This is an outdated version published on 12-01-2023. Read the most recent version.

A bibliometric analysis of botanical insecticides for Lepidopteran insects over the period 1985-2022

Authors

  • Nadya Sofia Siti Sa'adah Doctoral Program in Departement of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jln. Teknika Selatan, Sekip Utara, Sleman, 55281, Special Region of Yogyakarta, Indonesia https://orcid.org/0000-0003-1378-7212
  • Sukirno Sukirno Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jln. Teknika Selatan, Sekip Utara, Sleman, 55281, Special Region of Yogyakarta, Indonesia https://orcid.org/0000-0003-3708-9363
  • Hipny Alwandri Graduate Student, Departement of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jln. Teknika Selatan, Sekip Utara, Sleman, 55281, Special Region of Yogyakarta, Indonesia https://orcid.org/0000-0002-4656-2338
  • Tri Rini Nuringtyas Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jln. Teknika Selatan, Sekip Utara, Sleman, 55281, Special Region of Yogyakarta, Indonesia https://orcid.org/0000-0002-8011-8396
  • Laurentius Hartanto Nugroho Departement of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jln. Teknika Selatan, Sekip Utara, Sleman, 55281, Special Region of Yogyakarta, Indonesia https://orcid.org/0000-0001-7887-6860

DOI:

https://doi.org/10.14719/pst.1997

Keywords:

Bibliometric analysis, botanical insecticide, Lepidoptera, plant insecticide, vosviewer

Abstract

Lepidoptera is an economically important insect pest that attacks many commercially important crops. Synthetic insecticides are currently most extensively utilized to control this pest. The use of massive doses of synthetic pesticides has resulted in resistance and resurgence. Therefore, developing an environmentally acceptable technique for controlling insect pest populations, such as using natural plant components as insecticides, can assist in mitigating the negative impacts of synthetic pesticides. Plant pesticides or botanical insecticides are becoming increasingly popular. This bibliometric research aimed to demonstrate the growth, awareness, importance, international cooperation or collaboration and knowledge gaps in developing synthetic botanical insect pesticides in the future. Information used in this research was culled from 138 scientific papers (Scopus database) and analyzed using VOSviewer 1.6.17. Descriptive statistics was used to identify the rate of botanical insecticide development in controlling these insect pests by analyzing the contributing documents by year, country and bibliometric analysis of country and keyword co-occurrence. The research started in 1985 and exponential growth occurred after 2006. In addition, the trend peaked in 2020 and is currently being maintained. The scientific papers were distributed from 41 countries, with Brazil being the most productive. The bibliographical network shows the relatedness of information about keywords between countries. The results obtained can help recognize existing knowledge gaps that need to be addressed and considered in developing botanical insecticides to control this lepidopteran pest.

Downloads

Download data is not yet available.

References

Nègre V, Hôtelier T, Volkoff AN, Gimenez S, Cousserans F, Mita K, et al. SPODOBASE: An EST database for the lepidopteran crop pest Spodoptera. BMC Bioinformatics. 2006;7. https://doi.org/10.1186/1471-2105-7-322

Ahmad M, Sayyed AH, Saleem MA, Ahmad M. Evidence for field evolved resistance to newer insecticides in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Crop Prot. 2008;27(10):1367-72. https://doi.org/10.1016/j.cropro.2008.05.003

Sharma P, Nain V, Lakhanpaul S, Kumar PA. Synergistic activity between Bacillus thuringiensis Cry1Ab and Cry1Ac toxins against maize stem borer (Chilo partellus Swinhoe). Lett Appl Microbiol. 2010;51(1):42-47. https://doi.org/10.1111/j.1472-765X.2010.02856.x

Zalucki MP, Shabbir A, Silva R, Adamson D, Liu SS, Furlong MJ. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): Just how long is a piece of string?. J Econ Entomol. 2012;105(4):1115-29. https://doi.org/10.1603/EC12107

Rana S, Rajurkar AB, Kumar KK, Mohankumar S. Comparative analysis of chitin synthase A dsRNA mediated RNA interference for management of crop pests of different families of Lepidoptera. Front Plant Sci. 2020;11(April):1-12. https://doi.org/10.3389/fpls.2020.00427

