Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Heat stress tolerance in maize - An overview

DOI
https://doi.org/10.14719/pst.10208
Submitted
24 June 2025
Published
26-09-2025

Abstract

Maize (Zea mays L.), one of the world’s most important staple crops, is increasingly vulnerable to rising temperatures and erratic climatic conditions. Among various abiotic stressors, heat stress stands out as a critical factor that disrupts the crop’s growth by impairing morphological, physiological, biochemical and molecular processes ultimately leading to substantial yield losses. The severity of this issue is expected to escalate with the intensification of global warming and water scarcity. To ensure sustainable maize production, there is an urgent need to develop heat-resilient, high-yielding hybrids. This review explores recent advances in identifying thermotolerant donor lines and employing them in hybrid development. Emphasis is placed on integrated strategies, including advanced agronomic interventions, molecular breeding, CRISPR/Cas-based genome editing and the application of multi-omics platforms transcriptomics, proteomics, metabolomics and phenomics to decipher heat-responsive mechanisms. Furthermore, the integration of high-throughput phenotyping, machine learning and climate-smart agricultural practices offers promising pathways to accelerate breeding efficiency and improve field-level adaptation. By synthesizing these cutting-edge approaches, this review provides a comprehensive framework to mitigate the adverse impacts of heat stress and support climate-resilient maize cultivation in the face of future challenges.

References

  1. 1. Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production. Nature. 2016;529(7584):84-7.https://doi.org/10.1038/nature16467
  2. 2. Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, et al. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci. 2017;8:1147. https://doi.org/10.3389/fpls.2017.01147
  3. 3. Karki P, Subedi E, Acharya G, Bashyal M, Dawadee N, Bhattarai S. A review on the effect of heat stress in wheat (Triticum aestivum L.). Arch Agric Environ Sci. 2021;6(3):381-6. https://doi.org/10.26832/24566632.2021.0603018
  4. 4. Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci U S A. 2017;114(35):9326-31. https://doi.org/10.1073/pnas.1701762114
  5. 5. Bhusal B, Poudel MR, Rishav P, Regmi R, Neupane P, Bhattarai K, et al. A review on abiotic stress resistance in maize (Zea mays L.): effects, resistance mechanisms and management. J Biol Todays World. 2021;10:1-3.
  6. 6. Waqas MA, Wang X, Zafar SA, Noor MA, Hussain HA, Azher Nawaz M, et al. Thermal stresses in maize: effects and management strategies. Plants. 2021;10(2):293. https://doi.org/10.3390/plants10020293
  7. 7. Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M. Physiological, biochemical and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci. 2013;14(5):9643-84. https://doi.org/10.3390/ijms14059643
  8. 8. Jafari F, Wang B, Wang H, Zou J. Breeding maize of ideal plant architecture for high-density planting tolerance through modulating shade avoidance response and beyond. J Integr Plant Biol. 2024;66(5):849-64. https://doi.org/10.1111/jipb.13603
  9. 9. Hassan MU, Chattha MU, Khan I, Chattha MB, Barbanti L, Aamer M, et al. Heat stress in cultivated plants: nature, impact, mechanisms and mitigation strategies-a review. Plant Biosyst. 2021;155(2):211-34.
  10. https://doi.org/10.1080/11263504.2020.1727987
  11. 10. Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants: an overview. Environ Exp Bot. 2007;61(3):199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011
  12. 11. Porter JR. Rising temperatures are likely to reduce crop yields. Nature. 2005;436(7048):174. https://doi.org/10.1038/436174b
  13. 12. Waqas MA, Khan I, Akhter MJ, Noor MA, Ashraf U. Exogenous application of plant growth regulators induces chilling tolerance in short-duration hybrid maize. Environ Sci Pollut Res. 2017;24:11459-71. https://doi.org/10.1007/s11356-017-8768-0
  14. 13. Urban J, Ingwers M, McGuire MA, Teskey RO. Stomatal conductance increases with rising temperature. Plant Signal Behav. 2017;12(8):e1356534.
