Plant growth-promoting endophytic bacteria associated with Halocnemum strobilaceum (Pall.) M.Bieb and their plant beneficial traits

Authors

  • Begali Alikulov 1Department of Genetics and Biotechnology, Samarkand State University, Samarkand 140104, Uzbekistan
  • Vyacheslav Shurigin Department of Microbiology and Biotechnology, National University of Uzbekistan, Tashkent 100174, Uzbekistan https://orcid.org/0000-0002-5495-0373
  • Kakhramon Davranov Department of Enzymology, Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan, Tashkent 100128, Uzbekistan https://orcid.org/0000-0002-4265-5561
  • Zafar Ismailov Department of Genetics and Biotechnology, Samarkand State University, Samarkand 140104, Uzbekistan

DOI:

https://doi.org/10.14719/pst.1605

Keywords:

Halocnemum strobilaceum, Bacterial endophytes, Cotton, Plant growth promotion

Abstract

Halocnemum strobilaceum (Pall.) M.Bieb. is a halophyte desert plant. The plant is known for its antioxidant, antimicrobial, insecticidal and phytoremediation properties. Halocnemum strobilaceum grows in severe salinity and drought conditions and its’ survival can be associated with activity of endophytic bacteria. The aim of the research was to reveal and study plant growth-promoting endophytic bacteria isolated from Halocnemum strobilaceum (Pall.) M.Bieb. The plants were collected from Kyzylkum desert in Uzbekistan. The endophytic bacteria were isolated from Halocnemum strobilaceum (Pall.) M.Bieb. tissues and screened for cotton (Gossypium hirsutum L.) growth-promoting activity. As a result the most active isolates HAST-2, HAST-7, HAST-9, HAST-10 and HAST-17 were selected. The cotton seeds’ inoculation with these bacterial isolates resulted in significant improvement of seeds germination, root and shoot length, and fresh plant weight due to their ability to fix nitrogen, produce indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, siderophores and solubilize phosphates. The chosen isolates were identified using 16S rRNA gene analysis and registered in GenBank (NCBI) as Bacillus megaterium HAST-2, Bacillus aryabhattai HAST-7, Pseudomonas plecoglossicida HAST-9, Pseudomonas putida HAST-10 and Pseudomonas chlororaphis HAST-17. These strains can be used as bio-inoculants to improve the growth of cotton and other crops.

Downloads

Download data is not yet available.

References

Qui XX, Huang ZY, Baskin JM, Baskin CC. Effect of temperature, light and salinity on seed germination and radicle growth of the geographically widespread halophyte shrub Halocnemum strobilaceum. Ann Bot. 2008;101:293-299. https://doi.org/10.1093/aob/mcm047

Mariem S, Mariam K, Mariem BJ, Riadh K. Antioxidant and antimicrobial activities of Halocnemum strobilaceum fractions and their related bioactive molecules identification by GC/MS and HPLC. Res J Recent Sci. 2018;7:1-5

Acheuk F, Lakhdari W, Dahliz A, Abdellaoui K, Moukadem M, Allili S. Toxicity, acethylcolinesterase and glutathione s-transferase effects of Halocnemum strobilaceum crude extract against Tribolium castaneum. A&F. 2018;64:23-33. https://doi.org/10.17707/AgricultForest.64.1.03

Handoussaa H, AbdAllahb W, AbdelMohsenb M. UPLC–ESI-PDA–Msn profiling of phenolics involved in biological activities of the medicinal plant Halocnemum strobilaceum (Pall.). Iran J Pharm Res. 2019;18:422-429

Bobtana F, Elabbar F, Bader N. Evaluation of Halocnemum strobilaceum and Hammada scoparia plants performance for contaminated soil phytoremediation. J Med Chem Sci. 2019;3:126-129. https://doi.org/10.26655/JMCHEMSCI.2019.8.1

Fernando TC, Cruz JA. Profiling and biochemical ?dentification of potential plant growth-promoting endophytic bacteria from Nypa fruticans. Philipp J Crop Sci. 2019;44:77-85. https://doi.org/10.13140/RG.2.2.15641.98408

Egamberdieva D, Shurigin V, Alaylar B, Wirth S, Bellingrath-Kimura SD. Bacterial endophytes from horseradish (Armoracia rusticana G. Gaertn., B.?Mey. ?&? Scherb.) with antimicrobial efficacy against pathogens. Plant Soil Environ. 2020;66:309-316. https://doi.org/10.17221/137/2020-PSE

Shurigin V, Alaylar B, Davranov K, Wirth S, Bellingrath-Kimura SD, Egamberdieva D. Diversity and biological activity of culturable endophytic bacteria associated with marigold (Calendula officinalis L.). AIMS Microbiol. 2021;7(3):336-353. https://doi.org/10.3934/microbiol.2021021

Egamberdieva D, Shurigin V, Gopalakrishnan S, Ram S. Microbial strategies for the improvement of legume production in hostile environments. In: Azooz MM, Ahmad P, editors. Legumes under environmental stress: yield, improvement and adaptations. UK: John Wiley & Sons Ltd; 2015. p. 133-144. https://doi.org/10.1002/9781118917091.ch9

Chung BS, Aslam Z, Kim SW, Kim GG, Kang HS, Ahn JW, et al. A bacterial endophyte, Pseudomonas brassicacearum YC5480, isolated from the root of Artemisia sp. producing antifungal and phytotoxic compounds. Plant Pathol J. 2008;24:461-468. https://doi.org/10.5423/PPJ.2008.24.4.461

Hu HQ, Li XS, He H. Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of capsicum bacterial wilt. Biol Control. 2010;54:359-365. https://doi.org/10.1016/j.biocontrol.2010.06.015