Sharma AN, Sharma VK. Studies on the economic injury level in maize, Zea mays L. to stem borer, Chilo partellus (swinhoe) (pyralidae: Lepidoptera) in india. Trop Pest Manag. 1987;33(1):44-51. https://doi.org/10.1080/09670878709371114

Kfir R. Biology and management of economically important Lepidopteran cereal stem borer in Africa. Annu Rev Entomol. 2002; 47(1)701-31. https://doi.org/10.1146/annurev.ento.47.091201.145254

Margni M, Rossier D, Crettaz P, Jolliet O. Life cycle impact assessment of pesticides on human health and ecosystems. Agric Ecosyst Environ. 2002;93(1-3):379-92. https://doi.org/10.1016/S0167-8809(01)00336-X

Sinha B. Global biopesticide research trends: A bibliometric assessment. Indian J Agric Sci. 2012;82(2):95-101.

Smith HH, Idris OA, Maboeta MS. Global Trends of Green Pesticide Research from 1994 to 2019: A Bibliometric Analysis. J Toxicol. 2021;2021. https://doi.org/10.1155/2021/6637516

Walia S, Saha S, Tripathi V, Sharma KK. Phytochemical biopesticides: some recent developments. Phytochem Rev. 2017;16(5):989-1007. https://doi.org/10.1007/s11101-017-9512-6

Isman MB. Botanical insecticides, deterrents and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol. 2006;51:45-66. https://doi: 10.1146/annurev.ento.51.110104.151146

Jiménez-Durán A, Barrera-Cortés J, Lina-García LP, Santillan R, Soto-Hernández RM, Ramos-Valdivia AC et al. Biological activity of phytochemicals from agricultural wastes and weeds on Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Sustain. 2021;13(24):13896. https://doi.org/10.3390/su132413896

Shyam-Sundar N, Sivanesh H, Karthi S, Thanigaivel A, Stanley-Raja V, Chanthini KMP et al. Developmental response of Spodoptera litura Fab in response to plant extract of Desmostachya bipinnata (L.) and its effect on non-target organism, earthworm (Eisenia fetida). Environ Sci Pollut Res. 2021;28(7):7870-82. https://doi.org/10.1007/s11356-020-11015-4

Spochacz M, Chowa?ski S, Szymczak-Cendlak M, Marciniak P, Lelario F, Salvia R et al. Solanum nigrum extract and solasonine affected hemolymph metabolites and ultrastructure of the fat body and the midgut in Galleria mellonella. Toxins (Basel). 2021;13(9):1-14. https://doi.org/10.3390/toxins13090617

Essoung FRE, Tadjong AT, Chhabra SC, Mohamed SA, Hassanali A. Repellence and fumigant toxicity of essential oils of Ocimum gratissimum and Ocimum kilimandscharicum on Tuta absoluta (Lepidoptera: Gelechiidae). Environ Sci Pollut Res. 2020;27(30):37963-76. https://doi.org/10.1007/s11356-020-09773-2

Elisha IL, Viljoen A. Trends in Rooibos Tea (Aspalathus linearis) research (1994-2018): A scientometric assessment. South African J Bot [Internet]. 2021;137:159-70. Available from: https://doi.org/10.1016/j.sajb.2020.10.004

Musa TH, Musa IH, Osman W, Campbell MC, Musa HH. A bibliometric analysis of global scientific research output on Gum Arabic. Bioact Carbohydrates Diet Fibre [Internet]. 2021;25(May 2020):100254. Available from: https://doi.org/10.1016/j.bcdf.2020.100254

Arifah FH, Nugroho AE, Rohman A, Sujarwo W. A bibliometric analysis of preclinical trials of Andrographis paniculata (Burm.f.) Nees in diabetes mellitus. South African J Bot [Internet]. 2021;000. Available from: https://doi.org/10.1016/j.sajb.2021.12.011

Sweileh WM. Global research trends of World Health Organization’s top eight emerging pathogens. Global Health. 2017;13(1):1-19. https://doi.org/10.1186/s12992-017-0233-9