  15. https://doi.org/10.1080/15592324.2017.1356534
  16. 14. Djalovic I, Kundu S, Bahuguna RN, Pareek A, Raza A, Singla-Pareek SL, et al. Maize and heat stress: physiological, genetic and molecular insights. Plant Genome. 2024;17(1):e20378.
  17. https://doi.org/10.1002/tpg2.20378
  18. 15. Tiwari YK, Yadav SK. High temperature stress tolerance in maize (Zea mays L.): physiological and molecular mechanisms. J Plant Biol. 2019;62:93-102.
  19. https://doi.org/10.1007/s12374-018-0350-x
  20. 16. Noor JJ, Vinayan MT, Umar S, Devi P, Iqbal M, Seetharam K, et al. Morpho-physiological traits associated with heat stress tolerance in tropical maize (Zea mays L.) at reproductive stage. Aust J Crop Sci. 2019;13(4):536-45.
  21. https://doi.org/10.21475/ajcs.19.13.04.p1448
  22. 17. Hall AE. Breeding cowpea for future climates. In: Crop adaptation to climate change. 2011:340-55. https://doi.org/10.1002/9780470960929.ch24
  23. 18. Madhumal Thayil V, Zaidi PH, Seetharam K, Rani Das R, Viswanadh S, Ahmed S, et al. Genotype-by-environment interaction effects under heat stress in tropical maize. Agronomy. 2020;10(12):1998. https://doi.org/10.3390/agronomy10121998
  24. 19. Pound MP, Atkinson JA, Townsend AJ, Wilson MH, Griffiths M, Jackson AS, et al. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. Gigascience. 2017;6(10):gix083. https://doi.org/10.1093/gigascience/gix083
  25. 20. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol. 2004;55:373-99.
  26. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  27. 21. Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol. 1998;49:249-79.
  28. https://doi.org/10.1146/annurev.arplant.49.1.249
  29. 22. Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A. Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in citrus. Front Plant Sci. 2017;8:953.
  30. https://doi.org/10.3389/fpls.2017.00953
  31. 23. Barth C, De Tullio M, Conklin PL. The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot. 2006;57(8):1657-65.
  32. https://doi.org/10.1093/jxb/erj198
  33. 24. Gallie DR. L-ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica. 2013;2013:795964.
  34. https://doi.org/10.1155/2013/795964
  35. 25. Sk Y, Pavan Kumar D, Tiwari YK, Jainender JLN, Vanaja M, Maheswari M. Exogenous application of bio-regulators for alleviation of heat stress in seedlings of maize. Open Access J Agric Res. 2017;2(3).
  36. https://doi.org/10.23880/OAJAR-16000137
  37. 26. Sakamoto A, Murata N. The role of glycine betaine in the protection of plant from stress: clues from transgenic plants. Plant Cell Environ. 2002;25(2):163-71. https://doi.org/10.1046/j.0016-8025.2001.00790.x
  38. 27. Wahid A, Close TJ. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant. 2007;51:104-9. https://doi.org/10.1007/s10535-007-0021-0
  39. 28. Niu Y, Xiang Y. An overview of biomembrane functions in plant responses to high-temperature stress. Front Plant Sci. 2018;9:915.
  40. https://doi.org/10.3389/fpls.2018.00915
  41. 29. Liu J, Niu Y, Zhang J, Zhou Y, Ma Z, Huang X. Ca2+ channels and Ca2+ signals involved in abiotic stress responses in plant cells: recent advances. Plant Cell Tissue Organ Cult. 2018;132:413-24.
  42. https://doi.org/10.1007/s11240-017-1350-0
  43. 30. Hao L, Qiao X. Genome-wide identification and analysis of the CNGC gene family in maize. PeerJ. 2018;6:e5816. https://doi.org/10.7717/peerj.5816
  44. 31. Schulze E-D, Beck E, Müller-Hohenstein K. Plant ecology. Springer; 2005.
