Genetic engineering and genome editing techniques in peanut plants

Authors

DOI:

https://doi.org/10.14719/pst.2021.8.3.1127

Keywords:

Agrobacterium, Biolistic, CRISPR/Cas9, Peanut, TALENs, ZFN

Abstract

Research has long been associated with human life. In the effort to make a living, many experts who have contributed to the modernization of traditional research methods by conducting various research activities. In this process, professionals, from farmers to senior researchers, have done their part by developing plants that can tolerate or resist to disease. The growing population, climate change and plant disease are having a devastating effect on food security. In particular, it is essential to increase food production by producing high yielding crops of good quality, that may ensure food security. Recently, different gene- editing technologies have been developed. These techniques have been applied in many research fields and their development has provided economic benefits to farmers. Agrobacterium-mediated and biolistic methods are very important techniques for transforming genetic materials in plants. Genome- editing technologies are recent and highly applied in plant research to improve genes associated with yield, disease resistance and drought resistance. For example, Zinc-finger Nucleases (ZFNS), Transcription Activator-like Effector Nucleases (TALEN), and Clustered Regularly Interspaced Short Palindromic Repeats system (CRISPR/ Cas9) methods are now widely applied by researchers and are playing a positive role in increasing production and productivity. Of the gene- editing technology, CRISPR/ Cas9 is widely applied in plant breeding programme as it is easy to use and cost-effective. In this review, we mainly focus on peanut plant, which is an important oil-bearing allotetraploid crop. Therefore, peanut gene editing-technology could increase the oleic acid content in edible peanut oil. Thus, genome editing and gene transformation technologies are extensively explored in this review.

Downloads

Download data is not yet available.

References

Zheng T, et al. Profiling single-guide RNA specificity reveals a mismatch sensitive core sequence. Sci Rep. 2017;7:40638.

Zhang S, Zhang R, Song G, Gao J, Li W, Han X, Chen M, Li Y, Li G. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biol. 2018;18(1):302. https://doi.org/10.1186/s12870-018-1496-x

Norden AJ, Gorbet DW, Knauft DA, Young CT. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci. 1987;14:11-17.

Jung S, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.) II. Molecular Bais and genetics of the trait. Mol Gen Genet. 2000;263:806-11.

Chu Y, Holbrook CC, Ozias-Akins P. Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Sci. 2009;49:2029-36.

Yuan M, Zhu J, Gong L et al. Mutagenesis of FAD2 genes in peanut with CRISPR/ Cas9 based gene editing. BMC Biotechnol. 2019;19:24. https://doi.org/10.1186/s12896-019-0516-8

Janila P, Pandey MK, Shasidhar Y Variath MT, Sriswathi M, Khera P et al. Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Science. 2016; 242:203-13. http://dx.doi.org/10.1016/j.plantsci.2015. 08.013

JRobledo G, Lavia G, Seijo G. Species relations among wild Arachis species with A genome as revealed by Fish mapping of rDNA loci and hetrochromatin detection. Theor Appl Genet. 2009;118:1295-1307.

Grabiele M, Chalup L, Robledo G, Seijo G. Genetic and geographic origin of domesticated peanut as evidenced by 5s rDNA and chloroplast DNA sequences. Plant Syst Evol. 2012;1151-65.

Seijo G, et al. Genomic relationship between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. J Bot. 2007;94:1963-71.

Ramos ML, et al. Chromosomal and phylogenetic context for conglutin genes in Arachis based on genomic sequence. Mol Genet Genome. 2006;275:578-92.

Samoluk SS et al. First insight in to divergence, representation and chromosome distribution of reverse transcriptase fragments from L1 retrotransposons in peanut and wild relative species. Genetica. 2015;143:113-25.

Moore KM, Knauft DA. The inheritance of high oleic acid in peanut. J Hered. 1989;80:252-3.2.

Derbyshire EJ. Areview of the nutritional composition, organoleptic characteristics and biological effects of the high oleic peanut. IJF Sci and Nutri. 2014;781-90.

Sanford JC. The biolistic process. Trends Biotechnol. 1988;6:299-302.

