Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Edible coatings: A sustainable approach to protect perishable fruits and vegetables

DOI
https://doi.org/10.14719/pst.9221
Submitted
30 April 2025
Published
01-07-2025
Versions

Abstract

Fruits and vegetables are crucial to a nutritious diet but are highly perishable, posing challenges in maintaining freshness during storage and transportation. This comprehensive review aims to provide insights into the influence of edible coatings on the postharvest preservation of fruits and vegetables. Edible coatings, made from natural polymers such as proteins, polysaccharides and lipids, have gained attention as an effective method to extend shelf life. These coatings form a protective barrier that reduces moisture loss, gas exchange and microbial growth, thereby delaying senescence and preserving quality attributes like firmness, colour, texture and nutritional content. Application methods include dipping, spraying and brushing to ensure uniform coverage. The efficacy of edible
coatings depends on factors such as composition, concentration and specific characteristics of the produce. Additionally, incorporating antimicrobial agents like essential oils and plant extracts enhances food safety by inhibiting spoilage microorganisms. Beyond shelf life extension, edible coatings help reduce postharvest losses, improve marketability and decrease reliance on chemical preservatives and synthetic packaging. However, challenges related to formulation optimization, scalability, cost and consumer acceptance must be addressed to enable broader adoption. Overall, edible coatings offer a promising strategy for preserving fruits and vegetables, warranting further research to fully realize their potential in the food industry.

References

  1. 1. Raghav PK, Agarwal N, Saini M. Edible coating of fruits and vegetables: A review. Int J S Res Modern Edu. 2016;1(1):188-204.
  2. 2. Gutiérrez TJ, Álvarez K. Physico-chemical properties and in vitro digestibility of edible films made from plantain flour with added Aloe vera gel. J Funct Foods. 2016;26:750-62. https://doi.org/10.1016/j.jff.2016.08.054
  3. 3. Sapper M, Chiralt A. Starch-based coatings for preservation of fruits and vegetables. Coatings. 2018;8(5):152. https://doi.org/10.3390/coatings8050152
  4. 4. Nain N, Katoch GK, Kaur S, Rasane P. Recent developments in edible coatings for fresh fruits and vegetables. J Hortic Res. 2021;29(2):127-40. https://doi.org/10.2478/johr-2021-0022
  5. 5. Singh S, Dubey A, Gangwar V, Kumar A, Kumar A, Kumar M, et al. Edible coatings for improving the storability of fresh fruits and vegetables: A review. Pharma Innov. 2023;12(6):3992-4002.
  6. 6. Sharma HP, Chaudhary V, Kumar M. Importance of edible coating on fruits and vegetables: A review. J Pharmacog and Phytochem. 2019;8(3):4104-10.
  7. 7. Prasad K, Guarav A, Preethi P, Neha P. Edible coating technology for extending market life of horticultural produce. Acta Scientific Agric. 2018;2(5):55-64.
  8. 8. Nawab A, Alam F, Hasnain A. Mango kernel starch as a novel edible coating for enhancing shelf-life of tomato (Solanum lycopersicum) fruit. Int J Biol Macromol. 2017;103:581-6. https://doi.org/10.1016/j.ijbiomac.2017.05.057
  9. 9. Tiwari VK, Verma VC, Khushboo A, Kumar K, Tsewang T, Verma A, et al. Edible coating for postharvest management of fruits and vegetables. Pharm Innov J. 2022;11:970-8.
  10. 10. Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M. Development of edible films and coatings from alginates and carrageenans. Carbohyd Polym. 2016;137:360-74. https://doi.org/10.1016/j.carbpol.2015.10.074
  11. 11. Guilbert S, Gontard N, Cuq B. Technology and applications of edible protective films. Packaging Technol Sci. 1995;8(6):339-46. https://doi.org/10.1002/pts.2770080607
  12. 12. Karunanayake K, Liyanage K, Jayakody L, Somaratne S. Basil oil incorporated beeswax coating to increase shelf life and reduce anthracnose development in mango cv. Willard. Ceylon J Sci. 2020;49(5):355-61. https://doi.org/10.4038/cjs.v49i5.7802
  13. 13. Panwar S, Mishra B, Goyal P. Permeability of Aloe vera composite coatings and their effect on quality of peeled carrots. Curr Sci. 2016:2031-5. https://doi.org/10.18520/cs/v111/i12/2031-2035
  14. 14. Sharma H, Chaudhary V, Kumar M. Importance of edible coating on fruits and vegetables: A review. J Pharmacogn Phytochem. 2019;8(3):4104-10.
