Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

A systematic exploration of biotechnological breakthroughs in enhancing jasmine aroma and quality

DOI
https://doi.org/10.14719/pst.11154
Submitted
6 August 2025
Published
22-10-2025

Abstract

Jasminum sp. plays a crucial role in different industries such as food, pharmaceutical, ornamental and cosmetics, both in traditional as well as modern contexts. However, the dynamic shift in climatic conditions poses significant challenges to jasmine productivity by creating unfavourable biotic and abiotic environments. Though the conventional breeding strategies have made noteworthy contributions in the past, it often demands extended timeframes for the development of new varieties. Further, its success rate gets impeded by physiological, biotic and abiotic barriers. In recent years, a significant progress has been achieved in leveraging the biotechnology methods for jasmine molecular breeding, which has in turn promised better strategies to improve the fragrance and yield of jasmine. Particularly, molecular markers have offered new insights about the genetic foundations of yield and quality characteristics of jasmine besides shedding light on its evolution and potential for conservation efforts. Contemporary biotechnological tools such as the omics technologies, tissue culture and genome editing tools are now being actively employed and examined for its potential to overcome the limitations encountered in conventional breeding strategies, in terms of jasmine improvement. The current systematic review conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), synthesizes the status and trends of various biotechnological tools that are employed in improving the desirable traits of the Jasminum sp. The insights presented in this paper highlight the multifaceted biotechnological aspects of the Jasminum sp. and suggest future research directions to further improve their potential applications in food, pharmaceutical and cosmetic industries.

References

  1. 1. Wallander E, Albert VA. Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data. Am J Bot. 2000;87(12):1827–41. https://doi.org/10.2307/2656836
  2. 2. Ling X, Liao R, Zhu X. The complete chloroplast genome sequence of Chrysojasminum subhumile and its phylogenetic position within Oleaceae. Mitochondrial DNA Part B. 2023;8(6):678–81. https://doi.org/10.1080/23802359.2023.2224460
  3. 3. Jeyarani JN, Yohannan R, Vijayavalli D, Dwivedi MD, Pandey AK. Phylogenetic analysis and evolution of morphological characters in the genus Jasminum L. (Oleaceae) in India. J Genet. 2018;97:1225–39. https://doi.org/10.1007/s12041-018-1019-4
  4. 4. Jensen SR, Franzyk H, Wallander E. Chemotaxonomy of the Oleaceae: iridoids as taxonomic markers. Phytochem. 2002;60(3):213–31. https://doi.org/10.1016/S0031-9422(02)00102-4
  5. 5. Bhattacharya S, Bhattacharyya S. Rapid multiplication of Jasminum officinale L. by in vitro culture of nodal explants. Plant Cell Tissue Organ Cult. 1997;51:57–60. https://doi.org/10.1023/A:1005806232005
  6. 6. Ganga M, Jawaharlal M, Thamaraiselvi SP. Jasmine. In: Datta SK, Gupta YC, editors. Floriculture and Ornamental Plants. Singapore: Springer Nature Singapore; 2022. p. 461–82. https://doi.org/10.1007/978-981-15-3518-5_16
  7. 7. Ganga M, Ranchana P, Ganesh S, Kannan M, editors. Jasminum nitidum—a potential unexploited jasmine species. III International Symposium on Underutilized Plant Species; 2015; Tamil Nadu, India. Belgium: Acta Horticulturae; 2019.
  8. 8. Khammee P, Unpaprom Y, Chaichompoo C, Khonkaen P, Ramaraj R. Appropriateness of waste jasmine flower for bioethanol conversion with enzymatic hydrolysis: sustainable development on green fuel production. 3 Biotech. 2021;11(5):216. https://doi.org/10.1007/s13205-021-02776-x
  9. 9. Usha S. Studies on breeding in Jasmine (Jasminum spp.) through hybridization and non-conventional approaches [Doctoral thesis]. Coimbatore, Tamil Nadu: Tamil Nadu Agricultural University; 2022.
