Nanoparticles mediated cadmium toxicity amelioration in plants

Authors

DOI:

https://doi.org/10.14719/pst.2021.8.4.1254

Keywords:

Cadmium, Antioxidants, Nanomaterial, Silicon dioxide, Nano zero valent iron, Nanofertilizer

Abstract

Application of nanoparticles to address various environmental issues; especially heavy metal contaminated soil restoration is of global interest. Indiscriminate usage of phosphate fertilizer and other anthropogenic activities contribute to Cd contamination of soil, resulting in degradation of soil quality and low crop yield. By the virtue of unique physiochemical characteristics, nanoparticles (NPs) are effective enough for heavy metal stress mitigation. This review has focused on Cd uptake, accumulation and toxicity in plants followed by the successful application of different metallic and non metallic NPs for soil Cd decontamination. Positive impact of NPs as plant growth elicitor under Cd stress has been explored here. Various ways of NP application (soil, foliar, hydroponics), uptake, mode of action and effective treatment concentration have been highlighted. We have collected handful information regarding the use of NPs as nanofertilizer and nanopesticides. The negative effects of NPs have not been considered here. More in depth study to be conducted for better illumination on plant - NPs interaction, mobilization mechanism and biological activities. Though this review summarizes few facts among various aspect of NP but can be counted as a supportive documentation for the better use of NPs in environmental protection in future.

Downloads

Download data is not yet available.

References

Chellaiah ER. Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a mini-review. Appl Water Sci. 2018;8:154. https://doi.org/10.1007/s13201- 018-0796-5

Qiao K, Wang F, Liang S, Wang H, Hu Z, Chai T. Improved Cd, Zn and Mn tolerance and reduced Cd accumulation in grains with wheat based cell number regulator TaCNR2. Sci Rep. 2019;9(1):870. https://doi.org/10.1038/s41598-018-37352-6

Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M. 2021. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety. 2021:211. https://doi.org/10.1016/j.ecoenv.2020.111887

Kubier A, Wilkin RT, Pichler T. Cadmium in soils and groundwater: a review. Appl Geochem. 2019;108:1-16. https://doi.org/10.1016/j.apgeochem.2019.104388

Khan MA,Khan S, Khan A, Alam M. Soil contamination with cadmium consequences and remediation using organic amendments. Science of the total environment. 2017;601:591-1605. https://doi.org/10.1016/j.scitotenv.2017.06.030

Jali P, PradhanC, Das AB. Effects of cadmium toxicity in plants: a review article. Sch Acad J Biosci. 2016;4:1074-81. https://doi.org/10.21276/ sajb.2016.4.12.3

Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The Effects of Cadmium Toxicity. Int J Environ Res. Public Health. 2020;17(11):3782. https://doi.org/10.3390/ijerph17113782

Shi Z, Carey M, Meharg C, Williams PN, Signes-Pastor AJ, Triwardhani EA, PandianganFI, Campbell K, Elliott C, Marwa EM et al. Rice grain cadmium concentrations in the global supply-chain. Expo Health. 2020;12:869-76. https://doi.org/10.1007/s12403-020-00349-6

Tinkov AA, Gritsenko VA, Skalnaya MG, Cherkasov SV, Aaseth J, Skalny AV. Gut as a target for cadmium toxicity. Environ Pollut. 2018;235:429–34. https://doi.org/10.1016/j.envpol.2017.12.114

Nishijo M, Nakagawa H, Suwazono Y, Nogawa K, Kido T. Causes of death in patients with itai- itai disease suffering from severe chronic cadmium poisoning: a nested case- control analysis of a follow up study in Japan. BMJ open. 2017;7:e015694. https://doi.org/10.1136/bmjopen-2016-015694

Cui J, Liu T, Li F, Yi J, Liu C, Yu H. Silica nanoparticles alleviate cadmium toxicity in rice cells: Mechanisms and size effects. Environmental Pollution. 2017;228:363–69. https://doi.org/10.1016/j.envpol.2017.05.014

Astm E2456 - 06. Standard Terminol. Relat. to Nanotechnol. 2012;6:5–6. https://doi.org/10.1520/E2456-06R12

Sanzari I, Leone A, Ambrosone A. Nanotechnology in Plant Science: To Make a Long Story Short. Front. Bioeng. Biotechnol. 2019;7:120. https://doi.org/10.3389/fbioe.2019.00120

Khan ZS, Rizwan M, Hafeez M, Ali S, Javed MR, Adrees M. The accumulation of cadmium in wheat (Triticum aestivum) as influenced by zinc oxide nanoparticles and soil moisture conditions. Environ Sci Pollut Res Int. 2019;26:19859–70. https://doi.org/10.1007/s11356-019-05333-5

Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S. Engineered nanomaterials for plant growth and development: A perspective analysis. Science of the Total Environment. 2018;630:1413-35. https://doi.org/10.1016/j.scitotenv.2018.02.313

Hussain B, Lin Q, Hamid Y, Sanaullah M, Di L, Hashmi MLUR, Khan MB, He Z, Yang X Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.) Sci Total Environ. 2020;712:136497.https://doi.org/10.1016/j.scitotenv.2020.136497