  45. 32. Ponce G, Luján R, Campos ME, Reyes A, Nieto-Sotelo J, Feldman LJ, et al. Three maize root-specific genes are not correctly expressed in regenerated caps in the absence of the quiescent center. Planta. 2000;211:23-33. https://doi.org/10.1007/s004250000276
  46. 33. Shou H, Bordallo P, Fan J-B, Yeakley JM, Bibikova M, Sheen J, et al. Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci U S A. 2004;101(9):3298-303.
  47. https://doi.org/10.1073/pnas.0308095100
  48. 34. Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, et al. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol. 2008;147(2):446-55.
  49. https://doi.org/10.1104/pp.108.118828
  50. 35. Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, et al. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet. 2016;48(10):1233-41.
  51. https://doi.org/10.1038/ng.3636
  52. 36. Casaretto JA, El-Kereamy A, Zeng B, Stiegelmeyer SM, Chen X, Bi Y-M, et al. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genomics. 2016;17:1-15.
  53. https://doi.org/10.1186/s12864-016-2659-5
  54. 37. Lin YX, Jiang HY, Chu ZX, Tang XL, Zhu SW, Cheng BJ. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics. 2011;12:1-14.
  55. https://doi.org/10.1186/1471-2164-12-76
  56. 38. Zhang H, Li G, Fu C, Duan S, Hu D, Guo X. Genome-wide identification, transcriptome analysis and alternative splicing events of Hsf family genes in maize. Sci Rep. 2020;10(1):8073.
  57. https://doi.org/10.1038/s41598-020-65068-z
  58. 39. Tang H, Zhang L, Xie X, Wang Y, Wang T, Liu C. Resilience of maize to environmental stress: insights into drought and heat tolerance. Int J Mol Sci. 2025;26(11):5274.
  59. https://doi.org/10.3390/ijms26115274
  60. 40. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J. 2007;50(1):54-69. https://doi.org/10.1111/j.1365-313X.2007.03034.x
  61. 41. Kimotho RN, Baillo EH, Zhang Z. Transcription factors involved in abiotic stress responses in maize (Zea mays L.) and their roles in enhanced productivity in the post genomics era. PeerJ. 2019;7:e7211. https://doi.org/10.7717/peerj.7211
  62. 42. Li Z, Tang J, Srivastava R, Bassham DC, Howell SH. The transcription factor bZIP60 links the unfolded protein response to the heat stress response in maize. Plant Cell. 2020;32(11):3559-75.
  63. https://doi.org/10.1105/tpc.20.00260
  64. 43. Betran FJ, Beck D, Bänziger M, Edmeades GO. Genetic analysis of inbred and hybrid grain yield under stress and nonstress environments in tropical maize. Crop Sci. 2003;43(3):807-17.
  65. https://doi.org/10.2135/cropsci2003.8070
  66. 44. Cairns JE, Crossa J, Zaidi PH, Grudloyma P, Sanchez C, Araus JL, et al. Identification of drought, heat and combined drought and heat tolerant donors in maize. Crop Sci. 2013;53(4):1335-46. https://doi.org/10.2135/cropsci2012.09.0545
  67. 45. Nayyar H, Sehgal A, Sharma KS, Siddique KH, Kumar R, Bhogireddy S, et al. Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields and nutritional quality. Front Plant Sci. 2018;9:1705.
  68. https://doi.org/10.3389/fpls.2018.01705
  69. 46. Reddy CS, Kim KM, James D, Varakumar P, Reddy MK. PgPAP18, a heat-inducible novel purple acid phosphatase 18-like gene from Pennisetum glaucum, may play a crucial role in environmental stress adaptation. Acta Physiol Plant. 2017;39(2):54.