Ozias-Akins P, Schnall JA, Anderson WF, Singsit C, Clemente TE, Adang MJ, Weissinger AK. Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Science. 1993;93:185-94.

Sanford JC. Biolistic plant transformation. Plant Physiol. 1990;19:206-09.

Kohli A, Twyman RM, Abranches R, Weget E, Stoger E. Christou P. Transgene integration, organization and interaction in plants. Plant Mol Biol. 2003; 52; 247-58.

Livingstone DM, Birch RG. Plant regeneration and microprojectile-mediated gene transfer in embryonic leaflets of peanut (Arachis hypogaea L.). Australian Journal of Plant Physiology. 1995;22:585-91.

Clemente D, Robertson T, Islieb G, Beute-Marvin K. Evaluation of peanut (Arachis hypogaea L.) leaflets form mature zygotic embryos as recipient tissue for biolistic gene transfer. Transgenic Research.1992;1:275-84.

Deng X, Wei Z, An H. Transgenic peanut plants obtained by particle bombardment via somatic embryogenesis regeneration system. Cell Res. 2001;11:156-60.

Elghabi Z, Ruf S, Brock R. Biolistic co-transformation of the nuclear and plastid genomes. Plant J. 2011; 67:941-48.

Hadi MZ, McMullen MD, Finer JJ. Transformation of 12 different plasmids in to soybean via particle bombardment. Plant Cell Rep. 1996;15:500-05.

Chilton MD, Drummond MH, Merio DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW. Stable incorporation of plasmids DNA in to higher plant cells: The molecular basis of crown gall tumorigenesis. Cell. 1977;11:263-71.

Estrada-Navarrete G, Alvarado-Affantranger X, Olivares JE, et al. Agrobacterium rhizogenes transformation of the Phaseolus spp.: a tool for functional genomics. Mol Plant Microbe Interact. 2006;19:1385-93.

Sharma KK, Anjaiah VV. An efficient method for the production of transgenic peanut (Arachis hypogaea L.) through Agrobacrerium tumefaciens-mediated genetic transformation. Plant Sci. 2000;159:7-19.

Tiwari S, Tuli R. Factors promoting efficient in vitro regeneration from de-embryonated cotyledon explants of Arachis hypogaea L. Plant Cell Tissue Org. 2008;92:15-24.

Prasad K, Bhatnagar-Mathur P, Waliyar F, Sharma KK. Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil and foliar fungal pathogens. J Plant Biochem Biotechnol. 2013;22:222-33.

Anuradha TS, Divya K, Jami SK, Kirti PB. Transgenic tobacco and peanut plants expressing a mustard defensing show resistance to fungal pathogens. Plant Cell Rep. 2008;27:1777-86.

Bhatnagar M, Prasad K, Bhatnagar-Mathur P, Narasu ML, Waliyar F, Sharma KK. An efficient method for the production of marker-free transgenic peanut (Arachis hypogaea L.). Plant Cell Rep. 2010;29:495-502.

Hsieh Y, Jain M, Wang J et al. Direct organogenesis from cotyledonary node explants suitable for Agrobacterium-mediated transformation in peanut (Arachis hypogaea L.). Plant Cell Tiss Organ Cult. 2017;128:161-75.

Anuradha TS, Jami SK, Datla RS, Kirti PB. Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus::nptII fusion gene based vector.J Biosci. 2006; 31(2): 235-46. https://doi.org/10.1007/BF02703916.

Limbua PG, Ngugi MP, Oduor RO. in vitro regeneration protocol of Kenyan adapted groundnut (Arachis hypogaea L.) genetyes using cotyledonary node explants. J Plant Biochem Physiol. 2019;7:233.

Marka R, Nanna RS. Optimization of factors affecting Agrobacterium-mediated genetic transformation in groundnut (Arachis hypogaea L.). Adv Plants Agric Res. 2018;8(3):275-82.

Mehta R, Radhakrishnan T, Kumar A et al. Coat protein-mediated transgenic resistance of peanut (Arachis hypogaea L.) to peanut stem necrosis disease through Agrobacterium-mediated genetic transformation. Idian J Virol. 2013;24:205-13.