Li M, Zhang P, Adeel M, Guo Z, Chetwynd AJ, Ma C, Bai T, Hao Y, Rui Y. Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environ Pollut. 2021;269:116134. https://doi.org/10.1016/j.envpol.2020.116134

Chhipa H. Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters. 2017;15(1):15-22. https://doi.org/10.1007/s10311-016-0600-4

Adeel M, Farooq T, White J, Hao Y, He Z, Rui Y. Carbon-based nanomaterials suppress Tobacco Mosaic Virus (TMV) infection and induce resistance in Nicotiana benthamiana. J Hazard Mater. 2021;404:124167. https://doi.org/10.1016/j.jhazmat.2020.124167

Lombi E, Donner E, Dusinska M, Wickson F. A One Health approach to managing the applications and implications of nanotechnologies in agriculture. Nat Nanotechnol. 2019;14, 523–31. https://doi.org/10.1038/s41565-019-0460-8

Kubier A and Pichler T. Cadmium in groundwater- a synopsis based on a large hydrogeochemical data set. Sci Total Environ. 2019;689:831-42. https://doi.org/10.1016/j.scitotenv.2019.06.499

Bigalke M, Ulrich A, Rehmus A, Keller A. Accumulation of cadmium and uranium in arable soils in Switzerland. Environ Pollut. 2017;221:85-93. https://doi.org/10.1016/j.envpol.2016.11.035

Khan MA, Khan S, Khan A, Alam M. Soil contamination with cadmium, consequences and remediation using organic amendments. Sci Total Environ. 2017;601-02:1591-1605. https://doi.org/10.1016/j.scitotenv.2017.06.030

Satarug S. Cadmium sources and toxicity. Toxics. 2019;7(2):25. https://doi.org/10.3390/toxics7020025

Song Y, Jin L, Wang X. Cadmium absorption and transportation pathways in plants. Int J Phytoremediation. 2017;19(2):133–41.https://doi.org/10.1080/15226514.2016.1207598

Nikoli? N, Zori? L, Cvetkovi? I, Pajevi? S, Borišev M, Orlovi? S, Pilipovi? A. Assessment of cadmium tolerance and phytoextraction ability in young Populus deltoides L. and Populus x euramericana plants through morpho-anatomical and physiological responses to growth in cadmium enriched soil. iforest Biogeoscience and Forestry. 2017;10(3):635–44. https://doi.org/10.3832/ifor2165-010

Li Z, Wu L, Luo Y, Christie P. Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator. Chemosphere. 2018;194:432-40. https://doi.org/10.1016/j.chemosphere.2017.12.005

Sarwar N, Saifulla, Mahi SS, Zia MH, Naeem A, Bibi S, Farid G. Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric. 2010;90(6):925-37. https://doi.org/10.1002/jsfa.3916

Abbas T, Rizwan M, Ali S, Adrees M, Zia-ur-Rehman, M, Qayyum, M.F, Ok, YS, Murtaza, G. Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environ Sci Pollut Res. 2017;25:25668–80. https://doi.org/10.1007/s11356-017-8987-4.

Rizwan M, Ali S, Adrees M, Ibrahim M, Tsang DC, Zia-ur-Rehman M, Zahir ZA, Tack FM, Ok YS. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere. 2017;182:90-105. https://doi.org/10.1016/j.chemosphere.2017.05.013

Raza A, Habib M, Kakavand SN, Zahid Z, Zahra N, Sharif R, Hasanuzzaman M. Phytoremediation of cadmium: physiological, biochemical and molecular mechanisms. Biology. 2020;9:177. https://doi.org/10.3390/biology9070177

Kalai T, Bouthour D, Manai J, Ben-Kaab LB, Gouia H. Salicylic acid alleviates the toxicity of cadmium on seedling growth, amylase and phosphatases activity in germinating barley seeds. Arch Agron Soil Sci. 2016;62:892-904.

Wang M, Yang Y, Chen WP. Manganese, zinc and pH affect cadmium accumulation in rice grain under field conditions in Southern China. J Environ Qual. 2018;47(2):306-11. https://doi.org/10.2134/jeq2017.06.0237

Abbas T, RizwanM, Ali S, Adrees M, Zia-ur-Rehman M, Qayyum MF, Ok YS, Murtaza G. Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environ Sci Pollut Res. 2018;25(26):25668–80. https://doi.org/10.1007/s11356-017-8987-4

Jinadasa N, Collins D, Holford P, Milham PJ and Conroy JP. Reactions to cadmium stress in a cadmium- tolerant variety of cabbage (Brassica oleracea L.): Is cadmium tolerance necessarily desirable in food crops?, Environ Sci Pollut Res., 2016;23:5296–306. https://doi.org/10.1007/s11356-015-5779-6

Zhang F, Liu M, Li Y, Che Y, Xiao Y. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci Toal Environ. 2019;655:1150-58. https://doi.org/10.1016/j.scitotenv.2018.11.317

Kinay A. Effects of cadmium on nicotine, reducing sugars and phenolic contents of Basma tobacco variety. Fresenius Environ Bull. 2018;27:9195-202.