  15. 15. Hassan B, Chatha SAS, Hussain AI, Zia KM, Akhtar N. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Int J Biolo Macromol. 2018;109:1095-107. https://doi.org/10.1016/j.ijbiomac.2017.11.097
  16. 16. Wang B, Yan L, Guo S, Wen L, Yu M, Feng L, et al. Structural elucidation, modification, and structure-activity relationship of polysaccharides in Chinese herbs: A review. Front Nutri. 2022;9:908175. https://doi.org/10.3389/fnut.2022.908175
  17. 17. Motlagh F, Quantick P. Effect of permeable coatings on the storage life of fruits. I. Pro‐long treatment of limes (Citrus aurantifolia cv. Persian). Int J Food Sci Technol. 1988;23(1):99-105. https://doi.org/10.1111/j.1365-2621.1988.tb00555.x
  18. 18. Nešić A, Cabrera-Barjas G, Dimitrijević-Branković S, Davidović S, Radovanović N, Delattre C. Prospect of polysaccharide-based materials as advanced food packaging. Molecules. 2019;25(1):135. https://doi.org/10.3390/molecules25010135
  19. 19. Cruz-Monterrosa RG, Rayas-Amor AA, González-Reza RM, Zambrano-Zaragoza ML, Aguilar-Toalá JE, Liceaga AM. Application of polysaccharide-based edible coatings on fruits and vegetables: Improvement of food quality and bioactivities. Polysaccharides. 2023;4(2):99-115. https://doi.org/10.3390/polysaccharides4020008
  20. 20. Alvarez MV, Bambace MF, Quintana G, Gomez-Zavaglia A, del Rosario Moreira M. Prebiotic-alginate edible coating on fresh-cut apple as a new carrier for probiotic lactobacilli and bifidobacteria. LWT. 2021;137:110483. https://doi.org/10.1016/j.lwt.2020.110483
  21. 21. Whistler RL, BeMiller JN, Paschall EF. Starch: Chemistry and technology: Academic Press; 2012.
  22. 22. Cazón P, Velazquez G, Ramírez JA, Vázquez M. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids. 2017;68:136-48. https://doi.org/10.1016/j.foodhyd.2016.09.009
  23. 23. Tester RF, Karkalas J, Qi X. Starch-composition, fine structure and architecture. J Cereal Sci. 2004;39(2):151-65. https://doi.org/10.1016/j.jcs.2003.12.001
  24. 24. Versino F, Lopez OV, Garcia MA, Zaritzky NE. Starch‐based films and food coatings: An overview. Starch‐Stärke. 2016;68(11-12):1026-37. https://doi.org/10.1002/star.201600095
  25. 25. Dhall R. Advances in edible coatings for fresh fruits and vegetables: A review. Crit Rev Food Sci Nutri. 2013;53(5):435-50. https://doi.org/10.1080/10408398.2010.541568
  26. 26. Adetunji C, Fadiji A, Aboyeji O. Effect of chitosan coating combined Aloe vera gel on cucumber (Cucumis Sativa L.) post-harvest quality during ambient storage. J Emerg Trends in Engin Appl Sci. 2014;5(6):391-97.
  27. 27. Lee P, Rogers M. Effect of calcium source and exposure-time on basic caviar spherification using sodium alginate. Int J Gastronomy Food Sci. 2012;1(2):96-100. https://doi.org/10.1016/j.ijgfs.2013.06.003
  28. 28. Valero D, Díaz-Mula HM, Zapata PJ, Guillén F, Martínez-Romero D, Castillo S, et al. Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biol Technol. 2013;77:1-6. https://doi.org/10.1016/j.postharvbio.2012.10.011
  29. 29. Park HJ, Rhim JW, Jung ST, Kang SG, Hwang KT, Park YK. Mechanical properties of carrageenan-based biopolymer films. Korean Journal of Packaging Sci Technol. 1995;1(1):38-50.