  10. 10. Boopathi NM. Genotyping of mapping population. In: Genetic Mapping and Marker Assisted Selection: Basics, Practice and Benefits. 2nd ed. Singapore: Springer; 2020. p. 107–78. https://doi.org/10.1007/978-981-15-2949-8_1
  11. 11. Boopathi NM. Genetic mapping and marker-assisted selection: setting the background. In: Genetic Mapping and Marker Assisted Selection: Basics, Practice and Benefits. 2nd ed. Singapore: Springer; 2020. p. 1–20. https://doi.org/10.1007/978-981-15-2949-8
  12. 12. Usha S, Ganga M, Rajamani K, Manonmani S, Gnanam R. Impact of pollination strategies on fruit set and fruit growth attributes in jasmine. J Hortic Sci. 2022;17(1):73–82. https://doi.org/10.24154/jhs.v17i1.1376
  13. 13. Ganga M, Sharathkumar M. Breeding, biotechnology, genomics: advances in genetic improvement and molecular tools in Jasminum. In: Jasminum: The Art and Science of Breeding, Biotechnology and Cultivation. Tamil Nadu, India; 2025. p. 45–82.
  14. 14. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9. https://doi.org/10.1371/journal.pmed.1000097
  15. 15. Bhatia S. Plant tissue culture. In: Bhatia S, Sharma K, Dahiya R, Bera T, editors. Modern Applications of Plant Biotechnology in Pharmaceutical Sciences. Academic Press; 2015. p. 31–108.
  16. 16. Bhattacharya S, Bhattacharyya S. In vitro propagation of Jasminum officinale L.: a woody ornamental vine yielding aromatic oil from flowers. In: Protocols for In Vitro Propagation of Ornamental Plants. 2010. p. 117–26. https://doi.org/10.1007/978-1-60327-114-1_12
  17. 17. U-Kong W, Wongsawad P, Buddharak P. Shoot bud and young leaf induction of Jasminum spp. in in vitro culture. Int J Appl Agric Res. 2012;7(1):17–26.
  18. 18. Rahman MS, Mouri N, Nandi N, Akter S, Khan MS. In vitro micropropagation of Jasminum grandiflorum L. Bangladesh J Sci Ind Res. 2018;53(4):277–82. https://doi.org/10.3329/bjsir.v53i4.39191
  19. 19. Thenmozhi M. Effects of variations in hormonal treatments upon callus induction potential in Jasminum grandiflorum L. Plant Cell Biotechnol Mol Biol. 2019;20(3–4):106–11. https://ikprress.org/index.php/PCBMB/article/view/4568/4205
  20. 20. Biswal M, Palai S, Mishra P, Chhuria S, Sahu P. Standardization of protocol for shoot multiplication of jasmine (Jasminum sambac (L.) Aiton). Int J Farm Sci. 2016;6(3):111–8.
  21. 21. El-sadat NH, Hewidy M. In vitro propagation protocol of Jasminum polyanthum using indirect organogenesis. Int J Agric Environ Biores. 2020;5(1):1–8.
  22. 22. Showkat Bhat M, Ahmad Rather Z, Tahir Nazki I, Banday N, Wani T, Rafiq S, et al. Standardization of in vitro micropropagation of winter jasmine (Jasminum nudiflorum) using nodal explants. Saudi J Biol Sci. 2022;29(5):3425–31. https://doi.org/10.1016/j.sjbs.2022.02.011
  23. 23. Banthorpe DV, Branch SA, Njar VC, Osborne MG, Watson DG. Ability of plant callus cultures to synthesize and accumulate lower terpenoids. Phytochem. 1986;25(3):629–36. https://doi.org/10.1016/0031-9422(86)88013-X
  24. 24. Suryaningsih DR, Prakoeswa SA, Tanowidjaya R. Manipulation of benzyl acetate and jasmone content of Jasminum sambac L. using modified Murashige and Skoog medium on callus explant. Asia Pac J Mol Biol Biotechnol. 2015;23(1):253–6.
