Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Biopesticidal potential of insect derived chitosan for crop protection

DOI
https://doi.org/10.14719/pst.10807
Submitted
22 July 2025
Published
20-10-2025

Abstract

In recent years, increasing environmental concerns and regulatory restrictions on conventional chemical pesticides have driven the demand for safer, biodegradable and eco-friendly alternatives. Among these, chitosan, a natural polysaccharide derived from the deacetylation of chitin, has gained significant attention due to its broad spectrum antimicrobial, antifungal, antiviral, insecticidal and plant defense inducing properties. Traditionally, chitosan is sourced from marine crustaceans like shrimps and crabs. However, emerging studies have highlighted the untapped potential of insect-based chitosan extracted from species such as Hermetia illicens (Black soldier fly), Bombyx mori (Silkworm) and Tenebrio molitor (Mealworm) as promising biocontrol agents in agriculture. Compared to marine sources, insect derived chitosan offers more advantages which includes all season availability, rapid biomass generation, lower allergenicity and reduced ecological footprints. Insect derived chitosan often shows higher deacetylation and lower molecular weight, enhancing solubility and biological activity against pests and diseases. This review explores the potential of chitosan derived from various insect sources, focusing on its application against a wide range of agricultural pests and phytopathogens. It synthesizes current findings on physicochemical properties, formulation approaches (e.g. nanoparticles, coatings, foliar sprays) and elucidates the mechanisms through which insect-based chitosan disrupts pest physiology, inhibits pathogen growth and elicits systemic resistance in plants. Furthermore, it evaluates the advantages and limitations of insect-sourced chitosan over traditional sources and highlights knowledge gaps, regulatory challenges and future directions for field-level adoption in Integrated Pest Management (IPM) systems.

References

  1. 1. Badawy MEI, Rabea EI. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int J Carbohydr Chem. 2011;2011:1-29. https://doi.org/10.1155/2011/460381
  2. 2. El Hadrami A, Adam LR, El Hadrami I, Daayf F. Chitosan in plant protection. Mar Drugs. 2010;8(4):968-987. https://doi.org/10.3390/md8040968
  3. 3. Islam MM, Yusuf AM, Ali ME, Zahan S. Chitosan extraction from black soldier fly (Hermetia illucens) and its physicochemical and antimicrobial properties. Int J Biol Macromol. 2021;181:1123-1131. https://doi.org/10.1016/j.ijbiomac.2021.04.094
  4. 4. Kaya M, Akyuz B, Bulut E, Sargin I, Eroglu F, Tan G. Comparison of chitin structures isolated from seven different insects. Int J Biol Macromol. 2015;72:797-803. https://doi.org/10.1016/j.ijbiomac.2014.09.036
  5. 5. Matos M, Gonçalves C, da Silva AF, Pintado M. Chitosan from insects: A sustainable alternative for the industry. Food Hydrocoll. 2021;120:106979. https://doi.org/10.1016/j.foodhyd.2021.106979
  6. 6. Rabea EI, Badawy MEI, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules. 2003;4(6):1457-1465. https://doi.org/10.1021/bm034130m
  7. 7. Sharif R, Mujtaba M, Ur Rahman M, Shalmani A, Ahmad H, Anwar T, et al. The multifunctional role of chitosan in horticultural crops: A review. Molecules. 2018;23(4):872. https://doi.org/10.3390/molecules23040872
  8. 8. Song YS, Kim MW, Moon C, Seo DJ, Han YS, Jo YH. Chitosan nanofiber production from Drosophila by electrospinning. Int J Biol Macromol. 2016;92:49-55. https://doi.org/10.1016/j.ijbiomac.2016.06.016
  9. 9. Wu J. Extraction and properties of chitosan from hawkmoth (Clanis bilineata) pupae. J Appl Entomol. 2021;145(3):234-242. https://doi.org/10.1111/jen.12813
  10. 10. Crespo MP, Martínez MV, Hernández JL, Yusty ML. High-performance liquid chromatographic determination of chitin in the snow crab, Chionoecetes opilio. J Chromatogr A. 2006;1116(1-2):189-192. https://doi.org/10.1016/j.chroma.2006.03.010
  11. 11. Das S, Ganesh EA. Extraction of chitin from trash crabs (Podophthalmus vigil) by an eccentric method. Curr Res Biol Sci. 2010;2:72-75.
  12. 12. Sperstad SV, Haug T, Paulsen V, Rode TM, Strandskog G, Solem ST, et al. Characterization of crustins from the hemocytes of the spider crab, Hyas araneus and the red king crab, Paralithodes camtschaticus. Dev Comp Immunol. 2009;33(5):583-591. https://doi.org/10.1016/j.dci.2008.11.008
  13. 13. Hajji S, Younes I, Ghorbel-Bellaaj O, Hajji R, Rinaudo M, Nasri M, et al. Structural differences between chitin and chitosan extracted from three different marine sources. Int J Biol Macromol. 2014;65:298-306. https://doi.org/10.1016/j.ijbiomac.2013.10.041
  14. 14. Abdou ES, Nagy KS, Elsabee MZ. Extraction and characterization of chitin and chitosan from local sources. Bioresour Technol. 2008;99(4):1359-1367. https://doi.org/10.1016/j.biortech.2007.02.046
  15. 15. Mahlous M, Tahtat D, Benamer S, Khodja AN. Gamma irradiation aided chitin/chitosan extraction from prawn shells. Nucl Instrum Methods Phys Res B. 2007;265(2):414-417. https://doi.org/10.1016/j.nimb.2007.07.046
  16. 16. Kaya M, Baran T, Menteş A, Asaroğlu M, Sezen G, Tozak KO. Extraction and characterization of α chitin and chitosan from six different aquatic invertebrates. Food Biophys. 2014;9(2):145-157. https://doi.org/10.1007/s11483-013-9305-0
  17. 17. Chaussard G, Domard A. New aspects of the extraction of chitin from squid pens. Biomacromolecules. 2004;5(2):559-564. https://doi.org/10.1021/bm034483w
  18. 18. Dotto G, Campana Filho S, de Almeida Pinto LA. Frontiers in biomaterials. Bentham Sci Publ. 2017.