  30. 30. Elsabee MZ, Abdou ES. Chitosan based edible films and coatings: A review. Materials Sci Engin: C. 2013;33(4):1819-41. https://doi.org/10.1016/j.msec.2013.01.010
  31. 31. Pavinatto A, de Almeida Mattos AV, Malpass ACG, Okura MH, Balogh DT, Sanfelice RC. Coating with chitosan-based edible films for mechanical/biological protection of strawberries. Int J Biol Macromol. 2020;151:1004-11. https://doi.org/10.1016/j.ijbiomac.2019.11.076
  32. 32. Pereda M, Ponce A, Marcovich N, Ruseckaite R, Martucci J. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocol. 2011;25(5):1372-81. https://doi.org/10.1016/j.foodhyd.2011.01.001
  33. 33. Kocira A, Kozłowicz K, Panasiewicz K, Staniak M, Szpunar-Krok E, Hortyńska P. Polysaccharides as edible films and coatings: Characteristics and influence on fruit and vegetable quality-A review. Agronomy. 2021;11(5):813. https://doi.org/10.3390/agronomy11050813
  34. 34. Lacroix M, Vu KD. Edible coating and film materials: Proteins. Innovations in food packaging: Elsevier; 2014. p. 277-304. https://doi.org/10.1016/B978-0-12-394601-0.00011-4
  35. 35. Purkayastha MD, Kumar S. Protein‐based films and coatings. Biopolymer‐Based Food Packaging: Innov Technol Appl. 2022:178-224. https://doi.org/10.1002/9781119702313.ch6
  36. 36. Bourtoom T. Edible protein films: Properties enhancement. Int Food Res J. 2009;16(1):1-9.
  37. 37. Perez‐Gago M, Rojas C, DelRio M. Effect of lipid type and amount of edible hydroxypropyl methylcellulose‐lipid composite coatings used to protect postharvest quality of mandarins cv. fortune. J Food Sci. 2002;67(8):2903-10. https://doi.org/10.1111/j.1365-2621.2002.tb08836.x
  38. 38. Hall DJ. Edible coatings from lipids, waxes, and resins. Edible coatings and films to improve food quality, 2nd edition. CRC Press, USA. 2012:79-101. https://doi.org/10.1201/b11082-4
  39. 39. Robertson PK. Interpretation of cone penetration tests-A unified approach. Can Geotech J. 2009;46(11):1337-55. https://doi.org/10.1139/T09-065
  40. 40. Quezada-Gallo JA, Debeaufort F, Voilley A. Mechanism of aroma transfer through edible and plastic packagings: Are they complementary to solve the problem of aroma transfer? : ACS Publications; 2000. https://doi.org/10.1021/bk-2000-0753.ch012
  41. 41. Senturk Parreidt T, Schmid M, Müller K. Effect of dipping and vacuum impregnation coating techniques with alginate based coating on physical quality parameters of cantaloupe melon. J Food Sci. 2018;83(4):929-36. https://doi.org/10.1111/1750-3841.14091
  42. 42. Jiao W, Shu C, Li X, Cao J, Fan X, Jiang W. Preparation of a chitosan-chlorogenic acid conjugate and its application as edible coating in postharvest preservation of peach fruit. Postharvest Biol Technol. 2019;154:129-36. https://doi.org/10.1016/j.postharvbio.2019.05.003
  43. 43. Sun X, Wu Q, Picha DH, Ferguson MH, Ndukwe IE, Azadi P. Comparative performance of bio-based coatings formulated with cellulose, chitin, and chitosan nanomaterials suitable for fruit preservation. Carbohyd Polym. 2021;259:117764. https://doi.org/10.1016/j.carbpol.2021.117764
  44. 44. Ali S, Khan AS, Nawaz A, Anjum MA, Naz S, Ejaz S, et al. Aloe vera gel coating delays postharvest browning and maintains quality of harvested litchi fruit. Postharvest Biol Technol. 2019;157:110960. https://doi.org/10.1016/j.postharvbio.2019.110960
  45. 45. Lo'ay A, Rabie M, Alhaithloul HA, Alghanem SM, Ibrahim AM, Abdein MA, et al. On the biochemical and physiological responses of 'Crimson seedless' grapes coated with an edible composite of pectin, polyphenylene alcohol, and salicylic acid. Horticulturae. 2021;7(11):498. https://doi.org/10.3390/horticulturae7110498
  46. 46. Thakur R, Pristijono P, Golding JB, Stathopoulos CE, Scarlett C, Bowyer M, et al. Effect of starch physiology, gelatinization, and retrogradation on the attributes of rice starch‐ι‐carrageenan film. Starch‐Stärke. 2018;70(1-2):1700099. https://doi.org/10.1002/star.201700099