Hernández-Rosas F, Figueroa-Rodríguez KA, García-Pacheco LA, Velasco-Velasco J, Sangerman-Jarquín DM. Microorganisms and biological pest control: An analysis based on a bibliometric review. Agronomy. 2020;10(11):1-14. https://doi.org/10.3390/agronomy10111808

Arnason JT, Philogène BJR, Donskov N, Hudon M, McDougall C, Fortier G et al. Antifeedant and insecticidal properties of azadirachtin to the European Corn Borer, Ostrinia nubilalis. Entomol Exp Appl. 1985;38(1):29-34. https://doi.org/10.1111/j.1570-7458.1985.tb03494.x

Ewete FK, Arnason JT, Larson J, Philogène BJR. Biological activities of extracts from traditionally used Nigerian plants against the European corn borer, Ostrinia nubilalis. Entomol Exp Appl. 1996;80(3):531-37. https://doi.org/10.1111/j.1570-7458.1996.tb00969.x

Sundaram KMS, Sundaram A, Curry J, Sloane L. Dissipation kinetics of azadirachtin in some forest matrices and its systemic translocation in conifers for spruce budworm control. J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes. 1997;32(5):803-29. https://doi.org/10.1080/03601239709373114

Wheeler GS, Slansky F, Yu SJ. Food consumption, utilization and detoxification enzyme activity of larvae of three polyphagous noctuid moth species when fed the botanical insecticide rotenone. Entomol Exp Appl. 2001;98(2):225-39. https://doi.org/10.1046/j.1570-7458.2001.00778.x

Martinez SS, Van Emden HF. Growth disruption, abnormalities and mortality of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) caused by azadirachtin. Neotrop Entomol. 2001;30(1):113-25. https://doi.org/10.1590/S1519-566X2001000100017

Breuer M, Hoste B, De Loof A, Naqvi SNH. Effect of Melia azedarach extract on the activity of NADPH-cytochrome c reductase and cholinesterase in insects. Pestic Biochem Physiol. 2003;76(3):99-103. https://doi.org/10.1016/S0048-3575(03)00067-1

Leatemia JA, Isman MB. Toxicity and antifeedant activity of crude seed extracts of Annona squamosa (Annonaceae) against lepidopteran pests and natural enemies. Int J Trop Insect Sci. 2004;24(2):150-58. https://doi.org/10.1080/096708704100001691821

Nascimento IR, Murata AT, Bortoli SA, Lopes LMX. Insecticidal activity of chemical constituents from Aristolochia pubescens against Anticarsia gemmatalis larvae. Pest Manag Sci. 2004;60(4):413-46. https://doi.org/10.1002/ps.805

Pavela R, Bárnet M. Systemic applications of neem in the control of Cameraria ohridella, a pest of horse chestnut (Aesculus hippocastanum). Phytoparasitica. 2005;33(1):49-56. https://doi.org/10.1007/BF02980924

Liu TX, Liu SS. Varying effects of two lots of the botanical insecticide Neemix® 4.5 on immature survival and adult oviposition behavior of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Int J Pest Manag. 2005;51(1):31-35. https://doi.org/10.1080/09670870400028268

Charleston DS, Kfir R, Vet LEM, Dicke M. Behavioural responses of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) to extracts derived from Melia azedarach and Azadirachta indica. Bull Entomol Res. 2005;95(5):457-65. https://doi.org/10.1079/BER2005377

Nathan SS, Kalaivani K. Combined effects of azadirachtin and nucleopolyhedrovirus ( SpltNPV ) on Spodoptera litura Fabricius ( Lepidoptera?: Noctuidae ) larvae. 2006;39:96-104. https://doi.org/10.1016/j.biocontrol.2006.06.013

Weihman SW, Liburd OE. Mating disruption and attract-and-kill as reduced-risk strategies for control of grape root borer Vitacea polistiformis (Lepidoptera: Sesiidae) in Florida vineyards. Florida Entomol. 2006;89(2):245-50. https://doi.org/10.1653/0015-4040(2006)89[245:MDAAAR]2.0.CO;2