  19. 19. Kaya M, Seyyar O, Baran T, Erdoğan S, Kar M. A physicochemical characterization of fully acetylated chitin structure isolated from two spider species: With new surface morphology. Int J Biol Macromol. 2014;65:553-558. https://doi.org/10.1016/j.ijbiomac.2014.02.004
  20. 20. Davies GJ, Knight DP, Vollrath F. Chitin in the silk gland ducts of the spider Nephila edulis and the silkworm Bombyx mori. PLoS ONE. 2013;8(8):e73225. https://doi.org/10.1371/journal.pone.0073225
  21. 21. Kaya M, Asan Özusaglam M, Erdoğan S. Comparison of antimicrobial activities of newly obtained low molecular weight scorpion chitosan and medium molecular weight commercial chitosan. J Biosci Bioeng. 2016;121(6):678-684. https://doi.org/10.1016/j.jbiosc.2015.11.012
  22. 22. Zhang M, Haga A, Sekiguchi H, Hirano S. Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. Int J Biol Macromol. 2000;27(2):99-105. https://doi.org/10.1016/S0141-8130(00)00009-4
  23. 23. Kaya M, Baran T. Description of a new surface morphology for chitin extracted from wings of cockroach (Periplaneta americana). Int J Biol Macromol. 2015;75:7-12. https://doi.org/10.1016/j.ijbiomac.2015.01.034
  24. 24. Tanaka K, Katsura N, Saku T, Kasuga S. Composite texture of chitin and keratin in an animal organ, Lingula seta. Polym J. 1988;20(2):119-123. https://doi.org/10.1295/polymj.20.119
  25. 25. Synowiecki J, Al Khateeb NAAQ. Mycelia of Mucor rouxii as a source of chitin and chitosan. Food Chem. 1997;60:605-610. https://doi.org/10.1016/S0308-8146(96)00301-3
  26. 26. Mathur NK, Narang CK. Chitin and chitosan, versatile polysaccharides from marine animals. J Chem Educ. 1990;67(11):938. https://doi.org/10.1021/ed067p938
  27. 27. Zargar V, Asghari M, Dashti A. A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives and applications. Chem Bio Eng Rev. 2015;2(3):204-226. https://doi.org/10.1002/cben.201500011
  28. 28. Chobot V, Křemenák J, Opletal L. Phytotherapeutic aspects of diseases of the circulatory system. Chitin and chitosan. Ceska Slov Farm. 1995;44:190-195.
  29. 29. Kulikov SN, Chirkov SN, Il’ina AV, Lopatin SA, Varlamov VP. Effect of the molecular weight of chitosan on its antiviral activity in plants. Appl Biochem Microbiol. 2006;42(2):200-203. https://doi.org/10.1134/S0003683806020165
  30. 30. De Alvarenga ES, de Oliveira CP, Bellato CR. An approach to understanding the deacetylation degree of chitosan. Carbohydr Polym. 2010;80(4):1155-1160. https://doi.org/10.1016/j.carbpol.2010.01.037
  31. 31. Jaworska M, Sakurai K, Gaudon P, Guibal E. Influence of chitosan characteristics on polymer properties. In: Crystallographic properties. Polym Int. 2003;52(2):198-205. https://doi.org/10.1002/pi.1159
  32. 32. Minh N, Hoa NV, Trung T. Preparation, properties and application of low molecular weight chitosan. In: Handbook of Chitin and Chitosan. Elsevier. 2020;(1):L453-471.
  33. 33. Niazi S. Production, classification, properties and application of chitosan. Int J Res Agric Sci. 2016;3:2358-3997.
  34. 34. Zargar V, Asghari M, Dashti A. A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, applications. Chem Bio Eng Rev. 2015;2(3):204-226. https://doi.org/10.1002/cben.201500011
  35. 35. Tokatli K, Demirdöven A. Influences of chitosan coatings on functional compounds of sweet cherries. J Food Sci Technol. 2021;58(5):1808-1818. https://doi.org/10.1007/s13197-020-04913-z
  36. 36. Wang W, Xue C, Mao X. Chitosan: Structural modification, biological activity and application. Int J Biol Macromol. 2020;164:4532-4546. https://doi.org/10.1016/j.ijbiomac.2020.09.127
  37. 37. Bof M, Bordagaray V, Locaso D, García M. Chitosan molecular weight effect on starch composite film properties. Food Hydrocoll. 2015;51:281-294. https://doi.org/10.1016/j.foodhyd.2015.06.014
  38. 38. Román Doval R, Gómez Sánchez A, Millán Casarrubias EJ, Prokhorov E, Montejo Alvaro F. de Luna Bugallo A, Hernandez Lturriaga M, et al. Physicochemical properties of pullulan/chitosan/graphene oxide composite films. Polym Int. 2022;71(7):959-965. https://doi.org/10.1002/pi.7093
  39. 39. Aranaz I, Alcántara A, Civera M, Arias C, Elorza B, Caballero A, et al. Chitosan: An overview of its properties and applications. Polymers. 2021;13:3256. https://doi.org/10.3390/polym13183256
  40. 40. Kim K, Thomas R. Antioxidative activity of chitosans with varying molecular weights. Food Chem. 2007;101(1):308-313. https://doi.org/10.1016/j.foodchem.2006.02.011
  41. 41. Garcia L, Guedes G, da Silva M, Castelo Branco D, Sidrim J, Cordeiro R, et al. Effect of the molecular weight of chitosan on its antifungal activity against Candida spp. in planktonic cells and biofilm. Carbohydr Polym. 2018;195:662-669. https://doi.org/10.1016/j.carbpol.2018.05.024
  42. 42. Qin C, Zhou B, Zeng L, Liu Y, Du Y, Xiao L. The physicochemical properties and antitumor activity of cellulase treated chitosan. Food Chem. 2004;84(1):107-115. https://doi.org/10.1016/j.foodchem.2003.07.003