  47. 47. Feng Z, Wu G, Liu C, Li D, Jiang B, Zhang X. Edible coating based on whey protein isolate nanofibrils for antioxidation and inhibition of product browning. Food Hydrocol. 2018;79:179-88. https://doi.org/10.1016/j.foodhyd.2017.12.028
  48. 48. Kumar P, Székely D, Szabó-Nótin B, Szalóki-Dorkó L, Máté M. Effect of gelatin based edible coatings on minimally processed carrot (Daucus carota l.) slices. J Int Sci Pub: Agric Food. 2021;9:255-64.
  49. 49. Farswan K, Singh O, Karakoti R, Rehan. Effect of zein based edible coatings in litchi fruits cv rose scented. Environ Ecol. 2023;41(2A):1040-44.
  50. 50. Chiumarelli M, Hubinger MD. Stability, solubility, mechanical and barrier properties of cassava starch-Carnauba wax edible coatings to preserve fresh-cut apples. Food hydrocol. 2012;28(1):59-67. https://doi.org/10.1016/j.foodhyd.2011.12.006
  51. 51. Hu H, Zhou H, Li P. Lacquer wax coating improves the sensory and quality attributes of kiwifruit during ambient storage. Scientia Hortic. 2019;244:31-41. https://doi.org/10.1016/j.scienta.2018.09.026
  52. 52. Oregel-Zamudio E, Angoa-Pérez MV, Oyoque-Salcedo G, Aguilar-González CN, Mena-Violante HG. Effect of candelilla wax edible coatings combined with biocontrol bacteria on strawberry quality during the shelf-life. Scientia Hortic. 2017;214:273-9. https://doi.org/10.1016/j.scienta.2016.11.038
  53. 53. Kumar N, Pratibha, Prasad J, Yadav A, Upadhyay A, Neeraj, et al. Recent trends in edible packaging for food applications-Perspective for the future. Food Engin Rev. 2023;15(4):718-47. https://doi.org/10.1007/s12393-023-09358-y
  54. 54. Paidari S, Zamindar N, Tahergorabi R, Kargar M, Ezzati S, Shirani N, et al. Edible coating and films as promising packaging: A mini review. J Food Measur Charact. 2021;15(5):4205-14. https://doi.org/10.1007/s11694-021-00979-7
  55. 55. Kumar N, Upadhyay A, Shukla S, Bajpai VK, Kieliszek M, Yadav A, et al. Next generation edible nanoformulations for improving post-harvest shelf-life of citrus fruits. J Food Measur Charact. 2024;18(3):1825-56. https://doi.org/10.1007/s11694-023-02287-8
  56. 56. Duarte M, Duarte R, Rodrigues R, Rodrigues M. Essential oils and their characteristics. Essential oils in food processing: Chemistry, safety and applications. John Wiley & Sons Ltd.;2017:1-19. https://doi.org/10.1002/9781119149392.ch1
  57. 57. Wu Z, Zhou W, Pang C, Deng W, Xu C, Wang X. Multifunctional chitosan-based coating with liposomes containing laurel essential oils and nanosilver for pork preservation. Food Chem. 2019;295:16-25. https://doi.org/10.1016/j.foodchem.2019.05.114
  58. 58. Azevedo AN, Buarque PR, Cruz EMO, Blank AF, Alves PB, Nunes ML, et al. Response surface methodology for optimisation of edible chitosan coating formulations incorporating essential oil against several foodborne pathogenic bacteria. Food Control. 2014;43:1-9. https://doi.org/10.1016/j.foodcont.2014.02.033
  59. 59. Donsì F, Ferrari G. Essential oil nanoemulsions as antimicrobial agents in food. J Biotech. 2016;233:106-20. https://doi.org/10.1016/j.jbiotec.2016.07.005
  60. 60. Acevedo-Fani A, Soliva-Fortuny R, Martín-Belloso O. Nanoemulsions as edible coatings. Curr Opin Food Sci. 2017;15:43-9. https://doi.org/10.1016/j.cofs.2017.06.002
  61. 61. Valdés A, Ramos M, Beltrán A, Jiménez A, Garrigós MC. State of the art of antimicrobial edible coatings for food packaging applications. Coatings. 2017;7(4):56. https://doi.org/10.3390/coatings7040056
  62. 62. Tang X, Yan X. Dip-coating for fibrous materials: Mechanism, methods and applications. J Sol-Gel Sci Technol. 2017;81:378-404. https://doi.org/10.1007/s10971-016-4197-7
  63. 63. Dhanapal A. Edible films from polysaccharides. Food Sci Qual Manag. 2012;3:9.
