Impact of habitat variability on growth dynamics of Bergenia ciliata (Haw.) Sternb. along an altitudinal gradient in Kashmir Himalaya

Authors

  • Junaid A Magray Reproductive Biology, Genetic Diversity and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar-190 006, J & K, India https://orcid.org/0000-0001-8355-6108
  • Shabir A Zargar Biological Invasion Research Laboratory, Department of Botany, University of Kashmir, Srinagar-190 006, J & K, India https://orcid.org/0000-0002-4758-554X
  • Tajamul Islam Plant Reproductive Biology, Genetic Diversity and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar-190 006, J & K, India https://orcid.org/0000-0003-4037-574X
  • Irshad A Nawchoo Plant Reproductive Biology, Genetic Diversity and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar-190 006, J & K, India https://orcid.org/0000-0002-0755-5071

DOI:

https://doi.org/10.14719/pst.1367

Keywords:

Bergenia ciliate, Himalayan region, Habitat variability, Altitudinal gradient, Phenotypic attributes

Abstract

Bergenia ciliata (Haw.) Sternb. is an important medicinal plant of the Himalayan region. Phenotypic attributes of a particular plant species varies along different altitudes in order to adapt and to overcome the changeable and stressful conditions. A number of environmental factors such as mean temperature, precipitation, soil characteristics, radiation intensity etc. changes with altitudinal gradient and thereby affect the morphological pattern of a plant species. The present study was undertaken to reveal the impact of the elevational gradient and habitat variability on the morphological features of the selected species. Under different environmental conditions the species exhibited enormous variability in its phenotypic traits. The plants were shorter at high altitude site, Gulmarg while the plants of low altitude site, Kashmir University Botanical Garden (KUBG) were taller and more vigorous. A significant decrease in the plant height, inflorescence length, leaf length, leaf breadth and petiole length occurred with increasing altitude. Principal component analysis (PCA) revealed that the habitat of KUBG and Ferozpora (Tangmarg) proved relatively better for the growth of B. ciliata. The regression analysis revealed positive correlation between plant height and traits like inflorescence length, leaf length, leaf number and thus predicting a direct impact of plant height on other traits. Our findings present a comprehensive account on the variability of phenotypic characteristics, in relation to the environmental conditions of this valuable medicinal plant species.

Downloads

Download data is not yet available.

References

Bhakuni DS, Bittner M, Marticorena C, Silval M, Weldt E. Screening of Chilean plants for antimicrobial activity. Lloydia. 1974;37:621.

Ahmad M., Butt, MA, Zhang G, Sultana, S., Tariq A, Zafar M. Bergenia ciliata: a comprehensive review of its traditional uses, phytochemistry, pharmacology and safety. Biomed. Pharmacother. 2018;97:708-21.https://doi.org/10.1016/j.biopha.2017.10.141

Ruby KM, Chauhan R, Sharma S, Dwivedi J. Polypharmacological activities of Bergenia species. Int J Pharm Sci Rev Res. 2012;13(1):100-10.

Pokhrel P, Parajuli RR, Tiwari AK, Banerjee J. A short glimpse on promising pharmacological effects of Begenia ciliata. J App Pharm Sci. 2014;2(1):01-06.

Khan M, Kumar S, Hamal IA, Koul S. Wild edible plants of Sewa catchment area in Northwest Himalaya. J Plant Dev. 2009;1(1-2):1-7.

Jan HA, Sher H, Rahman IU, Hussain W, Abbasi MA, Bussmann RW, Paniagua-Zambrana NY. Bergenia ciliata Sternb. Saxifragaceae. In: Kunwar R.M., Sher H., Bussmann R.W. (eds) Ethnobotany of the Himalayas. Ethnobotany of Mountain Regions. Springer, Cham. 2021; pp. 1-15.https://doi.org/10.1007/978-3-030-45597-2_36-1https://doi.org/10.1007/978-3-030-45597-2_36-1

Sattarian A, Akbarian MR, Zarafshar M, Bruschi P, Fayyaz P. Phenotypic variation and leaf fluctuating asymmetry in natural populations of Parrotia persica (Hamamelidaceae), an endemic species from the Hyrcanian forest (Iran). Acta Bot Mex. 2011;(97):65-81.https://doi.org/10.21829/abm97.2011.251

Becker U, Colling G, Dostal P, Jakobsson A, Matthies D. Local adaptation in the monocarpic perennial Carlina vulgaris at different spatial scales across Europe. Oecologia. 2006;150(3):506-18.https://doi.org/10.1007/s00442-006-0534-9

Sultan SE. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 2000;5(12):537-42.https://doi.org/10.1016/S1360-1385(00)01797-0

Hoffmann AA, Sgrò CM. Climate change and evolutionary adaptation. Nature. 2011;470(7335):479-85.https://doi.org/10.1038/nature09670

Stöcklin J, Kuss P, Pluess AR. Genetic diversity, phenotypic variation and local adaptation in the alpine landscape: case studies with alpine plant species. Bot Helv. 2009;119(2):125-33.https://doi.org/10.1007/s00035-009-0065-1

Pluess AR, Frei E, Kettle CJ, Hahn T, Ghazoul J. Plant growth and fitness of Scabiosa columbaria under climate warming conditions. Plant Ecol Divers. 2011;4(4):379-89.https://doi.org/10.1080/17550874.2011.618848

Ghalambor CK, McKay JK, Carroll SP, Reznick DN. Adaptive versus non?adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol. 2007;21(3):394-407.https://doi.org/10.1111/j.1365-2435.2007.01283.x