Rana K, Mohanty LC. in vitro regeneration and genetic transformation in groundnut (Arachis hypogaea L. cv. Smruti) for abiotic stress tolerance mediated by Agrobacterium tumefaciens. J Today’s Biological Science Research and Review. 2013;1:62-85.

Khan K, Islam A. Screening of Agrobacterium mediated transient transformation of peanut Arachis hypogaea). J Plant Sci Res. 2017;4:168.

Chen M, Yang Q, Wang T, Chen N, Pan L, Chi X, Yang Z Wang M, Yu S. Agrobacterium mediated genetic transformation of peanut and the efficient recovery of transgenic plants. Can J Plant Sci. 2015;95:735-44.

Geng L, Niu L, Gresshoff PM, Shu C, Song F, Huang D, Zhang J. Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants in peanut (Arachis hypogaea L.). Plant Cell Tissue Organ Cult. 2012;109:491-500.

Rohini V, Rao KS. Transformation of peanut (Arachis hypogaea L.) : a non-tissue culture based approach for generating transgenic plants. Plant Sci. 2000;150:41-49.

Elisabeth AM, Cristiano L, Valéria G de F, Dulce E de O, Benedikt T, Antônio RC. Regulation of transformation efficiency of peanut (Arachis hypogaea L.) explants by Agrobacterium tumefaciens. Plant Science. 1993;89(1):93-99. https://doi.org/10.1016/0168-9452(93)90174-x

McKently AH, Moore GA, Doostdar H, Niedz RP. Agrobacterium-mediated transformation of peanut (Arachis hypogaea L.) embryo axes and the development of transgenic plants. Plant Cell Rep. 1995; 14(11): 699-703. https://doi.org/10.1007/BF00232650

Cheng M, Jarret RL, Li Z, Xing A, Demski JW. Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens. Plant Cell Rep. 1996;15(9):635-37. https://doi.org/10.1007/BF00231918

Tiwari V, Chaturvedi AK, Mishra A et al. An efficient method of Agrobacterium-mediated genetic transformation and regeneration in local Indian cultivar of groundnut (Arachis hypogaea) using grafting. Appl Biochem Biotechnol. 2015; 175:436-53. https://doi.org/10.1007/s12010-014-1286-3

Paes de Melo B, Lourenço-Tessutti IT et al. Soybean embryonic axis transformation: Combining biolistic and Agrobacterium-mediated protocols to overcome typical complications of in vitro plant regeneration. Frontiers in Plant Science. 2020;11:1228. https://doi.org/10.3389/fpls.2020. 01228

Hinchliffe A, Harwood WA. Agrobacterium-mediated transformation of barley immature embryos. In: Harwood W.(eds) barley. Method in Molecular Biology. 2017;1900 (pp. 115-126). Humana Press, New York, NY. https://doi. org/10.1007/978-1-4939-8944-7_8

Hensel G, Marthe C, Kumlehn J. Agrobacterium- mediated transformation of wheat using immature embryos.In: Bhalla P, Singh M.(eds) wheat biotechnology. Method in Molecular Biology. 2017; Vol 1679. https://doi.org/10.1007/978-1-4939-7337-8_8

Wu E, Zhao ZY. Agrobacterium-mediated sorghum transformation. In: Schmidt A. (eds) Plant germ line development. Method in Molecular Biology. 2017;vol 1669.https://doi.org/10.10 07/978-1-4939-7286-9_26

Ahmed RI, Ding A, Xie M, Kong Y. Progress in optimization of Agrobacterium-mediated transformation in sorghum (Sorghum bicolor). Int J Mol Sci. 2018; 19(10):2983. https://doi.org/10.3390/ijms19102983

Sharma R, Liang Y, Lee MY et al. Agrobacterium-mediated transient transformation of sorghum leaves for accelerating functional genomics and genome editing studies. BMC Res Notes. 2020;13:116. https://doi.org/10.1186/s13104-020-04968-9.