Yamaguchi N, Mori S, Baba K, Kaburagi-Yada S, Arao T, Kitajima N, Hokura A, Terada Y. Cadmium distribution in the root tissues of solanaceous plants with contrasting root-to-shoot Cd translocation efficiencies. Environ Exp Bot. 2011;71(2):198-206. https://doi.org/10.1016/j.envexpbot.2010.12.002

Dutta S, Mitra M, Agarwal P, Mahapatra K, De S, Sett U, Roy S. Oxidative and genotoxic damages in plants in response to heavy etal stress and maintenance of genomic stability. Plant Signaling and Behaviuor. 2018. https://doi.org/10.1080/15592324.2018.1460048

Gutsch A, Sergeant K, Keunen E, Prinsen E, Guerriero G, Renaut J, Hausman JeF, Cuypers A. Does long-term cadmium exposure influence the composition of pectic polysaccharides in the cell wall of Medicago sativa stems? BMC Plant Biol. 2019;19:271. https://doi.org/10.1186/s12870-019-1859-y

Barman F, Majumdar S, Arzoo SH, Kundu R. Genotypic variation among 20 rice cultivars/landraces in response to Cadmium stress grown locally in West Bengal, India. Plant Physiol Biochem. 2020;148:193-206. https://doi.org/10.1016/j.plaphy.2020.01.019

Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayeeba S, Singh K, Sharma D, Sinha AK. Traversing the links between heavy metal stress and plant signaling. Front Plant Sci. 2018;9:12. https://doi.org/10.3389/fpls.2018.00012.PMID:29459874.

Majumdar S, Chakraborty B, Kundu R. Comparative analysis of cadmium-induced stress responses by the aromatic and non-aromatic rice genotypes of West Bengal. Environ Sci Pollut Res Int. 2018;25(19):18451-61. https://doi.org/10.1007/s11356-018-1966-6

Zhao H, Guan J, Liang Q, Zhang X, Hu H, Zhang J. Effect of cadmium stress on growth and physiological characteristics of sassafras seedlings. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-89322-0

Rady MM, Elrys AS, Abo El- Maati MF, Desoky EM. Interplaying role of silicon and proline effectively improve salt and cadmium stress tolerance in Phaseolus vulgaris plant. Plant Physiol Biochem. 2019;139:558-68. https://doi.org/10.1016/j.plaphy.2019.04.025.Epub2019

Küpper H, Parameswaran A, Leitenmaier B, M. Trtílek, Šetlík I. Cadmium-induced inhibition of photo- synthesis and long-term acclimation to cadmium stress in the hyper-accumulator Thlaspi caerulescens, New Phytol. 2007;175(4):655–74. https://doi.org/10.1111/j.1469-8137.2007.02139.x

Noor W, Umar S, Mir MY, Shah D, Majeed G, Hafeez S, Yaqoob S, Gulzar A, Kamali AN. Effect of cadmium on growth, photosynthesis and nitrogen metabolism of crop plants. IBM J Res Dev. 2018;18:100-06.

Tran TA, Popova LP. Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk J Bot. 2013;37(1):1-13. https://doi.org/10.3906/b0t-1112-16

Li S, Yu J, Zhu M, Luan S. Cadmium impairs ion homeostasis by altering K+ and Ca+ channel activities in rice root hair cells. Plant Cell Environ. 2012;35(11):1998-2013. https://doi.org/10.1111/j.1365-3040.2012.02532.x

Ruta LL, Popa VC, Nicolau I, Danet AF, Iordache V, Neagoe AD, Farcasanu IC. Calcium signaling mediates the response to cadmium toxicity in Saccharomyces cerevisiae cells. FEBS Lett. 2014;588 17:3202–12.

Sabrine H, Afif H, Mohamed B, Hamadi B, María HM. Effects of cadmium and copper on pollen germination and fruit set in pea (Pisum sativum L.). Sci Aortic. 2010;125:551-55. http://dx.doi.org/10.1016/j.scienta.2010.05.031

Moharem M, Elkhatib E, Mesalem M. Remediation of chromium and mercury polluted calcareous soils using nanoparticles: Sorption-desorption kinetics, speciation and fractionation. Environ Res. 2019;170:366–73. https://doi.org/10.1016/j.envres.2018.12.054

Cao F, Dai H, Hao PF, Wu F. Silicon regulates the expression of vacuolar H+-pyrophosphatase 1 and decreases cadmium accumulation in rice (Oryza sativa L.). Chemosphere. 2020;240:124907.10.1016/j.chemosphere.2019.124907

Srivastava RK, Pandey P, Rajpoot R, Rani A, Dubey RS. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma. 2014;251(5):1047-65. 10.1007/s00709-014-0614-3

Pal R, Kaur R, Rajwar D, Narayan Rai JP. Induction of non protein thiols and phytohelatins by cadmium in Eichhornia crassipes. Int J Phytoremedition. 2019;21(8):790-98. https://doi.org/10.1080/15226514.2019.1566881

Ghori NH, Ghori T, Hayat MQ et al. Heavy metal stress and responses in plants. Int J Environ Sci Technol. 2019;16:1807-28. https://doi.org/10.1007/s13762-019-02215-8