  43. 43. Muthu M, Gopal J, Chun S, Devadoss AJP, Hasan N, Sivanesan I. Crustacean waste derived chitosan: Antioxidant properties and future perspective. Antioxidants. 2021;10(2):228. https://doi.org/10.3390/antiox10020228
  44. 44. Ma J, Xin C, Tan C. Preparation, physicochemical and pharmaceutical characterization of chitosan from Catharsius molossus residue. Int J Biol Macromol. 2015;80:547-556. https://doi.org/10.1016/j.ijbiomac.2015.06.075
  45. 45. Zhao Y, Park RD, Muzzarelli RA. Chitin deacetylases: Properties and applications. In: Marine Drugs. Switzerland. Basel: MDPI. 2010. p. 24-46. https://doi.org/10.3390/md8010024
  46. 46. Torres-Castillo JA, Sinagawa García SR, Lara Villalón M, Martínez Ávila GCG, Mora Olivo A, Reyes Soria FA. Evaluation of biochemical components from Pterophylla beltrani (Bolívar & Bolívar). In: Southwestern Entomologist; 2015; USA. Lubbock: SW Entomol Soc. 2015. p. 741-751. https://doi.org/10.3958/059.040.0409
  47. 47. Luo Q, Wang Y, Han Q, Ji L, Zhang H, Fei Z, et al. Comparison of chitosan properties from four insects. In: Carbohydrate Polymers. Netherlands. Amsterdam. Elsevier. 2019. p. 266-275. https://doi.org/10.1016/j.carbpol.2018.12.075
  48. 48. Wu S. Preparation of chitosan from Clanis bilineata larvae using enzymatic methods. In: Carbohydrate Polymers. Netherlands. Amsterdam. Elsevier. 2011. p. 1008-1010. https://doi.org/10.1016/j.carbpol.2010.09.051
  49. 49. Kaya M, Baublys V, Can E, Šatkauskienė I, Bitim B, Tubelytė V, et al. Physicochemical comparison of insect and crustacean chitins. In: Zoomorphology. Germany. Berlin: Springer. 2014. p. 285-293. https://doi.org/10.1007/s00435-013-0201-x
  50. 50. Kaya M, Baran T, Erdoğan S, Menteş A, Özüsağlam MA, Çakmak YS. Physicochemical properties of chitosan from Colorado potato beetle. In: Materials Science and Engineering C. Netherlands. Amsterdam. Elsevier. 2014. p. 72-81. https://doi.org/10.1016/j.msec.2014.04.001
  51. 51. Song YS, Kim MW, Moon C, Seo DJ, Han YS, Jo YH, et al. Extraction of chitin and chitosan from Tenebrio molitor. In: Entomological Research. UK. Hoboken. Wiley. 2018. p. 227-233. https://doi.org/10.1111/1748-5967.12304
  52. 52. Shin CS, Kim DY, Shin WS. Characterization of chitosan from beetles and antibacterial activities. In: Int J Biol Macromol. Netherlands. Amsterdam. Elsevier. 2019. p. 72-77. https://doi.org/10.1016/j.ijbiomac.2018.11.158
  53. 53. Kaya M, Baran T, Karaarslan M. Fast chitin extraction from aquatic species. Nat Prod Res. 2015;29(15):1477-1480. https://doi.org/10.1080/14786419.2014.987303
  54. 54. Kim MW, Song YS, Han YS, Jo YH, Choi MH, Park YK, et al. Chitosan from exoskeleton of Gryllus bimaculatus. Entomol Res. 2017;47(5):279-285. https://doi.org/10.1111/1748-5967.12209
  55. 55. Ibitoye EB, Lokman IH, Hezmee NNM, Goh YM, Zuki ABZ, Jimoh AA. Chitin and chitosan from house cricket. Biomed Mater. 2018;13:025009. https://doi.org/10.1088/1748-605X/aabf01
  56. 56. Kaya M, Sargin I, Aylanc V, Tomruk MN, Gevrek S, Karatoprak I, et al. BSA adsorption on α-chitin and β-chitin. J Ind Eng Chem. 2016;40:146-156. https://doi.org/10.1016/j.jiec.2016.06.011
  57. 57. Marei NH, Abd El-Samie E, Salah T, Saad GR, Elwahy AH. Chitosan from local Egyptian insects. Int J Biol Macromol. 2016;85:871-877. https://doi.org/10.1016/j.ijbiomac.2015.10.074
  58. 58. Nemtsev SV, Zueva OY, Khismatullin MR, Albulov AI, Varlamov VP. Isolation of chitin and chitosan from honeybees. Appl Biochem Microbiol. 2004;40(1):39-43. https://doi.org/10.1023/B:ABIM.0000031160.92785.0f
  59. 59. Basseri H, Bakhtiyari R, Hashemi SJ, Baniardelani M, Shahraki H, Hosainpour L. Antimicrobial activity of cockroach-derived chitosan. J Med Entomol. 2019;56(4):1208-1214. https://doi.org/10.1093/jme/tjz028
  60. 60. Song YS, Kim MW, Moon C, Seo DJ, Han YS, Jo YH, et al. Chitin and chitosan from mealworm (Tenebrio molitor). Entomol Res. 2018;48(3):227-233. https://doi.org/10.1111/1748-5967.12257
  61. 61. Kaya M, Akyuz B, Bulut E, Sargin I, Eroglu F, Tan G. Chitosan nanofiber from Drosophila by electrospinning. Int J Biol Macromol. 2016;91:49-55. https://doi.org/10.1016/j.ijbiomac.2016.06.014
  62. 62. Khayrova A, Lopatin S, Varlamov V. Hermetia illucens as a novel chitosan source. Int J Sci. 2019;7(2):81-86.
  63. 63. Kim MW, Han YS, Jo YH, Choi MH, Kang SH, Kim SA, et al. Chitin from housefly pupae shells. Entomol Res. 2016;46(4):324-328. https://doi.org/10.1111/1748-5967.12200
  64. 64. Kim MW, Song YS, Seo DJ, Han YS, Jo YH, Noh MY, et al. Chitin and chitosan from cockroach (Periplaneta americana). J Chitin Chitosan. 2017;2(2):76-81.
  65. 65. Wanule D, Balkhande JV, Ratnakar PU, Kulkarni AN, Bhowate CS. FTIR analysis of chitosan from Periplaneta americana. Extraction. 2014;1:299-304.