Ishida Y, Hiei Y, Komari T. Agrobacterium-mediated transformation of maize. Nat Protoco. 2007; 2:1614-21. https://doi.org/10.1038/nprot.2007.241

Sidorov V, Duncan D. Agrobacterium-mediated maize transformation: immature embryos versus callus. In: scott MP. (eds) Transgenic maize. Method in Molecular Biology. 2009;526 (pp. 47-58). Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-494-0_4

Feng M, Cang J, Wang J, Sun J, Yu J, Xu Q, Zhang D, Yang N, Lu Q, Lv Y. Regeneration and Agrobacterium-mediated transformation of Japanica rice varieties developed for a cold region. Czech J Genet Plant Breed. 2018;54:161-67.

Taylor CG, Fuchs B, Collier R et al. Generation of composite plants using Agrobacterium rhizogenes. Methods Mol Biol. 2006;343:155-67.

Somers DA, Samac DA, Olhoft PM. Recent advances in legume transformation. Plant Physiol. 2003;131:892-99.

Rafiq S. Analysis of factors influencing successful Agrobacterium mediated genetic transfor- mation in two different explants of peanut (Arachis hypogaea L.) variety BINA Chinabadam-2. BRAC University. 2014. http://hdl.handle.net/10361/3038

Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397-405.

Jung YJ, Nogoy FM, Lee SK et al. Application of ZFN for site directed mutagenesis of rice SSIVa gene. Biotechnol Bioproc E. 2018;23:108-15. https://doi.org/10.1007/s12257-017-0420-9

Lloyd A, Plaisier CL, Carrol D, Drews GN. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proceedings of the National Academy of Science. 2005;102(6):2232-37. https://doi.org/10.1073/pnas.0409339102

Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M,Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF. High frequency targeted mutagenesis in Arabidopsis thaliana Using zinc finger nucleases. In: Proceedings of National Academy of Science. 2010;107(26):12028-33. https://doi.org/10.1073/pnas.0914991107

Osakabe K, Osakabe Y, Toki S. Site-directed mutagenesis in Arabidopsis using custom-designed Zinc finger nucleases. Proceedings of the National Academy of Science. 2010;103(26): 12034-39. https://doi.org/10.1073/pnas.1000234107

Curtin SJ, Zhang F, Sander JD et al. Targeted mutagenesis of duplicated genes in soybean with Zinc-finger nucleases. Plant Physiology. 2011;156(2):466-73. https://doi.org/10.1104/pp.111.1729 81.

Ran Y, Patron N, Kay P et al. Zinc-Finger Nuclease (ZFN)-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template. Plant Biotechnology J. 2018. https://doi.org/10.1111/pbi.12941

Peer R, Rivlin G, Golobovitch S, Lapidot M, Gal-On A, Vainstein A, Tzfira T, Flaishman MA. Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees. Planta. 2014; 241(4):941-51. https://doi.org/10.1007/s00425-014-2224-x

Hilioti Z, Ganopoulos I, Ajith S et al. A novel arrangement of zinc finger nuclease system for in vivo targeted genome engineering: the tomato LEC1-LIKE4 gene case. Plant Cell Rep. 2016;35:2241-55. https://doi.org/10.1007/s00299-016-2031-x

Townsend JA, Wright DA, FU RJ, Winfrey F, Maeder ML, Joung JK et al. High frequency modification of plant genes using engineered zinc-finger nucleases. Nature. 2009;459:442-45. https:// doi.org/10.1038/nature07845

Gupta M, Dekelver RC, Palta AC, Clifford S, Gopalan JC, Miller S, Novak D, Desloover D, Gachotte JC. Transcriptional activation of Brassica napus ?-ketoacyl-ACP synthase II with an engineered zinc finger protein transcription factor. Plant Biotechnol J. 2012;10:783-91.

Bogdanove AJ. Principles and applications of TAL effectors for plant physiology and metabolism. Current opinion in Plant Biology. 2014;19:99-104.

Chen K, Gao C. Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep. 2014;33:575-83.

Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326:1509-12.

Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186:751-61.