Park HC, Hwang JE, Jiang Y, Kim YJ, Kim SH, Kim CY, Chuang WS. Functional characterization of two phytochelatin synthases in rice (Oryza sativa cv. Milyang 117) that respond to cadmium stress. Plant Biol. 2019;21(5):854-61. https://doi.org/10.1111/plb.12991

Zhang X, Rui H, Zhang F, Hu Z, Xia Y, Shen Z. Overexpression of a functional Vicia sativa PCS1 homolog increases cadmium tolerance and phytochelatin synthesis in Arabidopsis. Front Plant Sci. 2018;9:107. https://doi.org/10.3389/fpls.2018.00107

Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E. Heavymetal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Reviews of Environmental Contamination and Toxicology. 2014;232:1-44. https://doi.org/10.1007/978-3-319-06746-9_1

Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa NK: Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. Journal of Experimental Botany. 2011;62(15):5727-34.10.1093/jxb/err300

Song J, Feng SJ, Chen J, Zhao WT, Yang ZM. A cadmium stress-responsive gene AtFC1 confers plant tolerance to cadmium toxicity. BMC Plant Biol. 2017;17:187. https://doi.org/10.1186/s12870-017-1141-0

Lata S, Kaur HP, Mishra T. Cadmium bioremediation: a review. Int J Pharm Sci Res. 2019;10(9):4120-28. https://doi.org/10.13040/IJPSR.0975-8232.10(9).4120-28

Li Q, Wang G, Wang Y, Yang D, Guan C, Ji J. Foliar application of salicylic acid alleviate the cadmium toxicity by modulation the reactive oxygen species in potato. Ecotoxicol Environ Saf. 2019;172:317-25. https://doi.org/10.1016/j.ecoenv.2019.01.078

Tajti J, Nemeth E, Glatz G, Janda T, Pál M.Pattern of change in salicylic acid induced protein kinase (SIPK) gene expression and salicylic acid accumulation in wheat under cadmium exposure. Plant Biol. 2019;21(6):1176-80. https://doi.org/10.1111/plb.13032

Paul S, Dey S, Kundu R. Genomics and genetic engineering to develop metal/metalloid stress-tolerant rice. In rice research for quality improvement: Genomics and genetic engineering. 2020:327-56. Springer, Singapore.

Kudo K, Kudo H., Kawai S. Cadmium uptake in barley affected by iron concentration of the medium: Role of phytosiderophores. Soil Science and Plant Nutrition. 2007;53(3):259-66. https://doi.org/10.1111/j.1747-0765.2007.00131.x

Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot. 2009;103(1):1-11. https://doi.org/10.1093/aob/mcn207

Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr. 2006;52(4):464–69. https://doi.org/10.1111/j.1747-0765.2006.00055.x

Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S. Manganese effi- ciency in barley: Identification and characterization of the metal ion transporter HvIRT1. Plant Physiol. 2008;148(1):455–66. https://doi.org/10.1104/pp.108.118851

BarberonM, Dubeaux G, Kolb C, Isono E, Zelazny E, Vert G. 2014. Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proc Natl Acad Sci. USA. 2014;111(22):8293–98. https://doi.org/10.1073/pnas.1402262111

Abedi T, Mojiri A. Cadmium Uptake by Wheat (Triticum aestivum L.): An Overview. Plants (Basel). 2020;14;9(4):500. https://doi.org/10.3390/plants9040500

Lin Y-F, Hassan Z, Talukdar S, Schat H, Aarts MGM. Expression of the ZNT1 zinc transporter from the metal hyper accumulator Noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to Arabidopsis thaliana. PLoS ONE. 2016;11:e0149750. https://doi.org/10.1371/journal.pone.0149750

Chen X, Ouyang Y, Fan Y, Qiu B, Zhang G, Zeng F. The pathway of transmembrane cadmium influx via calcium-permeable channels and its spatial characteristics along rice root. J Exp Bot. 2018;69(21):5279–91. https://doi.org/10.1093/jxb/ery293

Perriguey J, Sterckeman T, MorelJL. Effect of rhizosphere and plant-related factors on the cadmium uptake by maize (Zea mays L.). Environ Exp Bot. 2008;63(3):333–41. https://doi.org/10.1016/j.envexpbot.2007.12.014

Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, PanY, Hu Y, Peng Y, Fu X, Li H, Xia S, Zhao B. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep. 2017;7(1):14438. https://doi.org/10.1038/s41598-017-14832-9

Sui F, Zhao D, Zhu H, Gong Y, Tang Z, Huang XY, Zhang G, Zhao FJ. Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain. J Exp Bot. 2019;70(10):2857–71. https://doi.org/10.1093/jxb/erz093

Thomine S, WangR, Ward JM, Crawford NM, Schroeder JI. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci. USA. 2000;97(9):4991–96. https://doi.org/10.1073/pnas.97.9.4991

Feng S, Tan J, Zhang Y, Liang S, Xiang S, Wang H, Chai T. Isolation and characterization of a novel cadmium-regulated Yellow Stripe-Like transporter (SnYSL3) in Solanum nigrum. Plant Cell Rep. 2017;36:281-96. https://doi.org/10.1007/s00299-016-2079-7

Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S. Nishizawa NK. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J. 2004;39:415–24. https://doi.org/10.1111/j.1365-313X.2004.02146.x