  64. 64. Kumar N. Polysaccharide-based component and their relevance in edible film/coating: A review. Nutri Food Sci. 2019;49(5):793-823. https://doi.org/10.1108/NFS-10-2018-0294
  65. 65. Kumar N, Ojha A, Upadhyay A, Singh R, Kumar S. Effect of active chitosan-pullulan composite edible coating enrich with pomegranate peel extract on the storage quality of green bell pepper. LWT. 2021;138:110435. https://doi.org/10.1016/j.lwt.2020.110435
  66. 66. Silva WB, Silva GMC, Santana DB, Salvador AR, Medeiros DB, Belghith I, et al. Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chem. 2018;242:232-38. https://doi.org/10.1016/j.foodchem.2018.06.005
  67. 67. Asiamah E, Arthur W, Kyei-Barfour V, Sarpong F, Ketemepi HK. Enhancing the functional and physicochemical properties of tomato (Solanum lycopersicum L.) fruit through polysaccharides edible dipping technique coating under various storage conditions. Bioactive Carbohyd Dietary Fibre. 2023;30:100373. https://doi.org/10.1016/j.bcdf.2023.100373
  68. 68. Gutiérrez-Pacheco MM, Ortega-Ramírez LA, Silva-Espinoza BA, Cruz-Valenzuela MR, González-Aguilar GA, Lizardi-Mendoza J, et al. Individual and combined coatings of chitosan and carnauba wax with oregano essential oil to avoid water loss and microbial decay of fresh cucumber. Coatings. 2020;10(7):614. https://doi.org/10.3390/coatings10070614
  69. 69. Bleoanca I, Lanciu A, Patrașcu L, Ceoromila A, Borda D. Efficacy of two stabilizers in nanoemulsions with whey proteins and thyme essential oil as edible coatings for zucchini. Membranes. 2022;12(3):326. https://doi.org/10.3390/membranes12030326
  70. 70. Al-Naamani L, Dutta J, Dobretsov S. Nanocomposite zinc oxide-chitosan coatings on polyethylene films for extending storage life of okra (Abelmoschus esculentus). Nanomaterials. 2018;8(7):479. https://doi.org/10.3390/nano8070479
  71. 71. Thakur R, Pristijono P, Bowyer M, Singh SP, Scarlett CJ, Stathopoulos CE, et al. A starch edible surface coating delays banana fruit ripening. LWT. 2019;100:341-47. https://doi.org/10.1016/j.lwt.2018.10.055
  72. 72. Basumatary IB, Mukherjee A, Katiyar V, Dutta J, Kumar S. Chitosan-based active coating for pineapple preservation: Evaluation of antimicrobial efficacy and shelf-life extension. LWT. 2022;168:113940. https://doi.org/10.1016/j.lwt.2022.113940
  73. 73. Hira N, Mitalo OW, Okada R, Sangawa M, Masuda K, Fujita N, et al. The effect of layer-by-layer edible coating on the shelf life and transcriptome of 'Kosui'Japanese pear fruit. Postharvest Biol Technol. 2022;185:111787. https://doi.org/10.1016/j.postharvbio.2021.111787