Wen S, Liu H, Li X et al. TALEN-mediated targeted mutagenesis of fatty acid desaturase 2(FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid. Plant Mol Biol. 2018;97:177-85. https://doi.org/10.1007/s11103-018-0731-z

Ma L, Zhu F, Li Z, Zhang J, Li X, Dong J, Wang T. TALEN-based mutagenesis of lipoxygenase LOX3 enhances the storage tolerance of rice (Oryza sativa) seeds. Plos One. 2015;10(12). https://doi.org/10.1371/journal.pone.0143877

Nishizawa-Yokoi A, Cermak T et al. A defect in DNA ligase4 enhances the frequency of TALEN-mediated targeted mutagenesis in rice. Plant Physiology. 2016;170(2):653-66. https://doi.org/10.1104/pp.15.01542

Wang M, Liu Y, Zhang C, Liu J, Liu X, Wang L et al. Gene editing by co-transformation of TALEN and Chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations. Plos One. 2015;10(4):0122755. https://doi.org/10.1371/journal.pone. 0122755

Blanvillain-Baufumé S, Reschke M, Solé M, Auguy F, Doucoure H, Szurek B, Meynard D, Portefaix M, Cunnac S, Guiderdoni E, Boch J, Koebnik R. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol J. 2017;15(3):306-17. https://doi.org/10.1111/pbi.12613

Han J, Xia Z, Liu P et al. TALEN-based editing of TFIIAy5 changes rice response to Xanthomonas oryzae pv. oryzae. Sci Rep. 2020;10:2036. https://doi.org/10.1038/s41598-020-59052-w

Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H, Yu D. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Journal of Biotechnology. 2016;217:90-97.

Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics. 2014;41(2):63-68. https://doi.org/10.1016/j.jgg.2013.12.001

Luo M, Li H, Chakraborty S, Morbitz R et al. Efficient TALEN mediated gene editing in wheat. Plant Biotechnology Journal. 2019; pbi.13169. https://doi.org/10.1111/pbi.13169

Gurushidze M, Hensel G, Hiekel S, Schedel S, Valkov V, Kumlehn J. True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. Plos One. 2014; 9(3):e92046. https://doi.org/10.1371/journal.pone.0092046

Budhagatapalli N, Rutten T, Gurushidze M, Kumlehn J, Hensel G. Targeted modification of gene function exploiting homology-directed repair of TALEN-mediated double-stranded breaks in barley. Genes Genomes Genetics. 2015;5(9):1857-63. https://doi.org/10.1534/g3.115.018762

Gurushidze M, Hiekel S, Otto I, Hensel G, Kumlehn J. Site-directed mutagenesis in barley by expression of TALE nuclease in embryogenic pollen. In: Jankowicz-Cieslak J, Tai T, Kumlehn J, Till B.(eds). Biotechnology for Plant Mutation Breeding. 2017. https://doi.org/10.10 07/978-3-319-45021-6_7

Christian M, Qi Y, Zhang Y, Voytas DF. Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effecter nuclease. G3Bethesda. 2013;33(10):1697-705. https://doi.org/10.1534/g3.113.0 07104.

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffin L. Multplex genome engineering using CRISPR/ Cas system. PubMed Science. 2013;339:819-23.

Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol Pub Med. 2013;31:688.

Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamous S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 and RNA-guided endonuclease. Nat Biotechnol. 2013;31:691-93.

Sugano SS, Osakabe K, Osakabe Y. Crop Breeding Using CRISPR/Cas9. InCrop Improvement Through Microbial Biotechnology 2018 Jan 1 (pp. 451-464). Elsevier. https://doi.org/10.1016/B978-0-444-63987-5.00023-2

Zheng Na, Ting Li, Jaime D, Dittman, Jianbin Su, Riqing Li, Walter G, Deliang P, Steven A, Whitham, Shiming Liu, Bing Yang. CRISPR/Cas9-based gene editing using egg ecll-specific promoters in Arabidopsis and soybean. Front Plant Sci. 2020; https://doi.org/ 10.3389/ fpls.2020. 00800

Han Y, Sue B, Li L, Xiao-Q Z, Jianbin Z, Xiaoyan H, Chengdao L. High efficient and genotype independent barley gene editing based on anther culture. Plant Communications. 2020; https://doi.org/10.1016/j.xplc.2020.100082

Yang H, Wu JJ, Tang T, et al. CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Sci Rep. 2017;7:7489. https://doi.org/10.1038/s41598-017-07871-9