Migocka M, Papierniak A, Kosieradzka A, Posyniak E, Maciaszczyk-Dziubinska E, Biskup R, Garbiec A, Marchewka T. Cucumber metal tolerance protein CsMTP9 is a plasma membrane H+-coupled antiporter involved in the Mn2+and Cd2+efflux from root cells. Plant J. 2015;84:1045–58. https://doi.org/10.1111/tpj.13056

Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 2007;50(2):207–18. https://doi.org/10.1111/j.1365-313X.2007.03044.x

Peng JS, Ding G, Meng S, Yi HY, Gong JM. Enhanced metal tolerance correlates with heterotypic variation in SpMTL, a metallothionein-like protein from the hyperaccumulator Sedum plumbizincicola. Plant Cell Environ. 2017;40(8):1368–78. https://doi.org/10.1111/pce.12929

Kuramata M, Masuya S, Takahashi Y, Kitagawa E, Inoue C, Ishikawa S, Youssefi S, Kusano T. Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation. Plant Cell Physiol. 2009;50(1):107-17. https://doi.org/10.1111/pce.1292910.1093/pcp/pcn175

Luo JS, Huang J, Zeng DL, Peng JS, Zhang GB, MaHL, Guan Y, Yi HY, Fu YL, Han B, Lin HX, Qian Q, Gong JM. A defensin-like protein drives cadmium efflux and allocation in rice. Nat. Commun. 2018;9:645. https://doi.org/10.1038/s41467-018-03088-0

Liu H, Zhao H, Wu L, Liu A, Zhao FJ, Xu W. Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol. 2017;215(2):687–98. https://doi.org/10.1111/nph.14622

Shao JF, Xia J, Yamaji N, Shen RF, MaJF. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter. J Exp Bot. 2018;69(10):2743–52. https://doi.org/10.1093/jxb/ery107

Zhang L, Wu J, Tang Z, Huang XY, Wang X, Salt DE, Zhao FJ. Variation in the BrHMA3 coding region controls natural variation in cadmium accumulation in Brassica rapa vegetables. J Exp Bot. 2019;70(20):5865-78. https://doi.org/10.1093/jxb/erz310

Schneider T, Schellenberg M, Meyer S, Keller F, Gehrig P, Riedel K, Lee Y, Eberl L, Martinoia E. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants. Proteomics. 2009;9:2668-77.https://doi.org/10.1002/pmic.200800806

Pittman JK, Shigaki T, Marshall JL, Morris JL, Cheng NH, Hirschi KD. Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter. Plant Mol Biol. 2004;56:959–71. https://doi.org/10.1007/s11103-004-6446-3

Korenkov V, Park S, Cheng NH, Sreevidya C, Lachmansingh J, Morris J, Hirschi K,Wagner GJ. Enhanced Cd2+ -selective root-tonoplast- transport in tobaccos expressing Arabidopsis cation exchangers. Planta. 2007;225(2):403–11. https://doi.org/10.1007/s00425-006-0352-7

Brunetti P, Zanella L, De PA, Di LD, Cecchetti V, Falasca G. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. J Exp Bot. 2015;66(13):3815–29. https://doi.org/10.1093/jxb/erv185

Oomen RJFJ, Wu J, Lelièvre F, Blanchet S, Richaud P, Barbier-Brygoo H, AartsMGM, Thomine S. Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol. 2008;181(3):637–50. https://doi.org/10.1111/j.1469-8137.2008.02694.x

Wong CKE, Cobbett CS. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol. 2009;181(1):71–78. https://doi.org/10.1111/j.1469-8137.2008.02638.x

Craciun AR, Meyer CL, Chen J, Roosens N, Groodt RD, Hilson P, Verbruggen N. Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. J Exp Bot. 2012;63(11):4179–89. https://doi.org/10.1093/jxb/ers104

Hanikenne M, Talke IN, Haydon MJ, LanzC, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature. 2008;453(7193):391–96. https://doi.org/10.1038/nature06877

Yuan L, Yang S, Liu B, Zhang M, Wu K. Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep. 2012;31(1):67-79. https://doi.org/10.1007/s00299-011-1140-9

Hao X, Zeng M, Wang J, Zeng Z, Dai J, Xie Z, Yang Y, Tian L, Chen L, Li D. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice. Frontiers Plant Sci. 2018;9:476. https://doi.org/10.3389/fpls.2018.00476

Uraguchi S, Kamiya T, Clemens S, Fujiwara T. Characterization of OsLCT1, a cadmium transporter from indica rice (Oryza sativa). Physiol Plant. 2014;151(3):339–47. https://doi.org/10.1111/ppl.12189

Yamaji N, Ma JF. Node-controlled allocation of mineral elements in Poaceae. Curr Opin Plant Biol. 2017;39:18-24. https://doi.org/10.1016/j.pbi.2017.05.002

Subramaniam MN, Goh PS, Lau WJ, Ismail AF. The Role of nanomaterials in conventional and emerging technologies for heavy metal removal: A state-of-the-art review. Nanomaterials. 2019;9(4):625. https://doi.org/10.3390/nano9040625