  74. 74. Poverenov E, Danino S, Horev B, Granit R, Vinokur Y, Rodov V. Layer-by-layer electrostatic deposition of edible coating on fresh cut melon model: Anticipated and unexpected effects of alginate-chitosan combination. Food Bioproc Technol. 2014;7:1424-32. https://doi.org/10.1007/s11947-013-1134-4
  75. 75. Jurić S, Bureš MS, Vlahoviček-Kahlina K, Stracenski KS, Fruk G, Jalšenjak N, et al. Chitosan-based layer-by-layer edible coatings application for the preservation of mandarin fruit bioactive compounds and organic acids. Food Chem: X. 2023;17:100575. https://doi.org/10.1016/j.fochx.2023.100575
  76. 76. Panahirad S, Dadpour M, Peighambardoust SH, Soltanzadeh M, Gullón B, Alirezalu K, et al. Applications of carboxymethyl cellulose-and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends Food Sci Technol. 2021;110:663-73. https://doi.org/10.1016/j.tifs.2021.02.025
  77. 77. Valencia-Chamorro SA, Palou L, Del Río MA, Pérez-Gago MB. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Crit Rev Food Sci Nutri. 2011;51(9):872-900. https://doi.org/10.1080/10408398.2010.485705
  78. 78. Hamann D, Puton BMS, Colet R, Steffens J, Ceni GC, Cansian RL, et al. Active edible films for application in meat products. Res Soc Develop. 2021;10(7):e13610716379-e. https://doi.org/10.33448/rsd-v10i7.16379
  79. 79. Gennadios A, Hanna MA, Kurth LB. Application of edible coatings on meats, poultry and seafoods: A review. LWT-Food Sci Technol. 1997;30(4):337-50. https://doi.org/10.1006/fstl.1996.0202
  80. 80. Villa-Rodriguez JA, Palafox-Carlos H, Yahia EM, Ayala-Zavala JF, Gonzalez-Aguilar GA. Maintaining antioxidant potential of fresh fruits and vegetables after harvest. Crit Rev Food Sci Nutri. 2015;55(6):806-22. https://doi.org/10.1080/10408398.2012.685631
  81. 81. Sánchez-González L, Pastor C, Vargas M, Chiralt A, González-Martínez C, Cháfer M. Effect of hydroxypropylmethylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biol Technol. 2011;60(1):57-63. https://doi.org/10.1016/j.postharvbio.2010.11.004
  82. 82. Rojas-Graü MA, Soliva-Fortuny R, Martín-Belloso O. Edible coatings to incorporate active ingredients to fresh-cut fruits: A review. Trends Food Sci Technol. 2009;20(10):438-47. https://doi.org/10.1016/j.tifs.2009.05.002
  83. 83. Poovaiah B. Role of calcium in prolonging storage life of fruits and vegetables. 1986.
