Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Phytochemical analysis, antibacterial and cytotoxic efficacy of n -hexane extract from Iraqi cultivated Jatropha integerrima: Isolation of stigmasterol and β-carotene using CombiFlash

DOI
https://doi.org/10.14719/pst.9229
Submitted
1 May 2025
Published
30-06-2025 — Updated on 03-07-2025
Versions

Abstract

Jatropha integerrima a member of the Euphorbiaceae family, is well-known for its numerous secondary metabolites with medicinal applications. This study aims to investigate the phytochemical composition of the n-hexane extract of the aerial parts of J. integerrima grown in Iraq. The work focuses on the identification, separation and characterization of bioactive phytosterols and terpenoids, as well as evaluating the antibacterial activity of the extract against Staphylococcus aureus and Acinetobacter baumannii. Furthermore, the cytotoxic effect of the extract on the B16 melanoma skin cancer cell line was assessed utilizing the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay. Two chromatographic techniques, thin layer chromatography (TLC) and gas chromatography mass spectrometry (GC-MS), are used to detect chemicals and for fractionation and isolation, CombiFlash chromatography and high performance liquid chromatography (HPLC) were used. Two beneficial compounds, β-carotene and stigmasterol, were successfully isolated. The antibacterial assay revealed that the n-hexane extract exhibited significant efficacy, especially against Gram-positive bacteria (S. aureus) and demonstrated a notable cytotoxic effect with the highest inhibition rate of 84.00 % on the skin cancer (B16) cell line at a 200 μg/mL concentration. The values of the half maximal inhibitory concentration (IC50) of the extract were 29.86 μg/mL. The
isolated components were characterized by HPLC, Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy to verify the existence of stigmasterol and β-carotene. Anti-inflammatory, neuroprotective and antioxidant are the most well -known properties of these compounds. As a result, separating and characterizing these compounds from J. integerrima can thus expose significant information on their possible medical use. This study is the first comprehensive analysis of the chemical composition of J. integerrima in Iraq, highlighting its promising medicinal value.