Körner C. The use of 'altitude'in ecological research. Trends in ecology and evolution. 2007 Nov 1;22(11):569-74.https://doi.org/10.1016/j.tree.2007.09.006

Ma M, Zhou X, Wang G, Ma Z, Du G. Seasonal dynamics in alpine meadow seed banksalong an altitudinal gradient on the Tibetan Plateau. Plant Soil. 2010;336(1):291-302.https://doi.org/10.1007/s11104-010-0480-5

Phillips NC, Drost DT, Varga WA, Shultz LM. Demography, reproduction and dormancy along altitudinal gradients in three intermountain Allium species with contrasting abundance and distribution. Flora Morphol. 2011;206(2):164-71.https://doi.org/10.1016/j.flora.2010.05.002

Körner C, Neumayer M, Menendez-Riedl SP, Smeets-Scheel A. Functional morphology of mountain plants. Flora. 1989;182(5-6):353-583.https://doi.org/10.1016/S0367-2530(17)30426-7

Farooquee NA, Majila BS, Kala CP. Indigenous knowledge systems and sustainable management of natural resources in a high altitude society in Kumaun Himalaya, India. J Hum Ecol. 2004;16(1):33-42.https://doi.org/10.1080/09709274.2004.11905713

Sinha S, Murugesan T, Maiti K, Gayen JR, Pal B, Pal M, Saha BP. Antibacterial activity of Bergenia ciliata rhizome. Fitoterapia. 2001;72(5):550-52.https://doi.org/10.1016/S0367-326X(00)00322-1

Mazhar-Ul-Islam IA, Usmanghani K, Shahab-ud-Din AA. Antifungal activity evaluation of Bergenia ciliata. Pak J Pharmacol. 2002;19(2):1-6.

Zafar R, Ullah H, Zahoor M, Sadiq A. Isolation of bioactive compounds from Bergenia ciliata (Haw.) Sternb rhizome and their antioxidant and anticholinesterase activities. BMC Complement Altern Med. 2019;19(1):1-13.https://doi.org/10.1186/s12906-019-2679-1

Sultana S, Akram M, Asif HM, Akhtar N. Complementary and alternative approaches to treat peptic ulcer. Int Res J Pharm. 2014;5(5):353-59.https://doi.org/10.7897/2230-8407.050574

Dharmender R, Madhavi T, Reena A, Sheetal A. Simultaneous Quantification of Bergenin, (+)-Catechin, Gallicin and Gallic acid; and quantification of ?-Sitosterol using HPTLC from Bergenia ciliata (Haw.) Sternb. Forma ligulata Yeo (Pasanbheda). Pharm Anal Acta. 2010;1:104.https://doi.org/10.4172/2153-2435.1000104

Chowdhary S, Verma KR. Some peculiar structures in Bergenia species growing in Western Himalaya. Nat Sci. 2010;8(6):100-02.

Islam T, Wani BA, Nissar S, Majid N, Nawchoo IA, Magray JA. Impact of habitat variability on phenotypic attributes of Hypericum perforatum L. along an altitudinal gradient in Kashmir Himalaya. J Adv Appl Sci Res. 2021;3(1):1-6.

Tisdale EW. Vegetational responses following biological control of Hypericum perforatum in Idaho. Northwest Sci. 1976;50:61-75.

Ncube B, Finnie JF, Van Staden J. Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. S Afr J Bot.. 2012;82:11-20.https://doi.org/10.1016/j.sajb.2012.05.009

Kim E, Donohue K. Demographic, developmental and life?history variation across altitude in Erysimum capitatum. J Ecol. 2011;99(5):1237-49.https://doi.org/10.1111/j.1365-2745.2011.01831.x

Abrahamson WG, Gadgil M. Growth form and reproductive effort in goldenrods (Solidago, Compositae). Am Nat. 1973;107(957):651-61.https://doi.org/10.1086/282864

Billings WD, Mooney HA. The ecology of arctic and alpine plants. Biol Rev. 1968;43(4):481-529.https://doi.org/10.1111/j.1469-185X.1968.tb00968.x

Shah NC, Yadav BB. Behaviour of Aconitum hetrophyllum Wall. (Ativisha) at low altitude. J Res Ind Medicine. 1970;5:119-24.

Hickman JC. Environmental unpredictability and plastic energy allocation strategies in the annual Polygonum cascadense (Polygonaceae). J Ecol. 1975;689-701.https://doi.org/10.2307/2258745

Körner C, Cochrane PM. Stomatal responses and water relations of Eucalyptus pauciflora in summer along an altitudinal gradient. Oecologia. 1983;66(3):443-55.https://doi.org/10.1007/BF00378313

Siddique MA, Dar NA, Wafai BA, Beigh YS. Reproductive biology of Podophyllum hexandrum Royle (Podophyllaceae) an important, rare and threatened Himalayan medicinal plant. Proc. Natl Acad Sci India. 1997;10-11.

Körner C, Bannister P, Mark AF. Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia. 1986;69(4):577-88.https://doi.org/10.1007/BF00410366

Published

20-11-2021 — Updated on 01-01-2022

How to Cite

1.
Magray JA, Zargar SA, Islam T, Nawchoo IA. Impact of habitat variability on growth dynamics of Bergenia ciliata (Haw.) Sternb. along an altitudinal gradient in Kashmir Himalaya. Plant Sci. Today [Internet]. 2022 Jan. 1 [cited 2025 Jan. 7];9(1):144–149. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/1367

Issue

Section

Research Articles