Khosravi R, Sendi J, Ghadamyari M. Effect of Artemisia annua L. on deterrence and nutritional efficiency of lesser mulberry pyralid (Glyphodes pylolais walker) (Lepidoptera: Pyralidae). J Plant Prot Res. 2010;50(4):423-28. DOI: 10.2478/v10045-010-0071-8

Ntonifor NN, Mueller-Harvey I, Van Emden HF, Brown RH. Antifeedant activities of crude seed extracts of tropical African spices against Spodoptera littoralis (Lepidoptera: Noctuidae). Int J Trop Insect Sci. 2006;26(2):78-85. https://doi.org/10.1079/IJT2006104

Huang Z, Shi P, Chen G, Du J. Physiology, biochemistry and topology: Effects of azadirachtin on hemolymph protein expression in Ostrinia furnacalis (Lepidoptera: Crambidae). Ann Entomol Soc Am. 2007;100(2):245-50. https://doi.org/10.1603/0013-8746(2007)100[245:EOAOHP]2.0.CO;2

Yi CG, Kwon M, Hieu TT, Jang YS, Ahn YJ. Fumigant Toxicity of Plant Essential Oils to Plutella xylostella (Lepidoptera: Yponomeutidae) and Cotesia glomerata (Hymenoptera: Braconidae). J Asia Pac Entomol. 2007;10(2):157-63. https://doi.org/10.1016/S1226-8615(08)60347-7

Kamaraj C, Rahuman AA, Bagavan A. Screening for antifeedant and larvicidal activity of plant extracts against Helicoverpa armigera (Hübner), Sylepta derogata (F.) and Anopheles stephensi (Liston). Parasitol Res. 2008;103(6):1361-68. https://doi.org/10.1007/s00436-008-1142-x

Pavela R. Effectiveness of some botanical insecticides against Spodoptera littoralis Boisduvala (Lepidoptera: Noctudiae), Myzus persicae Sulzer (Hemiptera: Aphididae) and Tetranychus urticae Koch (Acari: Tetranychidae). Plant Prot Sci. 2009;45(4):161-67. https://doi.org/10.17221/16/2009-PPS

Bermúdez-Torres K, Martínez Herrera J, Figueroa Brito R, Wink M, Legal L. Activity of quinolizidine alkaloids from three Mexican Lupinus against the lepidopteran crop pest Spodoptera frugiperda. BioControl. 2009;54(3):459-66. https://doi.org/10.1007/s10526-008-9180-y

de Cássia Seffrin R, Shikano I, Akhtar Y, Isman MB. Effects of crude seed extracts of Annona atemoya and Annona squamosa L. against the cabbage looper, Trichoplusia ni in the laboratory and greenhouse. Crop Prot. 2010;29(1):20-24. https://doi.org/10.1016/j.cropro.2009.09.003

Shanker C, Uthamasamy S. Evaluation of some medicinal plants and their mixtures for their bio-efficacy against crop and stored product pests. Arch Phytopathol Plant Prot. 2010;43(2):140-48. https://doi.org/10.1080/03235400801940126

Qi Z, Shi B, Hu Z, Zhang Y, Wu W. Ultrastructural effects of Celangulin V on midgut cells of the oriental armyworm, Mythimna separata walker (Lepidoptera: Noctuidae). Ecotoxicol Environ Saf [Internet]. 2011;74(3):439-44. Available from: http://dx.doi.org/10.1016/j.ecoenv.2010.10.004

Villafañe E, Tolosa D, Bardón A, Neske A. Toxic effects of Citrus aurantium and C. limon essential oils on Spodoptera frugiperda (lepidoptera: noctuidae). Nat Prod Commun. 2011;6(9):1389-92. https://doi.org/10.1177/1934578X1100600941

Neto Bandeira G, Augusto Gomes da Camara C, Martins de Moraes M, Barros R, Muhammad S, Akhtar Y. Insecticidal activity of Muntingia calabura extracts against larvae and pupae of diamondback, Plutella xylostella (Lepidoptera, Plutellidae). J King Saud Univ - Sci [Internet]. 2013;25(1):83-89. Available from: http://dx.doi.org/10.1016/j.jksus.2012.08.002