Baskar V, Meeran S, Shabeer TK, Subramani A, Sruthi, Ali J. Historic review on modern herbal nanogel formulation and delivery methods. Int J Pharm Pharm Sci. 2018;10(10):1–10. https://doi.org/10.22159/ijpps.2018v10i10.23071

Huynh KH, Pham XH, Kim J, Lee SH, Chang R, Jun BH. Synthesis properties and biological applications of metallic alloy nanoparticles. Int J Mol Sci. 2020;21(14):5174. https://doi.org/10.3390/ijms21145174

Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. 2019;12(7):908-31. https://doi.org/10.1016/j.arabjc.2017.05.011

Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv. 2017;24(1):539–57. https://doi.org/10.1080/10717544.2016.1276232

Avellan A, Schwab F, Masion A, Chaurand P, Borschneck D, Vidal V, Rose J, Santaella C, Levard C. Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environ Sci Technol. 2017;51(15):8682–91. https://doi.org/10.1021/acs.est.7b01133

Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol. 2016;50:7290–304. https://doi.org/10.1021/acs.est.6b01897

Sebastian A, Nangia A, Prasad MNV. Cadmium and sodium adsorption properties of magnetite nanoparticles synthesized from Hevea brasiliensis Muell. Arg. bark: Relevance in amelioration of metal stress in rice. J Hazard Mater. 2019;371, 261–72. https://doi.org/10.1016/j.hazmat.2019.03.021

Wang Y, Liu Y, Zhan W, Zheng K, Lian M, Zhang C, Ruan X, Li T. Long-term stabilization of Cd in agricultural soil using mercapto-functionalized nano-silica (MPTS/nano-silica): A three-year field study. Ecotoxicol Environ Saf. 2020;197:110600. https://doi.org/10.1016/j.ecoenv.2020.110600

Cui H, Shi Y, Zhou J, Chu H, Cang L, Zhou D. Effect of different grain sizes of hydroxyapatite on soil heavy metal bioavailability and microbial community composition. Agric Ecosyst Environ. 2018:267:165–73. https://doi.org/10.1016/j.agee.2018.08.017

Guha T, Barman S, Mukherjee A, Kundu R. Nano-scale zero valent iron modulates Fe/Cd transporters and immobilizes soil Cd for production of Cd free rice. Chemosphere. 2020;260:127533. https://doi.org/10.1016/j.chemosphere.2020.127533

Ahmed T, Noman M, Manzoor N, Shahid M, Abdullah M, Ali L, Wang G, Li B. Nanoparticle based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition. Eco Environ Safe. 2021;111829. https://doi.org/10.1016/j.ecoenv.2020.111829

Pulido-Reyes G, Rodea-Palomares I, Das S, Sakthivel TS, Leganes F, Rosal R, Seal S, Fernandez-Pin ? ? as F. Untangling the biological effects of cerium oxide nanoparticles: The Role of Surface Valence States. Sci Rep. 2015, 5, 15613.

Wu H, Tito N, Giraldo JP. Anionic Cerium Oxide Nanoparticles Protect Plant Photosynthesis from Abiotic Stress by Scavenging Reactive Oxygen Species. ACS Nano. 2017;11:11283-97. https://doi.org/10.1021acsnano.7b0523

Gohari G, Mohammadi A, Akbari Ali, Panahirad S, Dadpour MR, Fotopoulos V, Kimura S. Titanium dioxide nanoparticles promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports. 2020;10:912. https://doi.org/10.1038/s41598-020-57794-1

Ogunkunle CO, Gambari H, Agbaje F, Okoro HK, Asogwa NT, Vishwakarma V, Fatoba PO. Effect of Low-Dose Nano Titanium Dioxide Intervention on Cd Uptake and Stress Enzymes Activity in Cd-Stressed Cowpea [Vigna unguiculata (L.) Walp] Plants. Bulletin of Environmental Contamination and Toxicology. 2020;104:619–26. https://doi.org/10.1007/s00128-020-02824-x

JiY, Zhou Y, Ma C, Feng Y, Hao Y, Rui Y, Wu W, Gui X, Le VN, Han Y, Wang Y, Xing B, Liu L, Cao W. Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol. Biochem. 2017;110:82-93. https://doi.org/10.1016/j.plaphy.2016.05.010

Lian J, Zhao L, Wu J, Xiong H, Bao Y, Zeb A, Tang J, Liu W. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere. 2020:239:124794. https://doi.org/10.1016/j.chemosphere.2019.124794

Ahmad P, Allah EA, Hashem A, Sarwat M, Gucel S. Exogenous application of selenium mitigates cadmium toxicity in Brassica juncea (L.)(Czern.) by up-regulating anti-oxidative system and secondary metabolites. J. Plant Growth Regul. 2016;35:936–50. https://doi.org/10.3390/plants9070904

Khan MIR, Nazir F, Asgher M, Per TS, Khan NA. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol. 2015;173:9–18. https://doi.org/10.1016/j.jplph.2014.09.011

Ikram M, Javed B, Raja NI, Mashwani ZUR. Biomedical potential of plant based selenium nanoparticles: a comprehensive review on therapeutic and mechanistic aspects. Int J Nanomedicine. 2021;12(16):249-68. https://doi.org/10.2147/IJN.S295053