  70. https://doi.org/10.1007/s11738-017-2348-2
  71. 47. Tůmová L, Tarkowská D, Řehořová K, Markova H, Kočová M, Rothova O, et al. Drought-tolerant and drought-sensitive genotypes of maize (Zea mays L.) differ in contents of endogenous brassinosteroids and their drought-induced changes. PLoS One. 2018;13(5):e0197870. https://doi.org/10.1371/journal.pone.0197870
  72. 48. Liu Y, Wang L, Zhang T, Yang X, Li D. Functional characterization of KS-type dehydrin ZmDHN13 and its related conserved domains under oxidative stress. Sci Rep. 2017;7(1):7361. https://doi.org/10.1038/s41598-017-07852-y
  73. 49. Wang CT, Ru JN, Liu YW, Li M, Zhao D, Yang JF, et al. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants. Int J Mol Sci. 2018;19(10):3046. https://doi.org/10.3390/ijms19103046
  74. 50. Song X, Weng Q, Zhao Y, Ma H, Song J, Su L, et al. Cloning and expression analysis of ZmERD3 gene from Zea mays. Iran J Biotechnol. 2018;16(2):e1593. https://doi.org/10.21859/ijb.1593
  75. 51. Ma H, Liu C, Li Z, Ran Q, Xie G, Wang B, et al. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiol. 2018;178(2):753-70. https://doi.org/10.1104/pp.18.00436
  76. 52. Gao J, Wang S, Zhou Z, Wang S, Dong C, Mu C, et al. Linkage mapping and genome-wide association reveal candidate genes conferring thermotolerance of seed-set in maize. J Exp Bot. 2019;70(18):4849-64. https://doi.org/10.1093/jxb/erz171
  77. 53. Hu G, Li Z, Lu Y, Li C, Gong S, Yan S, et al. Genome-wide association study identified multiple genetic loci on chilling resistance during germination in maize. Sci Rep. 2017;7(1):10840. https://doi.org/10.1038/s41598-017-11318-6
  78. 54. Hasanuzzaman M, Nahar K, Fujita M, Ahmad P, Chandna R, Prasad MNV, et al. Enhancing plant productivity under salt stress: relevance of poly-omics. In: Salt stress in plants: signalling, omics and adaptations. 2013:113-56. https://doi.org/10.1007/978-1-4614-6108-1_6
  79. 55. Yeh CH, Kaplinsky NJ, Hu C, Charng Yy. Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci. 2012;195:10-23. https://doi.org/10.1016/j.plantsci.2012.06.004
  80. 56. Chinnusamy V, Zhu J, Zhou T, Zhu JK. Small RNAs: big role in abiotic stress tolerance of plants. In: Advances in molecular breeding toward drought and salt tolerant crops. 2007:223-60. https://doi.org/10.1007/978-1-4020-5578-2_10
  81. 57. Chenu K, Van Oosterom EJ, McLean G, Deifel KS, Fletcher A, Geetika G, et al. Integrating modelling and phenotyping approaches to identify and screen complex traits: transpiration efficiency in cereals. J Exp Bot. 2018;69(13):3181-94.
  82. https://doi.org/10.1093/jxb/ery059
  83. 58. Song P, Wang J, Guo X, Yang W, Zhao C. High-throughput phenotyping: breaking through the bottleneck in future crop breeding. Crop J. 2021;9(3):633-45.