Dong X, Zhai Y, Hu M, Zhong G, Huang W, Zheng Z et al. Proteomic and Properties Analysis of Botanical Insecticide Rhodojaponin III-Induced Response of the Diamondback Moth, Plutella xyllostella (L.). PLoS One. 2013;8(7). https://doi.org/10.1371/journal.pone.0067723

Alves DS, Oliveira DF, Carvalho GA, Carvalho D, Souza LP, Lasmar O. Selection of active plant extracts against the coffee leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae). Rev Bras Plantas Med. 2013;15(3):352-62. https://doi.org/10.1590/S1516-05722013000300007

Shannag HK, Capinera JL, Freihat NM. Effects of neem-based insecticides on consumption and utilization of food in larvae of Spodoptera eridania (lepidoptera: Noctuidae). J Insect Sci. 2015;15(1):1-6. https://doi.org/10.1093/jisesa/iev134

Poonsri W, Pluempanupat W, Chitchirachan P, Bullangpoti V, Koul O. Insecticidal alkanes from Bauhinia scandens var. horsfieldii against Plutella xylostella L. (Lepidoptera: Plutellidae). Ind Crops Prod [Internet]. 2015;65:170-74. Available from: http://dx.doi.org/10.1016/j.indcrop.2014.11.040

Vázquez-Covarrubias DA, Jiménez-Pérez A, Castrejón-Ayala F, Figueroa-Brito R, Belmont RM. Effects of five species of chenopodiaceae on the development and reproductive potential of Copitarsia decolora (Lepidoptera: Noctuidae). Florida Entomol. 2015;98(1):80-85. https://doi.org/10.1653/024.098.0114

Ansante TF, do Prado Ribeiro L, Bicalho KU, Fernandes JB, das Graças Fernandes da Silva MF, Vieira PC et al. Secondary metabolites from Neotropical Annonaceae: Screening, bioguided fractionation and toxicity to Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Ind Crops Prod. 2015;74:969-76. https://doi.org/10.1016/j.indcrop.2015.05.058

Tak JH, Jovel E, Isman MB. Contact, fumigant and cytotoxic activities of thyme and lemongrass essential oils against larvae and an ovarian cell line of the cabbage looper, Trichoplusiani. J Pest Sci (2004) [Internet]. 2016;89(1):183-93. Available from: http://dx.doi.org/10.1007/s10340-015-0655-1

Krinski D, Foerster LA, Deschamps C. Ovicidal effect of the essential oils from 18 Brazilian Piper species: controlling Anticarsia gemmatalis (Lepidoptera, Erebidae) at the initial stage of development. Acta Sci - Agron. 2018;40(1). Doi: 10.4025/actasciagron.v40i1.35273

Shao J, Zhang Y, Zhu Z, Chen X, He F. Process optimization and insecticidal activity of alkaloids from the root bark of Catalpa ovata G. Don by response surface methodology. Trop J Pharm Res. 2018;17(5):843-48. 10.4314/tjpr.v17i5.14 https://doi.org/10.4314/tjpr.v17i5.14

Lina EC, Yulianti N, Ernis G, Arneti, Nelly N. Storage temperature of botanical insecticide mixture formulations and its activity againsts Crocidolomia pavonana (F.) (lepidoptera: Crambidae). Agrivita. 2018;40(3):498-505. https://doi.org/10.17503/agrivita.v40i3.1296

Junhirun P, Pluempanupat W, Yooboon T, Ruttanaphan T, Koul O, Bullangpoti V. The study of isolated alkane compounds and crude extracts from Sphagneticola trilobata (Asterales: Asteraceae) as a candidate botanical insecticide for lepidopteran larvae. J Econ Entomol. 2018;111(6):2699-705. https://doi.org/10.1093/jee/toy246

Che Z, Tian Y, Yang J, Liu S, Jiang J, Hu M et al. Screening of Insecticidal Activity of Podophyllotoxin Analogues against Athetis dissimilis. Nat Prod Commun. 2019;14(1):117-20. https://doi.org/10.1177/1934578X1901400131

de Leão RM, Cruz JVS, Ramos VM, de Almeida VT, Gorni PH, Camargo RDS et al. Secondary metabolites of Asclepias curassavica (Apocynaceae) and its effects on food preference and mortality of Spodoptera frugiperda (Lepidoptera: Noctuidae). Emirates J Food Agric. 2020;32(8):583-90. https://doi.org/10.9755/ejfa.2020.v32.i8.2135