Olivera S, Chaitra K, Venkatesh K, Muralidhara HB, Inamuddin, Asiri A, Ahamed MI. Cerium oxide and composites for the removal of toxic metal ions. Environmental Chemistry Letters. 2018;16:1233-46. https://doi.org/10.1007/s10311-018-0747-2

Cao Z, Stowers C, Rossi L, Zhang W, Lombardini L, Ma X. Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr.). Environ Sci Nano. 2017;4:1086–94. https://doi.org/10.1039/C7EN00015D

Rossi L, Sharifan H, Zhang W, Schwab AP. Mutual effects and in planta accumulation of co-existing cerium oxide nanoparticles and cadmium in hydroponically grown soybean (Glycine max (L.) Merr.). Environmental Science Nanos. 2018;5:150-57. https://doi.org/10.1039/C7EN00931C

Wang Y, Wang L, MaC, Wang K, Hao Y, Chen Q, Mo Y, Rui Y. Effects of cerium oxide on rice seedlings as affected by co-exposure of cadmium and salt. Environ Pollut. 2019;252:1087–96. https://doi.org/10.1016/j.envpol.2019.06.007

Rossi L, Weilan Z, Schwab AP, Xingmao Ma. Uptake accumulation and in planta distribution of coexisting cerium oxide nanoparticles and cadmium in Glycine max (L.) Merr. Environmental Science and Technology. 2017;51(21):12815-24. https://doi.org/10.1021/acs.est.7b03363

Wang S, Wang F, Gao S. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ Sci Pollut Res. 2015;22(4):2837–45. https://doi.org/10.1007/s11356-014-3525-0

Hussain B, Lin Q,Hamid Y,Sanaullah M, Di L, Hashmi MLUR, Khan MB, He Z, Yang X . Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.) Sci Total Environ. 2020;10:712:136497. https://doi.org/10.1016/j.scitotenv.2020.136497

Chen R, Zhang C, Zhao Y, Huang Y, Liu Z. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants. Environmental Science Pol Res. 2018;25(3):2361–68. https://doi.org/10.1007/s11356-017-0681-z

Ali S, Rizwan M, Hussain A, Rehman MZU, Ali B, Yousaf B, Wijaya L, Alyemeni MN, Ahmad P. Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.) Plant Physiol Biochem. 2019;140:1-8. https://doi.org/10.1016/j.plaphy.2019.04.041

Li Z and Huang J. Effects of nanoparticle hydroxyapatite on growth and antioxidant system in Pakchoi (Brassica chinensis L.) from cadmium contaminated soil. Journal of Nanomaterials. 2014. http://dx.doi.org/10.1155/2014/470962

He M, Shi H, Zhao X, Yu Y, Qu B. Immobilization of Pb and Cd in contaminated soil using nano-crystallite hydroxyapatite. Procedia Environ Sci. 2013;18:657–65. https://doi.org/10.1016/j.proenv.2013.04.090

QingqingZ, Shuokang W, Chenchen Z, Qing W, Ying Z, Lin N, Shu Xuan L, Wei L. Adsorption and Desorption of Cd on nHAP and Remediation test on Cd Contaminated Soil Environ Eng. 2017;35:179–84.

Dey S, Kundu R, Gopal G, Mukherjee A, Nag A, Paul S. Enhancement of nitrogen assimilation and photosynthetic efficiency by novel iron pulsing technique in Oryza sativa L. var. pankaj. Plant Physiol Biochem. 2019;144:207-21. https://doi.org/10.1016/j.plaphy.2019.09.037

Dey S, Paul S, Nag A, Banerjee R, Gopal G, Mukherjee A, Kundu R. Iron-pulsing, a novel seed invigoration technique to enhance crop yield in rice: A journey from lab to field aiming towards sustainable agriculture. Sci Tot Environ. 2021;769:144671. https://doi.org/10.1016/j/scitotenv.2020.144671

Konate A, He X, Zhang Z, Ma Y, Zhang P, Alugongo GM, Rui Y. Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability. 2017;9(5):790. https://doi.org/10.3390/su9050790

Wan Z, Cho DW, Tsang DCW, Li M, Sun T, Verpoort F. Concurrent adsorption and micro-electrolysis of Cr(VI) by nanoscale zerovalent iron/biochar/Ca-alginate composite. Environ Pollut. 2019;247:410–20. https://doi.org/10.1016/j.envpol.2019.01.047

López-Luna L, Silva-Silva MJ, Martinez-Vargas S, Mijangos-Ricardez OF, González-Chávez MC, Solís-Domínguez FA, Cuevas-Díaz MC. Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior. Sci Total Environ. 2016;565:941-50. https://doi.org/10.1016/j.scitotenv.2016.01.029

Li M, Zhang P, Adeel M, Guo Z, Chetwynd AJ, Ma C, Bai T, Hao Y, Rui Y . Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environ Pollut. 2020;269:116134. https://doi.org/10.1016/j.envpol.2020.116134

Yoon H, Kang YG, Chang YS. Effects of zerovalent iron nanoparticles on photosynthesis and biochemical adaptation of soil grown Arabidopsis thaliana. Nanomaterials. 2019;9(11):1543. https://doi.org/10.3390/nano9111543