Gao H, Mutti J, Joshua KY et al. Complex trait loci in maize enabled by CRISPR-Cas9 mediated gene insertion. Front Plant Sci. 2020; https://doi.org/10.3389/fpls.2020.00535

Komatsu A, Miki O, Zenpei S, Keiji N. Production of herbicide- sensitive strain to prevent volunteer rice infestation using a CRISPR-Cas9 cytidine deaminase fusion. Front Plant Sci. 2020; https://doi.org/10.3389/fpls.2020.00925

Char Si N, Lee H, Yang B. Use of CRISPR/Cas9 for targeted mutagenesis in sorghum. Current Protocols in Plant Biology. 2020;5(2). https://doi.org/10.1002/cppb.20112

Wu N, Lu Q, Wang P, Zhang Q, Shang J, Qu J, Wang N. Construction and analysis of GmFAD2-1A and GmFAD2-2A soybean fatty acid desaturase mutants based on CRISPR/ Cas9 technology. Int J Mol Sci. 2020; 21(3):1104. https://doi.org/10.3390/ijms21031104

Li C, Nguyen V, Liu J, Fu W, Chen C, Yu K, Cu Y. Mutagenesis of seed storage protein genes in soybean using CRISPR/Cas9. BMC Res Notes. 2019;12:176. https://doi.org/10.1186/s 13104-019-4207-2

Al Amin N, Ahmad N, Wu N, et al. CRISPR- Cas9 mediated targeted disruption of FAD2-2 microsomal omega-6 desaturase in soybean (Glycine max L). BMC Biotechnoloy. 2019; 19(1):9. https://doi.org/10.1186/s12896-019-0501-2

Pankaj B, Evan E, Brittany P, Venkatesh B, Manjo K, Kaveh G, Halim S, Caixia G, Daniel F, Sateesh K. Targeted mutagenesis in wheat microspores using CRISPR/ Cas9. Scientific Reports. 2018; 8:6502

Zhang S, Zhang R, Gao J, Gu T, Song G, Li W, Li D, Li Y, Li G. Highly efficient and heritable Targeted mutagenesis in wheat via the Agrobacterium tumefaciens-mediated CRISPR/ Cas9 system. Int J Mol Sci. 2019; 20(17):4257. https://doi.org/10.3390/ijms20174257

Yu QH, Wang B, Li N et al. CRISPR/Cas9-induced Targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Sci Rep. 2017; 7:11874. https://doi.org/10. 1038/s41598-017-12262-1

Yasumoto S, Sawai S, Lee HJ, Mizutani M, Saito K, Umemoto N, Muranaka T. Targeted genome editing in tetraploid potato through transient TALEN expression by Agrobacterium infection. Plant Biotechnol. 2020;37(2):205-11. https://doi.org/10.5511/plantbiotechnology.20.0525

Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y.Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep. 2015; 5:10342. https://doi.org/10.1038/srep10342.

Young J, Zastrow-Hayes G, Deschamps S et al. CRISPR-Cas9 editing in maize: Systematic evaluation of off-target activity and its relevance in crop improvement. Sci Rep. 2019; 9:6729. https://doi.org/10.1038/s41598-019-43141-6

Liu HJ, Jian L, Xu J, Zhang Q et al. High throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. The Plant Cell. 2020;32(5):1397-1413. https://doi.org/10.1105/tpc.19.00934

Gasparis S, Kala M, Przyborowski M et al. A simple and efficient CRISPR/Cas9 platform for induction of single and multiple heritable mutations in barely (Hordeum vulgare L.). Plant Methods. 2018;14:111. https://doi.org/10.1186/s13007-018-0382-8

Hooghvorst I, López-Cristoffanini C, Nogués S. Efficient knockout of phytoene desaturase gene using CRISPR/Cas9 in melon. Sci Rep. 2019; 9:17077. https://doi.org/10.1038/s41598-019-53710-4

Zeng Z, Han N, Liu C, Buerte B, Zhou C, Chen J, Wang M, Zhang Y, Tang Y, Zhu M, Wang J, Yang Y, Bian H. Functional dissection of HGGT and HPT in barely vitamin E biosynthesis via CRISPR/Cas9-enabled genome editing. Ann Bot. 2020;126(5):929-42. https://doi.org/10.1093/aob/mcaa115