  84. https://doi.org/10.1016/j.cj.2021.03.015
  85. 59. Mangrauthia SK, Agarwal S, Sailaja B, Sarla N, Voleti SR. Transcriptome analysis of Oryza sativa seed germination at high temperature shows dynamics of genome expression associated with hormones signalling and abiotic stress pathways. Trop Plant Biol. 2016;9:215-28. https://doi.org/10.1007/s12042-016-9170-7
  86. 60. Steward PR, Dougill AJ, Thierfelder C, Pittelkow CM, Stringer LC, Kudzala M, et al. The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: a meta-regression of yields. Agric Ecosyst Environ. 2018;251:194-202. https://doi.org/10.1016/j.agee.2017.09.019
  87. 61. Caubel J, de Cortazar-Atauri IG, Vivant AC, Launay M, de Noblet-Ducoudré N. Assessing future meteorological stresses for grain maize in France. Agric Syst. 2018;159:237-47. https://doi.org/10.1016/j.agsy.2017.02.010
  88. 62. Tian B, Zhu J, Nie Y, Xu C, Meng Q, Wang P. Mitigating heat and chilling stress by adjusting the sowing date of maize in the North China Plain. J Agron Crop Sci. 2019;205(1):77-87. https://doi.org/10.1111/jac.12299
  89. 63. Liu Z, Hubbard KG, Lin X, Yang X. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in northeast China. Glob Chang Biol. 2013;19(11):3481-92.https://doi.org/10.1111/gcb.12324
  90. 64. Lana MA, Vasconcelos ACF, Gornott C, Schaffert A, Bonatti M, Volk J, et al. Is dry soil planting an adaptation strategy for maize cultivation in semi-arid Tanzania? Food Secur. 2018;10:897-910. https://doi.org/10.1007/s12571-017-0742-7
  91. 65. Liu Q, Zou Y, Liu X, Linge N. A survey on rainfall forecasting using artificial neural network. Int J Embedded Syst. 2019;11(2):240-9.
  92. https://doi.org/10.1504/IJES.2019.098300
  93. 66. Challinor AJ, Koehler AK, Ramirez-Villegas J, Whitfield S, Das B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat Clim Chang. 2016;6(10):954-8. https://doi.org/10.1038/nclimate3061
  94. 67. Waqas MA, Kaya C, Riaz A, Farooq M, Nawaz I, Wilkes A, et al. Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. Front Plant Sci. 2019;10:1336. https://doi.org/10.3389/fpls.2019.01336
  95. 68. Wimalasekera R. Role of seed quality in improving crop yields. In: Crop production and global environmental issues. 2015:153-68.
  96. https://doi.org/10.1007/978-3-319-23162-4_6
  97. 69. Sharif R, Xie C, Zhang H, Arnao MB, Ali M, Ali Q, et al. Melatonin and its effects on plant systems. Molecules. 2018;23(9):2352.
  98. https://doi.org/10.3390/molecules23092352
  99. 70. Hussain S, Khan F, Hussain HA, Nie L. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci. 2016;7:116. https://doi.org/10.3389/fpls.2016.00116
  100. 71. Li LQ, Hu JH, Zhu ZY, Janvier N. The effects of seed film coating with cold-tolerant agents on physiology and biochemistry changes of supersweet corn in low temperature stress. 2004.
  101. 72. Guan Y, Li Z, He F, Huang Y, Song W, Hu J. On-off thermoresponsive coating agent containing salicylic acid applied to maize seeds for chilling tolerance. PLoS One. 2015;10(3):e0120695.
  102. https://doi.org/10.1371/journal.pone.0120695
  103. 73. Lizárraga-Paulín EG, Miranda-Castro SP, Moreno-Martínez E, Lara-Sagahón AV, Torres-Pacheco I. Maize seed coatings and seedling sprayings with chitosan and hydrogen peroxide: their influence on some phenological and biochemical behaviors. J Zhejiang Univ Sci B. 2013;14:87-96. https://doi.org/10.1631/jzus.B1200270
  104. 74. Hussain HA, Men S, Hussain S, Chen Y, Ali S, Zhang S, et al. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci Rep. 2019;9(1):3890.
  105. https://doi.org/10.1038/s41598-019-40362-7
  106. 75. Ahmad I, Basra SMA, Akram M, Wasaya A, Ansar M, Hussain S, et al. Improvement of antioxidant activities and yield of spring maize through seed priming and foliar application of plant growth regulators under heat stress conditions. Semina Cienc Agrar. 2017;38(1):47-56. https://doi.org/10.5433/1679-0359.2017v38n1p47
  107. 76. Zafar SA, Hameed A, Ashraf M, Khan AS, Li X, Siddique KHM. Agronomic, physiological and molecular characterisation of rice mutants revealed the key role of reactive oxygen species and catalase in high-temperature stress tolerance. Funct Plant Biol. 2020;47(5):440-53.