  66. 66. Badawy MEI, Rabea EI. Chitosan and its derivatives in crop protection. Int J Carbohydr Chem. 2011;2011:1-29. https://doi.org/10.1155/2011/460381
  67. 67. Sharif R, Mujtaba M, Ur Rahman M, Shalmani A, Ahmad H, Anwar T, et al. Multifunctional role of chitosan in horticulture. Molecules. 2018;23(4):872. https://doi.org/10.3390/molecules23040872
  68. 68. Kashyap PL, Xiang X, Heiden P. Chitosan nanoparticles for sustainable agriculture. Int J Biol Macromol. 2015;72:36-51. https://doi.org/10.1016/j.ijbiomac.2015.02.039
  69. 69. Zhang W, Zhao F, Jiang L, Shao W, Liu Y, Ma D. Control effect of chitosan on cucumber virus diseases. Acta Phytopathol Sin. 2003;33(1):73-76.
  70. 70. Abenaim L, Conti B. Chitosan as a control tool for insect pest management: A review. Insects. 2023;14(2):176. https://doi.org/10.3390/insects14020176
  71. 71. Stoffolano JG, Wong R, Lo T, Ford B, Geden CJ. Effect of chitosan on adult longevity when fed, in no-choice experiments, to Musca domestica L., Tabanus nigrovittatus Macquart and Phormia regina (Meigen) adults and its consumption in adult Musca domestica L. Pest Manag Sci. 2020;76(12):4293-4300. https://doi.org/10.1002/ps.5968
  72. 72. Muryeti M, Pratiwi FE, Yuniastuti RT, Mulyani EB. Termiticidal activity of chitosan on paper. Prog Chem Appl Chitin Deriv. 2020;25:164-173. https://doi.org/10.15255/CABEQ.2020.1994
  73. 73. Raji O, Tang JD, Telmadarrehei T, Jeremic D. Termiticidal activity of chitosan against the subterranean termites Reticulitermes flavipes and Reticulitermes virginicus. Pest Manag Sci. 2018;74(7):1704-1710. https://doi.org/10.1002/ps.4852
  74. 74. Telmadarrehei T, Tang DJ, Raji O, Rezazadeh A, Jeremic D. Effect of chitosan on diversity and number of protists in subterranean termites. In: Proc 114th Annu Meet Am Wood Prot Assoc. Seattle. WA. 2018. p. 22-24.
  75. 75. Salvador-Figueroa M, Hernández-Ortiz E, Ventura-González C, Ovando-Medina I, Adriano-Anaya L. Effect of chitosan coatings on the development of Anastrepha ludens (Loew) in mango fruits (Mangifera indica L.) cv. Ataulfo. Rev Iberoam Tecnol Postcosecha. 2013;14:14-20.
  76. 76. Limon T, Birke A, Monribot-Villanueva JL, Guerrero-Analco JA, Altúzar-Molina A, Carrión G, et al. Chitosan coatings reduce fruit fly (Anastrepha obliqua) infestation and development of the fungus Colletotrichum gloeosporioides in Manila mangoes. J Sci Food Agric. 2021;101(7):2756-2766. https://doi.org/10.1002/jsfa.10906
  77. 77. Perwita MGCS, Wahyuningsih TD, Astuti E, Pranowo D. Synthesis of edible film chitosan/polyethylene glycol/carboxymethylcellulose with lemongrass oils as insect ovipositing repellent. Key Eng Mater. 2020;840:142-148. https://doi.org/10.4028/www.scientific.net/KEM.840.142
  78. 78. Haas J, Lozano ER, Haida KS, Mazaro SM, de Souza Vismara E, Poppy GM. Getting ready for battle: Do cabbage seeds treated with jasmonic acid and chitosan affect chewing and sap-feeding insects? Entomol Exp Appl. 2018;166(5):412-419. https://doi.org/10.1111/eea.12671
  79. 79. Ascrizzi R, Flamini G, Bedini S, Tani C, Giannotti P, Lombardi T, et al. Ferulago campestris essential oil as active ingredient in chitosan seed-coating: Chemical analyses, allelopathic effects and protective activity against the common bean pest Acanthoscelides obtectus. Agronomy. 2021;11(8):1578. https://doi.org/10.3390/agronomy11081578
  80. 80. Farina P, Ascrizzi R, Bedini S, Castagna A, Flamini G, Macaluso M, et al. Chitosan and essential oils combined for beef meat protection against the oviposition of Calliphora vomitoria, water loss, lipid peroxidation and colour changes. Foods. 2022;11(18):3994. https://doi.org/10.3390/foods11183994
  81. 81. Hossain F, Follett P, Salmieri S, Vu KD, Harich M, Lacroix M. Synergistic effects of nanocomposite films containing essential oil nano emulsions in combination with ionizing radiation for control of rice weevil Sitophilus oryzae in stored grains. J Food Sci. 2019;84(6):1439-1446. https://doi.org/10.1111/1750-3841.14635
  82. 82. De Fátima Silva M, Maciel VBV, Noletto APR, Venturini AC, de Carvalho RA, Yoshida CMP. Chitosan active coating on paperboard surface forming an anti-insect grain-based food packaging. Packag Technol Sci. 2022;35(5):361-372. https://doi.org/10.1002/pts.2636
  83. 83. Llácer E, Martínez de Altube MM, Jacas JA. Evaluation of the efficacy of Steinernema carpocapsae in a chitosan formulation against the red palm weevil, Rhynchophorus ferrugineus, in Phoenix canariensis. BioControl. 2009;54:559-565. https://doi.org/10.1007/s10526-008-9204-7
  84. 84. Pena AM. Biological pesticide based on chitosan and entomopathogenic nematodes. WO Patent No. 037966. Geneva: World Intellectual Property Organization. 2002.
