50. https://doi.org/10.1006/fstl.1996.0202
- 80. Villa-Rodriguez JA, Palafox-Carlos H, Yahia EM, Ayala-Zavala JF, Gonzalez-Aguilar GA. Maintaining antioxidant potential of fresh fruits and vegetables after harvest. Crit Rev Food Sci Nutri. 2015;55(6):806-22. https://doi.org/10.1080/10408398.2012.685631
- 81. Sánchez-González L, Pastor C, Vargas M, Chiralt A, González-Martínez C, Cháfer M. Effect of hydroxypropylmethylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biol Technol. 2011;60(1):57-63. https://doi.org/10.1016/j.postharvbio.2010.11.004
- 82. Rojas-Graü MA, Soliva-Fortuny R, Martín-Belloso O. Edible coatings to incorporate active ingredients to fresh-cut fruits: A review. Trends Food Sci Technol. 2009;20(10):438-47. https://doi.org/10.1016/j.tifs.2009.05.002
- 83. Poovaiah B. Role of calcium in prolonging storage life of fruits and vegetables. 1986.
- 84. Pagno CH, Castagna A, Trivellini A, Mensuali‐Sodi A, Ranieri A, Ferreira EA, et al. The nutraceutical quality of tomato fruit during domestic storage is affected by chitosan coating. J Food Proces Preserv. 2018;42(1):e13326. https://doi.org/10.1111/jfpp.13326
- 85. Raybaudi-Massilia RM, Mosqueda-Melgar J, Martín-Belloso O. Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int Journal Food Microbiol. 2008;121(3):313-27. https://doi.org/10.1016/j.ijfoodmicro.2007.11.010
- 86. Chu Y, Gao C, Liu X, Zhang N, Xu T, Feng X, et al. Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. LWT. 2020;122:109054. https://doi.org/10.1016/j.lwt.2020.109054
- 87. Oh YA, Oh YJ, Song AY, Won JS, Song KB, Min SC. Comparison of effectiveness of edible coatings using emulsions containing lemongrass oil of different size droplets on grape berry safety and preservation. LWT. 2017;75:742-50. https://doi.org/10.1016/j.lwt.2016.10.033
- 88. Sogvar OB, Saba MK, Emamifar A. Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biol Technol. 2016;114:29-35. https://doi.org/10.1016/j.postharvbio.2015.11.019
- 89. Rodriguez‐Garcia I, Cruz‐Valenzuela MR, Silva‐Espinoza BA, Gonzalez‐Aguilar GA, Moctezuma E, Gutierrez‐Pacheco MM, et al. Oregano (Lippia graveolens) essential oil added within pectin edible coatings prevents fungal decay and increases the antioxidant capacity of treated tomatoes. J Sci Food Agric. 2016;96(11):3772-778. https://doi.org/10.1002/jsfa.7568
- 90. Keshari D, Tripathi AD, Agarwal A, Rai S, Srivastava SK, Kumar P. Effect of α-dl tocopherol acetate (antioxidant) enriched edible coating on the physicochemical, functional properties and shelf life of minimally processed carrots (Daucus carota subsp. sativus). Future Foods. 2022;5:100116. https://doi.org/10.1016/j.fufo.2022.100116
- 91. Najafi Marghmaleki S, Mortazavi SMH, Saei H, Mostaan A. The effect of alginate-based edible coating enriched with citric acid and ascorbic acid on texture, appearance and eating quality of apple fresh-cut. Int J Fruit Sci. 2021;21(1):40-51. https://doi.org/10.1080/15538362.2020.1856018
- 92. Alali AA, Awad MA, Al-Qurashi AD, Mohamed SA. Postharvest gum Arabic and salicylic acid dipping affect quality and biochemical changes of 'Grand Nain'bananas during shelf life. Scientia Hortic. 2018;237:51-58. https://doi.org/10.1016/j.scienta.2018.03.061
- 93. Soto-Muñoz L, Pérez-Gago MB, Martínez-Blay V, Palou L. Postharvest application of potato starch edible coatings with sodium benzoate to reduce sour rot and preserve mandarin fruit quality. Coatings. 2023;13(2):296. https://doi.org/10.3390/coatings13020296
- 94. Ali A, Noh NM, Mustafa MA. Antimicrobial activity of chitosan enriched with lemongrass oil against anthracnose of bell pepper. Food packaging and shelf life. 2015;3:56-61. https://doi.org/10.1016/j.fpsl.2014.10.003
- 95. Han C, Zhao Y, Leonard S, Traber M. Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria× ananassa) and raspberries (Rubus ideaus). Postharvest Biol Technol. 2004;33(1):67-78. https://doi.org/10.1016/j.postharvbio.2004.01.008
- 96. Tapia M, Rojas-Graü M, Carmona A, Rodríguez F, Soliva-Fortuny R, Martin-Belloso O. Use of alginate-and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocol. 2008;22(8):1493-503. https://doi.org/10.1016/j.foodhyd.2007.10.004
- 97. Montero-Calderón M, Rojas-Graü MA, Martín-Belloso O. Effect of packaging conditions on quality and shelf-life of fresh-cut pineapple (Ananas comosus). Postharvest Biol Technol. 2008;50(2-3):182-89. https://doi.org/10.1016/j.postharvbio.2008.03.014
- 98. Olivas G, Mattinson D, Barbosa-Cánovas G. Alginate coatings for preservation of minimally processed 'Gala'apples. Postharvest Biol Technol. 2007;45(1):89-96. https://doi.org/10.1016/j.postharvbio.2006.11.018
- 99. Galus S, Arik Kibar EA, Gniewosz M, Kraśniewska K. Novel materials in the preparation of edible films and coatings-A review. Coatings. 2020;10(7):674. https://doi.org/10.3390/coatings10070674
- 100. Iñiguez-Moreno M, Ragazzo-Sánchez JA, Barros-Castillo JC, Sandoval-Contreras T, Calderón-Santoyo M. Sodium alginate coatings added with Meyerozyma caribbica: Postharvest biocontrol of Colletotrichum gloeosporioides in avocado (Persea americana Mill. cv. Hass). Postharvest Biol Technol. 2020;163:111123. https://doi.org/10.1016/j.postharvbio.2020.111123
Downloads
Download data is not yet available.