Shurigin V, Egamberdieva D, Li L, Davranov K, Panosyan H, Birkeland N-K, et al. Endophytic bacteria associated with halophyte Seidlitzia rosmarinus Ehrenb. ex Boiss. from arid land of Uzbekistan and their plant beneficial traits. J Arid Land. 2020;12:730-740. https://doi.org/10.1007/s40333-020-0019-4

Bibi F, Strobel GA, Naseer MI, Yasir M, Al-Ghamdi AAK, Azhar EI. Halophytes-associated endophytic and rhizospheric bacteria: diversity, antagonism and metabolite production. Biocontrol Sci Technol. 2018;28:192-213. https://doi.org/10.1080/09583157.2018.1434868

Coombs JT, Franco CM. Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol. 2003;69:5603-5608. https://doi.org/10.1128/AEM.69.9.5603-5608.2003

Fouda A, Eid AM, Elsaied A, El-Belely EF, Barghoth MG, Azab E, et al. Plant growth promoting endophytic bacterial community inhabiting the leaves of Pulicaria incisa (Lam.) DC inherent to arid regions. Plants. 2021;10:76. https://doi.org/10.3390/plants10010076

Sarwar M, Kremer RJ. Determination of bacterially derived auxins using a microplate method. Lett Appl Microbiol. 1995; 20:282-285. https://doi.org/10.1111/j.1472-765X.1995.tb00446.x

Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL. Isolation and characterization of soybean- associated bacteria and their potential for plant growth promotion. Environ Microbiol. 2004;6:1244-1251. https://doi.org/10.1111/j.1462-2920.2004.00658.x.

Mehta S, Nautiyal CS. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol. 2001;43:51-56. https://doi.org/10.1007/s002840010259

Bashan Y, Holguin G, Lifshitz R. Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick BR, Thompson JE, editors. Methods in plant molecular biology and biotechnology. USA, FL, Boca Raton: CRC Press; 1993. p. 331-345

Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987;160:45-46. https://doi.org/10.1016/0003-2697(87)90612-9.

Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, et al. Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils. 2011;47:197-205. https://doi.org/10.1007/s00374-010-0523-3

Stanier RY, Palleroni NJ, Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966;43:159-271. https://doi.org/10.1099/00221287-43-2-159

Palleroni NJ, Doudoroff M. Some properties and taxonomic subdivisions of the genus Pseudomonas. Annu Rev Phytopathol. 1972; 10:73-100. https://doi.org/10.1146/annurev.py.10.090172.000445

MacFaddin JF, editor. Biochemical tests for identification of medical bacteria. 2nd ed. Baltimore: Williams & Wilkins; 1980

Cowan ST, editor. Cowan and Steel’s manual for the identification of medical bacteria. Cambridge: Cambridge University Press; 1974

Veron M. Nutrition et taxonomie des Enterobacteriaceae et bacteries voisines. I. Methods d'etude des auxanogrammes. Ann Microbiol (Paris). 1975;126:267-274.

Ishimaru K, Akagawa-Matsushita M, Muroga K. Vibrio penaeicida sp. nov., a pathogen of kuruma prawns (Penaeus japonicus). Int J Syst Evol Microbiol. 1995;45:134-138. https://doi.org/10.1099/00207713-45-1-134

Dashti AA, Jadaon MM, Abdulsamad AM, Dashti HM. Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. KMJ. 2009;41:117-122

Lane DJ. 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematic. New York: John Wiley and Sons; 1991. p. 115-175

Kruasuwan W, Thamchaipenet A. Diversity of culturable plant growth-promoting bacterial endophytes associated with sugarcane roots and their effect of growth by co-inoculation of diazotrophs and actinomycetes. J Plant Growth Regul. 2016;35:1074-1087. https://doi.org/10.1007/s00344-016-9604-3

Egamberdieva D, Shurigin V, Alaylar B, Ma H, Müller MEH, Wirth S, et al. The effect of biochars and endophytic bacteria on growth and root rot disease incidence of Fusarium infested narrow-leafed lupin (Lupinus angustifolius L.). Microorganisms. 2020;8:496. https://doi.org/10.3390/microorganisms8040496

Leghari SJ, Wahocho NA, Laghari GM, Laghari AH, Bhabhan GM, Talpur KA, et al. Role of nitrogen for plant growth and development: A review. Adv Environ Biol. 2016; 10:209-218

Galloway JN, Cowling EB. Reactive nitrogen and the world: 200 years of change. AMBIO: A Journal of the Human Environment. 2002;31:64-71. https://doi.org/10.1579/0044-7447-31.2.64

Muangthong A, Youpensuk S, Rerkasem B. Isolation and characterisation of endophytic nitrogen fixing bacteria in sugarcane. Trop Life Sci Res. 2015;26:41-51

Gao FK, Dai CC, Liu XZ. Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res. 2010;4:1346-1351

Gao D, Tao Y. Current molecular biologic techniques for characterizing environmental microbial community. Front Environ Sci Eng. 2012;6:82-97. https://doi.org/10.1007/s11783-011-0306-6

Yadav AN. Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. ASMI. 2018;1:01-05. https://doi.org/10.31080/ASMI.2018.01.0044

Glick BR, Penrose DM, Li J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol. 1998;190:63-68. https://doi.org/10.1006/jtbi.1997.0532

Published

22-02-2022 — Updated on 02-04-2022

Versions

How to Cite

1.
Alikulov B, Shurigin V, Davranov K, Ismailov Z. Plant growth-promoting endophytic bacteria associated with Halocnemum strobilaceum (Pall.) M.Bieb and their plant beneficial traits. Plant Sci. Today [Internet]. 2022 Apr. 2 [cited 2024 Apr. 28];8(sp1):44-50. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/1605

Issue

Section

Special Issue: Soil and Phytomicrobiomes for Plant Growth and Soil Fertility