References

  1. 1. Che CT, George V, Ijinu TP, Pushpangadan P, Andrae-Marobela K. Traditional medicine. In: Badal S, Delgoda R, editors. Pharmacognosy. 2nd ed. Academic Press; 2024. p.11–28. https://doi.org/10.1016/b978-0-443-18657-8.00037-2
  2. 2. Raj SP, Solomon PR, Thangaraj B. Euphorbiaceae. In: Raj SP, Solomon PR, Thangaraj B, editors. Biodiesel from flowering plants. Singapore: Springer; 2022. p 207–90. https://doi.org/10.1007/978-981-16-4775-8_18
  3. 3. Subedi CK, Chaudhary RP, Kunwar RM, Bussmann RW, Paniagua-Zambrana NY. Jatropha curcas L. Euphorbiaceae. Ethnobotany of the Himalayas. 2021;1111–21. https://doi.org/10.1007/978-3-030-57408-6_131
  4. 4. Mahrous EA, Elosaily AH, Salama AAA, Salama AM, El-Zalabani SM. Oral and topical anti-inflammatory activity of Jatropha integerrima leaves extract in relation to its metabolite profile. Plants. 2022;11(2):218. https://doi.org/10.3390/plants11020218
  5. 5. Sutthivaiyakit S, Mongkolvisut W, Prabpai S, Kongsaeree P. Diterpenes, sesquiterpenes, and a sesquiterpene−coumarin conjugate from Jatropha integerrima. J Nat Prod. 2009;72(11):2024–27. https://doi.org/10.1021/np900342b
  6. 6. Idrissa N, Adama D, Mamadou B, Rokhaya SG, Yoro T, Alassane W, et al. Novel cytotoxic cyclo heptapeptide from the latex of Jatropha integerrima. J Chem Pharm Res. 2016;8(11):135-39.
  7. 7. Bhattacharjee A, Ramakrishna A, Obulesu M. Phytomedicine and Alzheimer’s disease. Boca Raton (FL): CRC Press; 2020. https://doi.org/10.1201/9780429318429
  8. 8. Maoka T. Carotenoids as natural functional pigments. J Nat Med. 2020;74(1):1–6. https://doi.org/10.1007/s11418-019-01364-x
  9. 9. Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007;445(7130):851–57. https://doi.org/10.1038/nature05661
  10. 10. WHO. World Health Organization. The global cancer observatory. 2020. Internet: Available on: https://globocan.iarc.fr/Pages/fact_sheets_population.aspx
  11. 11. Aboagye D, Quaye KO, Akambase E, Bandoh CO, Issaka SS, Azaanang HC, et al. Cholesterol estimation in edible oils on the Ghanaian market. Am J Food Sci Technol. 2024;12(3):77–81. https://doi.org/10.12691/ajfst-12-3-1
  12. 12. Hassoon SS, Abbas IS, Mshimesh BA. Isolation of beta-sitosterol and evaluation of antioxidant activity of Iraqi Campsis grandiflora flowers. Iraqi J Pharm Sci. 2022;31(1):176–83. https://doi.org/10.31351/vol31iss1pp176-183
  13. 13. Mangold HK. Thin-layer chromatography of lipids. J Am Oil Chem Soc. 1961;38(12):708–27. https://doi.org/10.1007/BF02633061
  14. 14. Pyka A. Detection progress of selected drugs in TLC. Biomed Res Int. 2014;2014:732078. https://doi.org/10.1155/2014/732078
  15. 15. Sherma J, Fried B. Handbook of thin layer chromatography. 3rd ed. Boca Raton (FL): CRC Press; 2003. p.47–51. https://doi.org/10.1201/9780203912430
  16. 16. Zhang Q, Zhu S, Lin X, Peng J, Luo D, Wan X, et al. Analysis of volatile compounds in different varieties of plum fruits based on HS-SPME-GC-MS technique. Horticulturae. 2023;9(10):1069. https://doi.org/10.3390/horticulturae9101069
  17. 17. Al-Tameme HJ, Hadi MY, Hameed IH. Phytochemical analysis of Urtica dioica leaves by FTIR and GC-MS. J Pharmacogn Phytother. 2015;7(10):238–52. https://doi.org/10.5897/jpp2015.0361
  18. 18. Mus’hib HK, Abdul-jalil TZ. Lupeol: Triterpene from Iraqi Portulaca grandiflora L: extraction, GC/MS identification, CombiFlash isolation and structure elucidation. Iraqi J Pharm Sci. 2024;33(4SI):147–58. https://doi.org/10.31351/vol33iss(4si)pp147-158
  19. 19. Boukes GJ, van de Venter M, Oosthuizen V. Quantitative and qualitative analysis of sterols/sterolins and hypoxoside contents of three Hypoxis spp. Afr J Biotechnol. 2008;7(11):1624-29. https://doi.org/10.5897/ajb08.218