  85. 85. Zhang MI, Tan T, Yuan H, Rui C. Insecticidal and fungicidal activities of chitosan and oligo-chitosan. J Bioact Compat Polym. 2003;18(5):391-400. https://doi.org/10.1177/0883911503039019
  86. 86. Rabea EI, Badawy ME, Rogge TM, Stevens CV, Hofte M, Steurbaut W, et al. Insecticidal and fungicidal activity of newly synthesized chitosan derivatives. Pest Manag Sci. 2005;61(10):951-960. https://doi.org/10.1002/ps.1085
  87. 87. Rabea EI, Badawy MEI, Rogge TM, Stevens CV, Steurbaut W, Hofte M, et al. Enhancement of fungicidal and insecticidal activity by reductive alkylation of chitosan. Pest Manag Sci. 2006;62(9):890-897. https://doi.org/10.1002/ps.1263
  88. 88. Badawy MEI, Rabea EI, Rogge TM, Stevens CV, Steurbaut W, Hofte M, et al. Fungicidal and insecticidal activity of O-acyl chitosan derivatives. Polym Bull. 2005;54:279-289. https://doi.org/10.1007/s00289-005-0396-z
  89. 89. Badawy MEI, El Aswad AF. Insecticidal activity of chitosans of different molecular weights and chitosan-metal complexes against cotton leafworm (Spodoptera littoralis) and oleander aphid (Aphis nerii). Plant Prot Sci. 2012;48:131-41.
  90. 90. Rajkumar V, Gunasekaran C, Christy IK, Dharmaraj J, Chinnaraj P, Paul CA. Toxicity, antifeedant and biochemical efficacy of Mentha piperita L. essential oil and their major constituents against stored grain pest. Pestic Biochem Physiol. 2019;156:138-44. https://doi.org/10.1016/j.pestbp.2019.03.007
  91. 91. Upadhyay N, Singh VK, Dwivedy AK, Das S, Chaudhari AK, Dubey NK. Assessment of Melissa officinalis L. essential oil as an eco friendly approach against biodeterioration of wheat flour caused by Tribolium castaneum Herbst. Environ Sci Pollut Res. 2019;26:14036-49. https://doi.org/10.1007/s11356-019-04917-z
  92. 92. Soltani A, Ncibi S, Djebbi T, Sadraoui IA, Abada MB, Chargui H, et al. Microencapsulation of rosemary (Rosmarinus officinalis) essential oil by chitosan-gum arabic and its application for the control of two secondary pests of stored cereals. Res Square. 2022. https://doi.org/10.21203/rs.3.rs-1358998/v1
  93. 93. Soltani A, Labidi A, Ben Jemaa J. Development of formulation based on essential oils of rosemary to manage pests of stored cereal foodstuffs. In: Proc 1st Int Electron Conf Entomol. 2021. p.10407. https://doi.org/10.3390/iecse-1-10407
  94. 94. Sanei Dehkordi A, Moemenbellah Fard MD, Sereshti H, Shahriari Namadi M, Zarenezhad E, Osanloo M. Chitosan nanoparticles containing Elettaria cardamomum and Cinnamomum zeylanicum essential oils: Repellent and larvicidal effects against a malaria mosquito vector and cytotoxic effects on a human skin normal cell line. Chem Pap. 2021;75:6545-56. https://doi.org/10.1007/s11696-021-01675-9
  95. 95. Werdin González JO, Jesser EN, Yeguerman CA, Ferrero AA, Fernández Band B. Polymer nanoparticles containing essential oils: New options for mosquito control. Environ Sci Pollut Res. 2017;24:17006-15. https://doi.org/10.1007/s11356-017-9329-6
  96. 96. De Oliveira JL, Campos EVR, Pereira AE, Nunes LE, da Silva CC, Pasquoto T, et al. Geraniol encapsulated in chitosan/gum arabic nanoparticles: A promising system for pest management in sustainable agriculture. J Agric Food Chem. 2018;66:5325-34. https://doi.org/10.1021/acs.jafc.8b01692
  97. 97. El Monairy OM, Abdel Meguid AD, Emara MM. Efficacy of methanol leaf extract, biosynthesized silver and chitosan nanoparticles using Nerium oleander against Musca domestica. Egypt Acad J Biol Sci F Toxicol Pest Control. 2020;12:35-45.
  98. 98. Sahab AF, Waly AI, Sabbour MM, Nawar LS. Synthesis, antifungal and insecticidal potential of chitosan-g-poly(acrylic acid) nanoparticles against seed-borne fungi and insects of soybean. Int J ChemTech Res. 2015;8(2):589-98. https://doi.org/10.13140/RG.2.1.1198.8325
  99. 99. Sabbour MM, Abdel Hakim EA. Control of Cassida vittata (Vill.) (Coleoptera: Chrysomelidae) using chitosan and nano-chitosan. Sciences. 2018;8(4):141-4.
  100. 100. Ziaee M, Moharramipour S, Mohsenifar A. Toxicity of Carum copticum essential oil-loaded nanogel against Sitophilus granarius and Tribolium confusum. J Appl Entomol. 2014;138(10):763-71. https://doi.org/10.1111/jen.12133
  101. 101. Ziaee M, Moharramipour S, Mohsenifar A. MA-chitosan nanogel loaded with cuminum cyminum essential oil for efficient management of two stored-product beetle pests. J Pest Sci. 2014;87(4):691-9. https://doi.org/10.1007/s10340-014-0590-6
  102. 102. Zhang X, Zhang J, Zhu KY. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol. 2010;19(5):683-93. https://doi.org/10.1111/j.1365-2583.2010.01029.x
  103. 103. Wang W, Xue C, Mao X. Chitosan: Structural modification, biological activity and application. Int J Biol Macromol. 2020;164:4532-46. https://doi.org/10.1016/j.ijbiomac.2020.09.097
  104. 104. Xing K, Zhu X, Peng X, Qin S. Chitosan antimicrobial and eliciting properties for pest control in agriculture: A review. Agron Sustain Dev. 2015;35(2):569-88. https://doi.org/10.1007/s13593-014-0252-3
  105. 105. Torres J, Reyes J, Castellanos T, Angulo C, Quiñones E, Hernández L. A biopolymer with antimicrobial properties and plant resistance inducer against phytopathogens: Chitosan. Not Bot Horti Agrobo. 2021;49(1):1223-31. https://doi.org/10.15835/nbha4911231
  106. 106. Mansilla A, Albertengo L, Rodríguez M, Debbaudt A, Zúñiga A, Casalongué C. Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. tomato DC3000. Appl Microbiol Biotechnol. 2013;97(15):6957-65. https://doi.org/10.1007/s00253-013-5187-5
  107. 107. Badawy M, Rabea E, Taktak N. Antimicrobial and enzyme-inhibitory activity of N (benzyl) and quaternary N (benzyl) chitosan derivatives on plant pathogens. Carbohydr Polym. 2014;111:670-82. https://doi.org/10.1016/j.carbpol.2014.04.098
  108. 108. Abdellatef MA, Elagamey E, Kamel SM. Chitosan is the ideal resource for plant disease management under sustainable agriculture. In: Chitin Chitosan—isolation, properties and applications. London. IntechOpen. 2022. https://doi.org/10.5772/intechopen.93349
  109. 109. Badawy M. Structure-antimicrobial activity relationship of quaternary N alkyl chitosan derivatives against some plant pathogens. J Appl Polym Sci. 2010;117(2):960-9. https://doi.org/10.1002/app.31111
  110. 110. Marei G, Rabea E, Badawy M. Preparation and characterization of chitosan/citral nanoemulsions and their antimicrobial activity. Appl Food Biotechnol. 2018;5(1):69-78. https://doi.org/10.22037/afb.v5i1.19027
  111. 111. Ortega H, Gutiérrez B, Cadenas G, Jimenez L. Antibacterial activity of chitosan and the interpolyelectrolyte complexes of poly(acrylic acid)-chitosan. Braz Arch Biol Technol. 2010;53(4):623-8. https://doi.org/10.1590/S1516-89132010000400017
  112. 112. Coqueiro D, di Piero R. Antibiotic activity against Xanthomonas gardneri and protection of tomato plants by chitosan. J Plant Pathol. 2011;93(2):337-44.