  108. https://doi.org/10.1071/FP19246
  109. 77. Cairns JE, Prasanna BM. Developing and deploying climate-resilient maize varieties in the developing world. Curr Opin Plant Biol. 2018;45:226-30. https://doi.org/10.1016/j.pbi.2018.05.004
  110. 78. Roitsch T, Cabrera-Bosquet L, Fournier A, Ghamkhar K, Jiménez-Berni J, Pinto F, et al. New sensors and data-driven approaches-a path to next generation phenomics. Plant Sci. 2019;282:2-10. https://doi.org/10.1016/j.plantsci.2019.01.011
  111. 79. Nelimor C, Badu-Apraku B, Tetteh AY, N'guetta ASP. Assessment of genetic diversity for drought, heat and combined drought and heat stress tolerance in early maturing maize landraces. Plants. 2019;8(11):518. https://doi.org/10.3390/plants8110518
  112. 80. Würschum T, Weiß TM, Renner J, Friedrich Utz H, Gierl A, Jonczyk R, et al. High-resolution association mapping with libraries of immortalized lines from ancestral landraces. Theor Appl Genet. 2022:1-14. https://doi.org/10.1007/s00122-021-03963-3
  113. 81. Yuan Y, Cairns JE, Babu R, Gowda M, Makumbi D, Magorokosho C, et al. Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize. Front Plant Sci. 2019;9:1919. https://doi.org/10.3389/fpls.2018.01919
  114. 82. Lafarge T, Bueno C, Frouin J, Jacquin L, Courtois B, Ahmadi N. Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS One. 2017;12(2):e0171254.
  115. https://doi.org/10.1371/journal.pone.0171254
  116. 83. Longmei N, Gill GK, Zaidi PH, Kumar R, Nair SK, Hindu V, et al. Genome wide association mapping for heat tolerance in sub-tropical maize. BMC Genomics. 2021;22:1-14. https://doi.org/10.1186/s12864-021-07463-y
  117. 84. Shokat S, Sehgal D, Vikram P, Liu F, Singh S. Molecular markers associated with agro-physiological traits under terminal drought conditions in bread wheat. Int J Mol Sci. 2020;21(9):3156. https://doi.org/10.3390/ijms21093156
  118. 85. Yang H, Huang T, Ding M, Lu D, Lu W. High temperature during grain filling impacts on leaf senescence in waxy maize. Agron J. 2017;109(3):906-16. https://doi.org/10.2134/agronj2016.08.0452
  119. 86. Chun Y, Fang J, Zafar SA, Shang J, Zhao J, Yuan S, et al. MINI SEED 2 (MIS2) encodes a receptor-like kinase that controls grain size and shape in rice. Rice. 2020;13:1-17. https://doi.org/10.1186/s12284-020-0368-9
  120. 87. Ku L, Tian L, Su H, Wang C, Wang X, Wu L, et al. Dual functions of the ZmCCT-associated quantitative trait locus in flowering and stress responses under long-day conditions. BMC Plant Biol. 2016;16:1-15. https://doi.org/10.1186/s12870-016-0930-1
  121. 88. Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan AC. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun. 2016;7(1):1-7. https://doi.org/10.1038/ncomms13274
  122. 89. Pyott DE, Sheehan E, Molnar A. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol. 2016;17(8):1276-88. https://doi.org/10.1111/mpp.12417
  123. 90. Zaidi SSeA, Mukhtar MS, Mansoor S. Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol. 2018;36(9):898-906. https://doi.org/10.1016/j.tibtech.2018.04.005
  124. 91. Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J. 2017;15(2):207-16.
  125. https://doi.org/10.1111/pbi.12603
  126. 92. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. 2013;31(8):688-91.
  127. https://doi.org/10.1038/nbt.2654
  128. 93. Gichile H. Breeding maize (Zea mays L.) for tolerance or resistance of Striga hermonthica. Int J Res. 2023;9(9):7-16.

Downloads

Download data is not yet available.