  20. 20. Ahmed MN, Khamees AH. Isolation and characterization of luteolin and ferulic acid from Plumbago auriculata cultivated in Iraq. Iraqi J Pharm Sci. 2024;33(4SI):271–81. https://doi.org/10.31351/vol33iss(4SI)pp271-281
  21. 21. Farhan MS, Khamees AH, Ahmed OH, AmerTawfeeq A, Yaseen YS. GC/MS analysis of n-hexane and chloroform extracts of Chenopodium murale leaves in Iraq. J Pharm Res Int. 2019;31(6):1–6. https://doi.org/10.9734/jpri/2019/v31i630325
  22. 22. Pratiwi RA, Nandiyanto AB. How to read and interpret UV-VIS spectrophotometric results. Indonesia J Educ Res Technol. 2022;2(1):1–20. https://doi.org/10.17509/ijert.v2i1.35171
  23. 23. Khashan KS, Badr BA, Sulaiman GM, Jabir MS, Hussain SA. Antibacterial activity of ZnO nanomaterials synthesized by laser ablation. J Phys Conf Ser. 2021;1795(1):012040. https://doi.org/10.1088/1742-6596/1795/1/012040
  24. 24. Jihad MA, Noori FT, Jabir MS, Albukhaty S, AlMalki FA, Alyamani AA. PEG-functionalized graphene oxide nanoparticles loaded with Nigella sativa extract. Molecules. 2021;26(11):3067. https://doi.org/10.3390/molecules26113067
  25. 25. Aktafa AA, Nayef UM, Jabir MS. Laser ablated Au@Ag@Au nanoparticles for MDR bacteria. Plasmonics. 2024;30:1-7. https://doi.org/10.1007/s11468-024-02514-y
  26. 26. Dolati M, Tafvizi F, Salehipour M, Komeili Movahed T, Jafari P. Biogenic CuO nanoparticles induced ROS and apoptosis in breast cancer. Sci Rep. 2023;13(1):3256. https://doi.org/10.1038/s41598-023-30436-y
  27. 27. Jasim AJ, Sulaiman GM, Ay H, Mohammed SA, Mohammed HA, Jabir MS, et al. Gold nanoparticles conjugated chrysin: Cytotoxic, antioxidant and antimicrobial activities. Nanotechnol Rev. 2022;11(1):2726–41. https://doi.org/10.1515/ntrev-2022-0153
  28. 28. Ibrahim AA, Kareem MM, Al-Noor TH, Al-Muhimeed T, AlObaid AA, Albukhaty S, et al. Pt(II)-thiocarbohydrazone complex induces apoptosis in cancer cells via P53 and caspase-8. Pharmaceuticals. 2021;14(6):509. https://doi.org/10.3390/ph14060509
  29. 29. Abdul-lalil TZ. Ultrasound-assisted extraction of fennel leaves: TLC and cytotoxic activity. Iraqi J Pharm Sci. 2024;33(1):94–103. https://doi.org/10.31351/vol33iss1pp94-103
  30. 30. Stahl W, Sies H. β-carotene and other carotenoids in protection from sunlight. Am J Clin Nutr. 2012;96(5):1179S–84S. https://doi.org/10.3945/ajcn.112.034819
  31. 31. Tan BL, Norhaizan ME, Liew WP, Rahman HS. Antioxidant and oxidative stress in age-related diseases. Front Pharmacol. 2018;9:1162. https://doi.org/10.3389/fphar.2018.01162
  32. 32. Gupta S, Singh AK, Kumar R, Kumar A, Singh R, Pandey AK. Stigmasterol’s antioxidant and anti-inflammatory effects in colitis model. Biomed Pharmacother. 2018;97:1039–46. https://doi.org/10.1097/fbp.0000000000000658
  33. 33. Awad AB, Fink CS. Phytosterols as anticancer dietary components. J Nutr. 2000;130(9):2127–30. https://doi.org/10.1093/jn/130.9.2127
  34. 34. Wang T, Hicks KB, Moreau R. Antioxidant activity of phytosterols and oryzanol. J Am Oil Chem Soc. 2002;79(12):1201–06. https://doi.org/10.1007/s11746-002-0628-x
  35. 35. Kowalski S, Karska J, Tota M, Skinderowicz K, Kulbacka J, Drąg-Zalesińska M. Natural compounds in non-melanoma skin cancer. Molecules. 2024;29(3):728. https://doi.org/10.3390/molecules29030728
  36. 36. Bakrim S, Benkhaira N, Bourais I, Benali T, Lee LH, El Omari N, et al. Pharmacological properties of stigmasterol. Antioxidants. 2022;11(10):1912. https://doi.org/10.3390/antiox11101912
  37. 37. Lacatusu I, Badea N, Ovidiu O, Bojin D, Meghea A. Carotene-lipid nanocarriers with antioxidant and antibacterial activity. J Nanopart Res. 2012;14:1–6. https://doi.org/10.1007/s11051-012-0902-9

Downloads

Download data is not yet available.