  113. 113. Gonelimali FD, Li J, Wenhua M, Jinghu X, Fedrick C, Meiling C, et al. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front Microbiol. 2018;9:1639. https://doi.org/10.3389/fmicb.2018.01639
  114. 114. Meng D, Garba B, Ren Y, Yao M, Xia X, Li M, et al. Antifungal activity of chitosan against Aspergillus ochraceus and its possible mechanisms of action. Int J Biol Macromol. 2020;158:1063-70. https://doi.org/10.1016/j.ijbiomac.2020.04.213
  115. 115. Feliziani E, Landi L, Romanazzi G. Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry. Carbohydr Polym. 2015;132:111-7. https://doi.org/10.1016/j.carbpol.2015.06.059
  116. 116. Zahid N, Maqbool M, Siddiqui Y, Manickam S, Ali A. Regulation of inducible enzymes and suppression of anthracnose using submicron chitosan dispersions. Sci Hortic. 2015;193:381-8. https://doi.org/10.1016/j.scienta.2015.07.061
  117. 117. Liu H, Tian W, Li B, Wu G, Ibrahim M, Tao Z, et al. Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnol Lett. 2012;34(12):2291-8. https://doi.org/10.1007/s10529-012-1051-8
  118. 118. Hernández AN. Current status of action mode and effect of chitosan against phytopathogens fungi. Afr J Microbiol Res. 2011;5(32):4243-7.
  119. 119. Meng X, Yang L, Kennedy JF, Tian S. Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydr Polym. 2010;81(1):70-5. https://doi.org/10.1016/j.carbpol.2010.01.027
  120. 120. Orzali L, Corsi B, Forni C, Riccioni L. Chitosan in agriculture: A new challenge for managing plant disease. In: Kim SK, editor. Biol Act Mar Polysacch. London. InTech. 2017.
  121. 121. Lizárraga E, Pacheco I, Miranda S. Chitosan application in maize (Zea mays) to counteract the effects of abiotic stress at seedling level. Afr J Biotechnol. 2011;10(34):6349-56.
  122. 122. Lemke P, Jünemann L, Moerschbacher BM. Synergistic antimicrobial activities of chitosan mixtures and chitosan-copper combinations. Int J Mol Sci. 2022;23(6):3345. https://doi.org/10.3390/ijms23063345
  123. 123. Xing K, Li T, Liu Y, Zhang J, Zhang Y, Shen X, et al. Antifungal and eliciting properties of chitosan against Ceratocystis fimbriata in sweet potato. Food Chem. 2018;268:188-95. https://doi.org/10.1016/j.foodchem.2018.05.004
  124. 124. Wang Q, Zuo J, Wang Q, Na Y, Gao L. Inhibitory effect of chitosan on growth of the fungal phytopathogen, Sclerotinia sclerotiorum and sclerotinia rot of carrot. J Integr Agric. 2015;14(4):691-7. https://doi.org/10.1016/S2095-3119(14)60848-8
  125. 125. Mejdoub B, Touihri S, Ammar N, Riahi A, Daami-Remadi M. Effect of chitosan for the control of potato diseases caused by Fusarium species. J Phytopathol. 2020;168(1):18-27. https://doi.org/10.1111/jph.12838
  126. 126. Wang Q, Li H, Lei Y, Su Y, Long Y. Chitosan as an adjuvant to improve isopyrazam-azoxystrobin against leaf spot disease of kiwifruit and enhance its photosynthesis, quality and amino acids. Agriculture. 2022;12(3):373. https://doi.org/10.3390/agriculture12030373
  127. 127. Nicaise V. Crop immunity against viruses: Outcomes and future challenges. Front Plant Sci. 2014;5:660. https://doi.org/10.3389/fpls.2014.00660
  128. 128. Chirkov S, Il’ina A, Surgucheva N, Letunova E, Varitsev YA, Tatarinova NY, et al. Effect of chitosan on systemic viral infection and some defense responses in potato plants. Russ J Plant Physiol. 2001;48(6):774-9. https://doi.org/10.1023/A:1012066417337
  129. 129. Bondok A. Response of tomato plants to salicylic acid and chitosan under infection with tomato mosaic virus. Am-Eurasian J Agric Environ Sci. 2015;15(7):1520-9.
  130. 130. Mishra S, Jagadeesh KS, Krishnaraj PU, Prem S. Biocontrol of tomato leaf curl virus (ToLCV) in tomato with chitosan supplemented formulations of Pseudomonas sp. under field conditions. Aust J Crop Sci. 2014;8(3):347-55.