  25. 25. Lu Y, Liu Z, Lyu M, Yuan Y, Wu B. Characterization of JsWOX1 and JsWOX4 during callus and root induction in the shrub species Jasminum sambac. Plants. 2019;8(4). https://doi.org/10.3390/plants8040079
  26. 26. Ahmed MA, Miao M, Pratsinakis ED, Zhang H, Wang W, Yuan Y, et al. Protoplast isolation, fusion, culture and transformation in the woody plant Jasminum spp. Agriculture. 2021;11(8):699. https://doi.org/10.3390/agriculture11080699
  27. 27. Naing AH, Adedeji OS, Kim CK. Protoplast technology in ornamental plants: current progress and potential applications on genetic improvement. Sci Hortic. 2021;283:110043. https://doi.org/10.1016/j.scienta.2021.110043
  28. 28. Furuta H, Shinoyama H, Nomura Y, Maeda M, Makara K. Production of intergeneric somatic hybrids of chrysanthemum [Dendranthema × grandiflorum (Ramat.) Kitamura] and wormwood (Artemisia sieversiana JF Ehrh. ex Willd) with rust (Puccinia horiana Henning) resistance by electrofusion of protoplasts. Plant Sci. 2004;166(3):695-702. https://doi.org/10.1016/j.plantsci.2003.11.007
  29. 29. Tomiczak K. Molecular and cytogenetic description of somatic hybrids between Gentiana cruciata L. and G. tibetica King. J Appl Genet. 2020;61(1):13-24. https://doi.org/10.1007/s13353-019-00530-x
  30. 30. Shimizu K, Miyabe Y, Nagaike H, Yabuya T, Adachi T. Production of somatic hybrid plants between Iris ensata Thunb. and I. germanica. Euphytica. 1999;107:105-13. https://doi.org/10.1023/A:1026431800693
  31. 31. Al-Atabee J, Mulligan B, Power J. Interspecific somatic hybrids of Rudbeckia hirta and R. laciniata (Compositae). Plant Cell Rep. 1990;8:517-20. https://doi.org/10.1007/BF00820199
  32. 32. Tomiczak K, Sliwinska E, Rybczyński JJ. Protoplast fusion in the genus Gentiana: genomic composition and genetic stability of somatic hybrids between Gentiana kurroo Royle and G. cruciata L. Plant Cell Tissue Organ Cult. 2017;131:1-14. https://doi.org/10.1007/s11240-017-1256-x
  33. 33. Horita M, Morohashi H, Komai F. Production of fertile somatic hybrid plants between Oriental hybrid lily and Lilium × formolongi. Planta. 2003;217(4):597-601. https://doi.org/10.1007/s00425-003-1020-9
  34. 34. Nakano M, Mii M. Somatic hybridization between Dianthus chinensis and D. barbatus through protoplast fusion. Theor Appl Genet. 1993;86:1-5. https://doi.org/10.1007/bf00223802
  35. 35. Pati P, Sharma M, Ahuja PS. Rose protoplast isolation and culture and heterokaryon selection by immobilization in extra thin alginate film. Protoplasma. 2008;233:165-71. https://doi.org/10.1007/s00709-008-0297-8
  36. 36. Kästner U, Klocke E, Abel S. Regeneration of protoplasts after somatic hybridisation of Hydrangea. Plant Cell Tissue Organ Cult. 2017;129:359-73. https://doi.org/10.1007/s11240-017-1183-x
  37. 37. Mukundan S, Sathyanarayana B, Simon L, Sondur SN. Comparative analysis and phylogenetic relationships between populations of commercially important Jasminum sp. by using RAPD markers. Floricult Ornamental Biotechnol. 2007;1(2):136-41.
  38. 38. Mukundan S, Sathyanarayana B, Suresh N, Simon L. Analysis of genetic diversity among Jasminum sambac (Linn.) Ait. and J. grandiflorum Linn. varieties using morphological and molecular markers. Floricult Ornamental Biotechnol. 2008;2(2):60-4.
  39. 39. Shekhar S, Prasad M, Sriram S. Detection of genetic diversity in jasmine species by DNA fingerprinting using RAPD molecular markers. Int J Pure App Biosci. 2014;2(3):312-7.
  40. 40. Phithaksilp J, Ruangrungsi N, Rungsihirunrat K. Characterization of 30 selected Jasminum accessions in Thailand based on microscopic and RAPD fingerprinting. Chiang Mai J Sci. 2018;45(6):2322-37.
  41. 41. Chaitanya H, Nataraja S, Krishnappa M. Studies on morphological and genetic diversity of jasmine ecotypes of coastal Karnataka. Ecol Environ Conserv. 2020;26:49-55.