Guha T, Gopal G, Chatterjee R, Mukherjee A, Kundu R. Differential growth and metabolic responses induced by nano scale zero valent iron in germinating seeds and seedlings of Oryza sativa L. cv. Swarna. Ecotoxicol Environ Saf. 2020;204:111104. https://doi.org/10.1016/j.ecoenv.2020.111104

Hussain A, Ali S, Rizwan M, Rehman MZU, Qayyum MF, Wang H, Rinklebe J. Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicology and Environmental Safety. 2019;173:156-64. https://doi.org/10.1016/j.ecoenv.2019.01.118

Gong X, Huang D, Liu Y and Zeng G. Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) Gaudich cultivated in cadmium contaminated sediments. Environ Sci Technol. 2017;51, 19:11308-16. https://doi.org/10.1021/acs.est.7b03164

Li J, Hu J, Ma C, Wang Y, Wu C, Huang J, Xing B. Uptake, translocation and physiological effects of magnetic iron oxide (?-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere. 2016;159:326–34. https://doi.org/10.1016/j.chemosphere.2016.05.083

Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, Rehman MZU, Waris AA. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2019;214:269–77. https://doi.org/10.1016/j.chemosphere.2018.09.120

Guha T, Ravikumar KV, Mukherjee A, Kundu R. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindobhog L.). Plant Physiol Biochem. 2018;127:403-13. https://doi.org/10.1016/j.plaphy.2018.04.014

Guha T, Mukherjee, Kundu R. Nano scale zero valent iron (nZVI) priming enhances yield, alters mineral distribution and grain nutrient content of Oryza sativa L. cv. Gobindobhog: A field study. J Plant Growth Regul. 2021;https://doi.org/10.1007/s00344-021-10335-0

Yang J, Hou B, Wang J, Tian B, Bi J, Wang N, Li X, Huang X. Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials. 2019;9(3):424. https://doi.org/10.3390/nano9030424

Mustapha S, Ndamitso MM., Abdulkareem AS, Tijani JO, Shuaib DT, Ajala AO, Mohammed AK. Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review. Appl Water Sci. 2020;10:49. https://doi.org/10.1007/s13201-019-1138-y

Zhang W, Long J, Li J, Zhang M, Xiao G, Ye X, Chang W, Zeng H. Impact of ZnO nanoparticles on Cd toxicity and bioaccumulation in rice (Oryza sativa L.). Environmental Science and Pollution Research. 2019;26(22):23119–28 https://doi.org/10.1007/s11356-019-05551-x

Faizan M, Faraz A, Mir AR, Hayat S. Role of zinc oxide nanoparticles in countering negative effects generated by cadmium in Lycopersicon esculentum. J Plant Growth Regul. 2021;40:101-15. https://doi.org/10.1007/s00344-019-10059-2

Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV. Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis. Plant Physiol Biochem. 2017;110:59-69. https://doi.org/10.1016/j.plaphy.2016.08.022

Bashir A, Rizwan M, Ali S, Adrees M, Rehman MZU, Qayyum MF. Effect of composted organic amendments and zinc oxide nanoparticles on growth and cadmium accumulation by wheat; a life cycle study. Environ Sci Pollut Res. 2020;27(19):23926–36. https://doi.org/10.1007/s11356-020-08739-8

Ali S, Rizwan M, Noureen S, Anwar S, Ali B, Naveed M, Abd Allah, EF, Alqarawi AA, Ahmad P. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environ Sci Pollut Res. 2019;26(11):11288-99. https://doi.org/10.1007/s11356-019-04554-y

Chai M, Shi F, Li R, Liu L, Liu Y, Liu F. Interactive effects of cadmium and carbon nanotubes on the growth and metal accumulation in a halophyte Spartina alterniflora (Poaceae). Plant Growth Regulation. 2013;71(2). https://doi.org/10.1007/s10725-013-9817-4

Gong X, Huang D, Liu Y, Zeng G, Wang R, Xu P, Zhang C, Cheng M, Xue W, Chen S. Role of multiwall carbon nanotubes in phytoremediation: cadmium uptake and oxidative burst in Boehmeria nivea (L.) Gaudich. Environmental Science: Nano. 2019;6:851-62. https://doi.org/10.1039/C8EN00723C

Norizan MN, Moklis MH, Demon SZN, Norhana AH, Samsuri A, Mohamad IS, Knight VF, Abdullah N. Carbon nanotubes: funtionalisation and their application in chemical sensors. Royal Society of Chemistry (RSC)Adv. 2020;12(9):43704-732. https://doi.org/10.1039/d0ra09438b

Cheng J, Sun Z, Li X, Yu Y. Effects of modified nanoscale carbon black on plant growth, root cellular morphogenesis and microbial community in cadmium-contaminated soil. Environ Sci Pollut Res. 2020;27:18423–33. https://doi.org/10.1007/s11356-020-08081-z

Published

26-08-2021 — Updated on 01-10-2021

How to Cite

1.
Chakraborty S, Pal S, Paul S. Nanoparticles mediated cadmium toxicity amelioration in plants. Plant Sci. Today [Internet]. 2021 Oct. 1 [cited 2024 May 7];8(4):897–911. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/1254

Issue

Section

Review Articles