  131. 131. Firmansyah D. Use of chitosan and plant growth promoting rhizobacteria to control squash mosaic virus on cucumber plants. Asian J Plant Pathol. 2017;11(3):148-55. https://doi.org/10.3923/ajppaj.2017.148.155
  132. 132. Jia X, Meng Q, Zeng H, Wang W, Yin H. Chitosan oligosaccharide induces resistance to tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signaling pathway. Sci Rep. 2016;6:26144. https://doi.org/10.1038/srep26144
  133. 133. Chakraborty M, Mirza H, Rahman M, Khan MAR, Bhowmik P, Mahmud NU, et al. Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture. 2020;10(12):624. https://doi.org/10.3390/agriculture10120624
  134. 134. Abd El-Aziz M, Khalil M. Antiviral and antinematodal potentials of chitosan: Review. J Plant Sci Phytopathol. 2020;4(1):55-9.
  135. 135. Gangireddygari VSR, Chung BN, Cho IS, Yoon JY. Inhibitory effect of chitosan and phosphate cross-linked chitosan against cucumber mosaic virus and pepper mild mottle virus. Plant Pathol J. 2021;37(6):632-40. https://doi.org/10.5423/PPJ.OA.07.2021.0106
  136. 136. Nunes da Silva M, Cardoso A, Ferreira D, Brito M, Pintado M, Vasconcelos MW. Chitosan as a biocontrol agent against the pinewood nematode (Bursaphelenchus xylophilus). For Pathol. 2014;44(5):420-33. https://doi.org/10.1111/efp.12101
  137. 137. Iriti M, Varoni EM. Chitosan-induced antiviral activity and innate immunity in plants. Environ Sci Pollut Res. 2015;22(4):2935-44. https://doi.org/10.1007/s11356-014-3514-2
  138. 138. El-Sayed SM, Mahdy ME. Effect of chitosan on root-knot nematode, Meloidogyne javanica on tomato plants. Int J Chem Tech Res. 2015;7(6):1985-92.
  139. 139. Sheikha SA, Al-Malki FM. Chitosan effects on salinity-stressed bean plants. J Stress Physiol Biochem. 2011;7(3):172-181.
  140. 140. Rojas-Pirela M, Carillo P, Lárez-Velásquez C, Romanazzi G. Effects of chitosan on plant growth under stress conditions: Similarities with plant growth promoting bacteria. Front Plant Sci. 2024;15:1423949. https://doi.org/10.3389/fpls.2024.1423949
  141. 141. Gornik K, Grzesik M, Duda BR. The effect of chitosan on plant growth. Acta Biol Cracov Ser Bot. 2008;50(2):123-128.
  142. 142. El-Tanahy AM, El-Sayed SA, Khalil MY, Abou-Ali RM. Chitosan and chitin application for tomato plant growth. Aust J Basic Appl Sci. 2012;6(2):63-71.
  143. 143. Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Mar Drugs. 2015;13(3):1133-1174. https://doi.org/10.3390/md13031133
  144. 144. Romanazzi G, Feliziani E, Santini M, Landi L. Chitosan treatment for postharvest decay: Current status and future perspectives. Crit Rev Food Sci Nutr. 2017;57(3):579-601. https://doi.org/10.1080/10408398.2014.900474
  145. 145. Elsabee MZ, Abdou ES. Chitosan-based edible films and coatings: A review. Mater Sci Eng C. 2013;33(4):1819-1841. https://doi.org/10.1016/j.msec.2013.01.010
  146. 146. Yang F, Hu J, Li J, Wu X, Qian Y. Chitosan enhances leaf membrane stability and antioxidant enzyme activities in apple seedlings under drought stress. Plant Growth Regul. 2009;58:131-136. https://doi.org/10.1007/s10725-009-9373-0
  147. 147. Jiao Z, Guo H, Zhang J, Zhang Z, Liu M. Effects of exogenous chitosan on physiological characteristics of potato seedlings under drought stress and rehydration. Potato Res. 2012;55:293-301. https://doi.org/10.1007/s11540-012-9225-z
  148. 148. Gu L. Effects of exogenous chitosan on physiological characteristics of phalaenopsis seedlings under drought stress. Southwest China J Agric Sci. 2011;24:90-93.
  149. 149. Pongprayoon W, Roytrakul S, Theerakulpisut P. Role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice. Plant Growth Regul. 2013;70:159-173. https://doi.org/10.1007/s10725-013-9782-1
  150. 150. Li Z, Zhang X, Wang X, Li Y, Sun W, Qian Y. Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. J Proteome Res. 2017;16:3039-3052. https://doi.org/10.1021/acs.jproteome.7b00299
  151. 151. Górnik K, Grzesik M, Romanowska-Duda B. Effect of chitosan on rooting of grapevine cuttings and plant growth under drought and temperature stress. J Fruit Ornam Plant Res. 2008;16:333-343.
  152. 152. Iriti M, Faoro F. Abscisic acid is involved in chitosan-induced resistance to tobacco necrosis virus. Plant Physiol Biochem. 2008;46:1106-1111. https://doi.org/10.1016/j.plaphy.2008.09.009
  153. 153. Ibrahim EA, Ramadan WA. Effect of zinc foliar spray alone and combined with humic acid and/or chitosan on dry bean growth and yield. Sci Hortic. 2015;184:101-105. https://doi.org/10.1016/j.scienta.2014.12.032
  154. 154. Ng LM, Melcher K, Teh BT, Xu HE. Abscisic acid perception and signaling: Structural mechanisms and applications. Acta Pharmacol Sin. 2014;35:567-584. https://doi.org/10.1038/aps.2014.5
  155. 155. Zhang X, Wollenweber B, Jiang D, Liu F, Zhao J. Water deficits and heat shock affect photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. J Exp Bot. 2008;59(4):839-848. https://doi.org/10.1093/jxb/erm375
  156. 156. Zagzog OA, El-Khawaga AS, El-Sayed HAA, Mahmoud HEM. Effect of nano-chitosan on mango vegetative growth, fruiting and malformation resistance. Trends Hortic Res. 2017;6:673-681.