  84. 84. Pagno CH, Castagna A, Trivellini A, Mensuali‐Sodi A, Ranieri A, Ferreira EA, et al. The nutraceutical quality of tomato fruit during domestic storage is affected by chitosan coating. J Food Proces Preserv. 2018;42(1):e13326. https://doi.org/10.1111/jfpp.13326
  85. 85. Raybaudi-Massilia RM, Mosqueda-Melgar J, Martín-Belloso O. Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int Journal Food Microbiol. 2008;121(3):313-27. https://doi.org/10.1016/j.ijfoodmicro.2007.11.010
  86. 86. Chu Y, Gao C, Liu X, Zhang N, Xu T, Feng X, et al. Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. LWT. 2020;122:109054. https://doi.org/10.1016/j.lwt.2020.109054
  87. 87. Oh YA, Oh YJ, Song AY, Won JS, Song KB, Min SC. Comparison of effectiveness of edible coatings using emulsions containing lemongrass oil of different size droplets on grape berry safety and preservation. LWT. 2017;75:742-50. https://doi.org/10.1016/j.lwt.2016.10.033
  88. 88. Sogvar OB, Saba MK, Emamifar A. Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biol Technol. 2016;114:29-35. https://doi.org/10.1016/j.postharvbio.2015.11.019
  89. 89. Rodriguez‐Garcia I, Cruz‐Valenzuela MR, Silva‐Espinoza BA, Gonzalez‐Aguilar GA, Moctezuma E, Gutierrez‐Pacheco MM, et al. Oregano (Lippia graveolens) essential oil added within pectin edible coatings prevents fungal decay and increases the antioxidant capacity of treated tomatoes. J Sci Food Agric. 2016;96(11):3772-778. https://doi.org/10.1002/jsfa.7568
  90. 90. Keshari D, Tripathi AD, Agarwal A, Rai S, Srivastava SK, Kumar P. Effect of α-dl tocopherol acetate (antioxidant) enriched edible coating on the physicochemical, functional properties and shelf life of minimally processed carrots (Daucus carota subsp. sativus). Future Foods. 2022;5:100116. https://doi.org/10.1016/j.fufo.2022.100116
  91. 91. Najafi Marghmaleki S, Mortazavi SMH, Saei H, Mostaan A. The effect of alginate-based edible coating enriched with citric acid and ascorbic acid on texture, appearance and eating quality of apple fresh-cut. Int J Fruit Sci. 2021;21(1):40-51. https://doi.org/10.1080/15538362.2020.1856018
  92. 92. Alali AA, Awad MA, Al-Qurashi AD, Mohamed SA. Postharvest gum Arabic and salicylic acid dipping affect quality and biochemical changes of 'Grand Nain'bananas during shelf life. Scientia Hortic. 2018;237:51-58. https://doi.org/10.1016/j.scienta.2018.03.061
  93. 93. Soto-Muñoz L, Pérez-Gago MB, Martínez-Blay V, Palou L. Postharvest application of potato starch edible coatings with sodium benzoate to reduce sour rot and preserve mandarin fruit quality. Coatings. 2023;13(2):296. https://doi.org/10.3390/coatings13020296
  94. 94. Ali A, Noh NM, Mustafa MA. Antimicrobial activity of chitosan enriched with lemongrass oil against anthracnose of bell pepper. Food packaging and shelf life. 2015;3:56-61. https://doi.org/10.1016/j.fpsl.2014.10.003
  95. 95. Han C, Zhao Y, Leonard S, Traber M. Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria× ananassa) and raspberries (Rubus ideaus). Postharvest Biol Technol. 2004;33(1):67-78. https://doi.org/10.1016/j.postharvbio.2004.01.008
  96. 96. Tapia M, Rojas-Graü M, Carmona A, Rodríguez F, Soliva-Fortuny R, Martin-Belloso O. Use of alginate-and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocol. 2008;22(8):1493-503. https://doi.org/10.1016/j.foodhyd.2007.10.004
  97. 97. Montero-Calderón M, Rojas-Graü MA, Martín-Belloso O. Effect of packaging conditions on quality and shelf-life of fresh-cut pineapple (Ananas comosus). Postharvest Biol Technol. 2008;50(2-3):182-89. https://doi.org/10.1016/j.postharvbio.2008.03.014
  98. 98. Olivas G, Mattinson D, Barbosa-Cánovas G. Alginate coatings for preservation of minimally processed 'Gala'apples. Postharvest Biol Technol. 2007;45(1):89-96. https://doi.org/10.1016/j.postharvbio.2006.11.018
  99. 99. Galus S, Arik Kibar EA, Gniewosz M, Kraśniewska K. Novel materials in the preparation of edible films and coatings-A review. Coatings. 2020;10(7):674. https://doi.org/10.3390/coatings10070674
  100. 100. Iñiguez-Moreno M, Ragazzo-Sánchez JA, Barros-Castillo JC, Sandoval-Contreras T, Calderón-Santoyo M. Sodium alginate coatings added with Meyerozyma caribbica: Postharvest biocontrol of Colletotrichum gloeosporioides in avocado (Persea americana Mill. cv. Hass). Postharvest Biol Technol. 2020;163:111123. https://doi.org/10.1016/j.postharvbio.2020.111123

Downloads

Download data is not yet available.