  42. 42. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed. 1996;2:225-38. https://doi.org/10.1007/BF00564200
  43. 43. Li Y, Zhang W. Isolation and characterization of microsatellite markers for Jasminum sambac (Oleaceae) using illumina shotgun sequencing. Appl Plant Sci. 2015;3(10). https://doi.org/10.3732/apps.1500063
  44. 44. Srivastava S, Mukherjee S, Pragya P, Burman S, Rana M, Kumar R, et al. Microsatellite markers for crop improvement: a review. J Appl Nat Sci. 2023;15(3):1018-35. https://doi.org/10.31018/jans.v15i3.4615
  45. 45. Nirmala K, Champa B, Gowda AM. Genetic diversity assessment in Jasminum species using amplified fragment length polymorphism. J Appl Hortic. 2016;18(1):25-9. https://doi.org/10.37855/jah.2016.v18i01.06
  46. 46. Ghasemi Ghehsareh M, Salehi H, Khosh-Khui M, Niazi A. Application of ISSR markers to analyze molecular relationships in Iranian jasmine (Jasminum spp.) accessions. Mol Biotechnol. 2015;57(1):65-74. https://doi.org/10.1007/s12033-014-9802-9
  47. 47. Yohanan R, Jeyarani NJ, Devipriya V, Rather SA, Kasana S, Thakur J, et al. Evaluating genetic diversity within genus Jasminum L. (Oleaceae) using intersimple sequence repeats (ISSR) marker. Proc Natl Acad Sci India Sect B Biol Sci. 2020;90:531-40. https://doi.org/10.1007/s40011-019-01124-7
  48. 48. Akhtar N, Hafiz IA, Hayat MQ, Potter D, Abbasi NA, Habib U, et al. ISSR-based genetic diversity assessment of genus Jasminum L. (Oleaceae) from Pakistan. Plants. 2021;10(7):1270. https://doi.org/10.3390/plants10071270
  49. 49. Ghosh S, Ganga M, Soorianathasundaram K, Kumar A. Molecular characterization of jasmine genotypes using RAPD and ISSR markers. Indian J Hortic. 2020;77(1):149-57. http://doi.org/10.5958/0974-0112.2020.00016.X
  50. 50. Mohammadi SA, Prasanna BM. Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Sci. 2003;43(4):1235-48. https://doi.org/10.2135/cropsci2003.1235
  51. 51. Li Y-H, Zhang W, Li Y. Transcriptomic analysis of flower blooming in Jasminum sambac through de novo RNA sequencing. Molecules. 2015;20(6):10734-47. https://doi.org/10.3390/molecules200610734
  52. 52. Yu Y, Lyu S, Chen D, Lin Y, Chen J, Chen G, et al. Volatiles emitted at different flowering stages of Jasminum sambac and expression of genes related to α-farnesene biosynthesis. Molecules. 2017;22(4). https://doi.org/10.3390/molecules22040546
  53. 53. Ghissing U, Jayanthan K, Bera P, Bimolata W, Mitra A. Targeted profiling and temporal expression of key genes revealed coordination among metabolites contributing to volatiles internal pool in Jasminum sambac (L.) Aiton flowers. Braz J Bot. 2022;45(2):587-97. https://doi.org/10.1007/s40415-022-00802-7
  54. 54. Kumari G, Wong KH, Serra A, Shin J, Yoon HS, Sze SK, et al. Molecular diversity and function of jasmintides from Jasminum sambac. BMC Plant Biol. 2018;18:144. https://doi.org/10.1186/s12870-018-1361-y
  55. 55. Wang P, Wei P, Niu F, Liu X, Zhang H, Lyu M, et al. Cloning and functional assessments of floral-expressed SWEET transporter genes from Jasminum sambac. Int J Mol Sci. 2019;20(16). https://doi.org/10.3390/ijms20164001
  56. 56. Wang Y, Zhang H, Wan C, He X, Huang J, Lyu M, et al. Characterization of two BAHD acetyltransferases highly expressed in the flowers of Jasminum sambac (L.) Aiton. Plants. 2022;11(1). https://doi.org/10.3390/plants11010013
  57. 57. Wang P, Gu M, Yang W, Hong Y, Jiang M, Lin H, et al. High-resolution transcriptome and volatile assays provide insights into flower development and aroma formation in single- and double-petal jasmines (Jasminum sambac). Ind Crops Prod. 2022;189. https://doi.org/10.1016/j.indcrop.2022.115846