  157. 157. Scortichini M. Field efficacy of chitosan against kiwifruit bacterial canker. Eur J Plant Pathol. 2014;140:887-892. https://doi.org/10.1007/s10658-014-0512-6
  158. 158. Gayed AA-NA, El-Mofty HA, Mostafa LM. Pre-harvest chitosan and calcium chloride improve peach fruit quality and storability. Ciênc e Agrotecnologia. 2017;41:220-231. https://doi.org/10.1590/1413-70542017412012917
  159. 159. Giacalone G, Chiabrando V. Pre- and post-harvest chitosan on nectarine quality. Acta Hortic. 2013;1084:675-680.
  160. 160. Sathiyabama M, Ramya KG, Siva C, Saminathan K. Chitosan-induced defense responses in tomato against early blight. Arch Phytopathol Plant Prot. 2014;47:1777-1787. https://doi.org/10.1080/03235408.2013.879109
  161. 161. Kim HJ, Lee SY, Park IS, Cho KS, Choi DH. Effect of chitosan on sweet basil biological properties. J Agric Food Chem. 2005;53:3696-3701. https://doi.org/10.1021/jf048174i
  162. 162. Wanichpongpan P, Soma T, Charoenrein S. Effects of chitosan on Gerbera growth. In: Proc 8th Int Chitin Chitosan Conf. Yamaguchi. Japan. 2000. p. 198-201.
  163. 163. Chandrkrachang S. The application of chitin and chitosan in Thai agriculture. In: Advances in Chitin Science. 2002:458-462.
  164. 164. Xue GX, Liu YX, Chen JQ, Xing TP. Chitosan effects on cucumber seedlings under low temperature. J Plant Physiol Mol Biol. 2004;30:441-448.
  165. 165. Chookhongkha N, Siriacha Y, Rattanaruengyim P, Kaewnum C. Chitosan nanoparticles for fungal control and chili seed quality. In: Proc PPDM. Bangkok. Thailand. 2012:231-237.
  166. 166. Abd-Alla M, Wafaa M. New safe methods for controlling anthracnose disease of mango (Mangifera indica L.) fruits caused by Colletotrichum gloeosporioides (Penz.). J Am Sci. 2010;8:361-367.
  167. 167. Abdel Fattah A, Ashoush I, Alnashi B. Effect of chitosan edible coating on quality attributes of pomegranate arils during cold storage. J Food Dairy Sci Mansoura Univ. 2016;7:435-442.
  168. 168. Petriccione M, De Sanctis F, Pasquariello MS, Mastrobuoni F, Rega P, Scortichini M, et al. The effect of chitosan coating on the quality and nutraceutical traits of sweet cherry during post-harvest life. Food Bioprocess Technol. 2015;8:394-408. https://doi.org/10.1007/s11947-014-1400-8
  169. 169. Petriccione M, Mastrobuoni F, Pasquariello MS, Zampella L, Nobis E, Capriolo G, et al. Effect of chitosan coating on the post-harvest quality and antioxidant enzyme system response of strawberry fruit during cold storage. Foods. 2015;4:501-523. https://doi.org/10.3390/foods4040501
  170. 170. Plainsirichai M, Leelaphatthanapanich S, Wongsachai N. Effect of chitosan on the quality of rose apples (Syzygium aqueum Alston) cv. Tabtim Chan stored at an ambient temperature. APCBEE Procedia. 2014;8:317-322. https://doi.org/10.1016/j.apcbee.2014.03.050
  171. 171. Ghasemnezhad M, Shiri M. Effect of chitosan coatings on some quality indices of apricot (Prunus armeniaca L.) during cold storage. Casp J Environ Sci. 2010;8:25-33.
  172. 172. Suseno N, Savitri E, Sapei L, Padmawijaya KS. Improving shelf-life of Cavendish banana using chitosan edible coating. Procedia Chem. 2014;9:113-120. https://doi.org/10.1016/j.proche.2014.05.017
  173. 173. Xue GX, Liu YX, Chen JQ, Xing TP. Chitosan effects on cucumber seedlings under low temperature. J Plant Physiol Mol Biol. 2004;30:441-448.
  174. 174. García M, Casariego A, Diaz R, Roblejo L. Effect of edible chitosan/zeolite coating on tomatoes quality during refrigerated storage. Emir J Food Agric. 2014;26:238. https://doi.org/10.9755/ejfa.v26i3.17517
  175. 175. Wójcik W, Złotek U. Use of chitosan film coatings in the storage of carrots (Daucus carota). Prog Chem Appl Chitin Its Deriv. 2008;13:141-148.
  176. 176. Moreira MDR, Ponce A, Ansorena R, Roura SI. Effectiveness of edible coatings combined with mild heat shocks on microbial spoilage and sensory quality of fresh-cut broccoli (Brassica oleracea L.). J Food Sci. 2011;76(6):M367-M374. https://doi.org/10.1111/j.1750-3841.2011.02250.x
  177. 177. Carvalho RL, Cabral MF, Germano TA, de Carvalho WM, Brasil IM, Gallão MI, et al. Chitosan coating with trans-cinnamaldehyde improves structural integrity and antioxidant metabolism of fresh-cut melon. Postharvest Biol Technol. 2016;113:29-39. https://doi.org/10.1016/j.postharvbio.2015.11.012
  178. 178. Zhang Y, Zhang M, Yang H. Post-harvest chitosan-g-salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage. Food Chem. 2015;174:558-563. https://doi.org/10.1016/j.foodchem.2014.11.086
  179. 179. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci Rep. 2022;12(1):6613. https://doi.org/10.1038/s41598-022-10623-9
  180. 180. Mohan K, Ganesan AR, Muralisankar T, Jayakumar R, Sathishkumar P, Uthayakumar V, et al. Recent insights into the extraction, characterization and bioactivities of chitin and chitosan from insects. Trends Food Sci Technol. 2020;105:17-42. https://doi.org/10.1016/j.tifs.2020.08.001
  181. 181. Izadi H, Asadi H, Bemani M. Chitin: A comparison between its main sources. Front Mater. 2025;12:1537067. https://doi.org/10.3389/fmats.2025.1537067

Downloads

Download data is not yet available.