Wang Y, Zong Y, Gao C. Targeted mutagenesis in hexaploid bread wheat using the TALEN and CRISPR/Cas systems. In: Wheat Biotechnology 2017 (pp. 169-185). Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7337-8_11

Lawrenson T, Harwood WA. Creating targeted gene knockouts in barley using CRISPR/Cas9. In: Barley 2019 (pp. 217-232). Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8944-7_14

Milner MJ, Craze M, Hope MS, Wallington EJ. Turning up the temperature on CRISPR: Increased temperature can improve the editing efficiency of wheat using CRISPR/ Cas9. Front Plant Sci. 2020;11:583374. https://doi.org/10.3389/fpls.2020.583374

Zhou H, Bai S, Wang N, Sun X, Zhang Y, Zhu J, Dong C. CRISPR/ Cas9-mediated mutagenesis of MdCNGC2 in apple callus and VIGS-mediated silencing of MdCNGC2 in fruits improve resistance to Botryosphaeria dothidea. Front Plant Sci. 2020; 11:574-77. https://doi.org/10.3389/ fpls.2020.57

Nishitani C, Hirai N, Komori S et al. Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep. 2016;6:31481.https://doi.org/10.1038/srep31481

Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K, Wilson RA. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. Plos One. 2016;11(4):e0154027.

Pompili V, Dalla Costa L, Piazza S, Pindo M, Malnoy M. Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/ Cas9-FLP/FRT-based gene editing system. Plant Biotechnol J. 2020;18(3):845-58.

Sunitha S, Rock CD. CRISPR/ Cas9-mediated targeted mutagenesis of TAS4 and MYBA7 loci in grapevine rootstock 101-14. Transgenic Res. 2020;29:355-67. https://doi.org/10.1007/ s11248-020-00196-w

Liu G, Li J, Godwin ID. Genome editing by CRISPR/ Cas9 in sorghum through biolistic bombardment. In: Zhao ZY, Dahlberg J. (eds) Sorghum. Methods in Molecular Biology. 2019; vol. 1931. https://doi.org/10.1007/978-1-4939-9039-9_12

Lee MH, Lee J, Choi SA et al. Efficient genome editing using CRISPR-Cas9 RNP delivery into cabbage protoplasts via electro-transfection. Plant Biotechnol Rep. 2020;14:695-702. https://doi.org/10.1007/s11816-020-00645-2

Yoon YJ, Venkatesh J, Lee JH, Kim J, Lee HE, Kim DS, Kang BC. Genome editing of eIF4E1 in tomato confers resistance to pepper mottle virus. Front Plant Sci. 2020;11:1098.

Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci. 1996;93:1156-60.

Jinek M et al. A programmable dual-RNA guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337

Yin K, Gao C, Qiu JL. Progress and prospects in genome editing. Nat Plants. 2017;3:171-207.

Borrelli VMG, Brambilla V, Rogowsky P, Marocco A, Lanubile A. The enhancement of plant disease resistance using CRISPR/ Cas9 technology. 2018;9:1245.

Xie K, Minkenberg B, Yang Y. Boosting CRISPR/ Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc.Nat Acad Sci Pub Med. 2015;112:3570-75.

Brooks C, Nekrasov V, Lippman ZB, VanEck J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR associated system. Plant Physiol. 2014;166:1292-97.

Bortesi L, Zhu C, Zischewski J, Perez L, Bassie L, Nadi R, Forni G, Lade SB, Soto E, Jin X et al. Patterns of CRISPR/ Cas9 activity in plants, animals and microbes. J Plant Biotechnol PubMed. 2016;14:2203-16.

Published

01-07-2021

How to Cite

1.
Lamboro A, Song B, Songnan Y, Han X, Mingguo H, Li X, Yao D, Zhang J. Genetic engineering and genome editing techniques in peanut plants. Plant Sci. Today [Internet]. 2021 Jul. 1 [cited 2024 May 7];8(3):528–534. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/1127

Issue

Section

Review Articles

Similar Articles

You may also start an advanced similarity search for this article.