  58. 58. Wang H, Qi X, Chen S, Feng J, Chen H, Qin Z, et al. An integrated transcriptomic and proteomic approach to dynamically study the mechanism of pollen-pistil interactions during jasmine crossing. J Proteomics. 2021;249. https://doi.org/10.1016/j.jprot.2021.104380
  59. 59. Zhang H, Wang W, Huang J, Wang Y, Hu L, Yuan Y, et al. Role of gibberellin and its three GID1 receptors in Jasminum sambac stem elongation and flowering. Planta. 2022;255(1). https://doi.org/10.1007/s00425-021-03805-y
  60. 60. Zhou C, Zhu C, Tian C, Xu K, Huang L, Shi B, et al. Integrated volatile metabolome, multi-flux full-length sequencing and transcriptome analyses provide insights into the aroma formation of postharvest jasmine (Jasminum sambac) during flowering. Postharvest Biol Technol. 2022;183. https://doi.org/10.1016/j.postharvbio.2021.111726
  61. 61. Chen G, Mostafa S, Lu Z, Du R, Cui J, Wang Y, et al. The jasmine (Jasminum sambac) genome provides insight into the biosynthesis of flower fragrances and jasmonates. Genomics Proteomics Bioinform. 2023;21(1):127-49. https://doi.org/10.1016/j.gpb.2022.12.005
  62. 62. Qi X, Wang H, Chen S, Feng J, Chen H, Qin Z, et al. The genome of single-petal jasmine (Jasminum sambac) provides insights into heat stress tolerance and aroma compound biosynthesis. Front Plant Sci. 2022;13:1-14. https://doi.org/10.3389/fpls.2022.1045194
  63. 63. Pragadheesh V, Chanotiya CS, Rastogi S, Shasany AK. Scent from Jasminum grandiflorum flowers: investigation of the change in linalool enantiomers at various developmental stages using chemical and molecular methods. Phytochemistry. 2017;140:83-94. https://doi.org/10.1016/j.phytochem.2017.04.018
  64. 64. Bera P, Mukherjee C, Mitra A. Enzymatic production and emission of floral scent volatiles in Jasminum sambac. Plant Sci. 2017;256:25-38. https://doi.org/10.1016/j.plantsci.2016.11.013
  65. 65. Huang X, Guo H, Yin L, Wu R, Zhou X. Genome-wide identification and expression analysis of auxin response factor genes in Arabian jasmine. J Am Soc Hortic Sci. 2023;148(4):190-200. https://doi.org/10.21273/JASHS05276-22
  66. 66. Lu Z, Wang X, Mostafa S, Noor I, Lin X, Ren S, et al. WRKY transcription factors in Jasminum sambac: an insight into the regulation of aroma synthesis. Biomolecules. 2023;13(12). https://doi.org/10.3390/biom13121679
  67. 67. Lu Z, Wang X, Lin X, Mostafa S, Bao H, Ren S, et al. Genome-wide identification and characterization of long non-coding RNAs associated with floral scent formation in jasmine (Jasminum sambac). Biomolecules. 2023;14(1). https://doi.org/10.3390/biom14010045
  68. 68. Zhao K, Luo X, Shen M, Lei W, Lin S, Lin Y, et al. The bZIP transcription factors in current jasmine genomes: identification, characterization, evolution and expressions. Int J Mol Sci. 2023;25(1). https://doi.org/10.3390/ijms25010488
  69. 69. Lee H-L, Jansen RK, Chumley TW, Kim K-J. Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol. 2007;24(5):1161-80. https://doi.org/10.1093/molbev/msm036
  70. 70. Qi X, Chen S, Wang Y, Feng J, Wang H, Deng Y. Complete chloroplast genome of Jasminum sambac L. (Oleaceae). Braz J Bot. 2020;43:855-67. https://doi.org/10.1007/s40415-020-00638-z
  71. 71. Zhou C, Zhu C, Tian C, Xie S, Xu K, Huang L, et al. The chromosome-scale genome assembly of Jasminum sambac var. unifoliatum provides insights into the formation of floral fragrance. Hortic Plant J. 2023;9(6):1131-48. https://doi.org/10.1016/j.hpj.2023.03.003
  72. 72. Qi X, Wang H, Liu S, Chen S, Feng J, Chen H, et al. The chromosome-level genome of double-petal phenotype jasmine (Jasminum sambac Aiton) provides insights into the biosynthesis of floral scent. Hortic Plant J. 2024;10(1):259-72. https://doi.org/10.1016/j.hpj.2023.03.006

Downloads

Download data is not yet available.