Magierowicz K, Górska-Drabik E, Golan K. Effects of plant extracts and essential oils on the behavior of Acrobasis advenella (Zinck.) caterpillars and females. J Plant Dis Prot [Internet]. 2020;127(1):63-71. Available from: https://doi.org/10.1007/s41348-019-00275-z

Chen Y, Guo L, Wan N, Ji X, Zhang H, Jiang J. Transcriptomic analysis of the interactions between the Spodoptera exigua midgut and nucleopolyhedrovirus. Pestic Biochem Physiol [Internet]. 2020;163(July 2019):241-53. Available from: https://doi.org/10.1016/j.pestbp.2019.11.020

Duarte JP, Redaelli LR, Silva CE, Jahnke SM. Effect of Azadirachta indica (Sapindales: Meliaceae) oil on the immune system of Spodoptera frugiperda (Lepidoptera: Noctuidae) immatures. J Insect Sci. 2020;20(3):1-6. https://doi.org/10.1093/jisesa/ieaa048

Ammar S, Noui H, Djamel S, Madani S, Maggi F, Bruno M et al. Essential oils from three Algerian medicinal plants (Artemisia campestris, Pulicaria arabica and Saccocalyx satureioides) as new botanical insecticides? Environ Sci Pollut Res. 2020;27(21):26594-604. https://doi.org/10.1007/s11356-020-09064-w

Alves DS, Machado ART, Campos VAC, Oliveira DF, Carvalho GA. Selection of annonaceae species for the control of Spodoptera frugiperda (Lepidoptera: Noctuidae) and metabolic profiling of Duguetia lanceolata using nuclear magnetic resonance spectroscopy. J Econ Entomol. 2016;109(2):649-59. https://doi.org/10.1093/jee/tov396

Benelli G, Pavoni L, Zeni V, Ricciardi R, Cosci F, Cacopardo G et al. Developing a highly stable Carlina acaulis essential oil nanoemulsion for managing Lobesia Botrana. Nanomaterials. 2020;10(9):1-15. https://doi.org/10.3390/nano10091867

Quiroz-Carreño S, Pastene-Navarrete E, Espinoza-Pinochet C, Muñoz-Núñez E, Devotto-Moreno L, Céspedes-Acuña CL et al. Assessment of insecticidal activity of benzylisoquinoline alkaloids from Chilean Rhamnaceae plants against fruit-fly Drosophila melanogaster and the lepidopteran crop pest Cydia pomonella. Molecules. 2020;25(21). https://doi.org/10.3390/molecules25215094

Cruz GS, Wanderley-Teixeira V, Oliveira J V, Lopes FSC, Barbosa DRS, Breda MO et al. Sublethal effects of essential oils from Eucalyptus staigeriana (Myrtales: Myrtaceae), Ocimum gratissimum (Lamiales: Laminaceae) and Foeniculum vulgare (Apiales: Apiaceae) on the biology of Spodoptera frugiperda (Lepidoptera: Noctuidae). J Econ Entomol. 2016;109(2):660-66. https://doi.org/10.1093/jee/tow005

dos santos ACV, Fernandes CC, Lopes LM, de Sousa AH. Inseticidal oils from Amazon plants in control of fall armyworm. Rev Caatinga. 2016;29(3):642-47. https://doi.org/10.1590/1983-21252016v29n314rc

Khan S, Nji C, Taning T. Insecticidal activity of plant-derived extracts against different economically important pest insects. 2017;113-24. https://doi.org/10.1007/s12600-017-0569-y

Ansante TF, Ribeiro LP, Vendramim JD. Acute and chronic toxicities of an annonin-based commercial bioinsecticide and a joint mixture with a limonoid-based formulation to the fall armyworm. Neotrop Entomol. 2017;46(2):216-22. https://doi.org/10.1007/s13744-016-0448-0

Martínez AM, Aguado-Pedraza AJ, Viñuela E, Rodríguez-Enríquez CL, Lobit P, Gómez B et al. Effects of ethanolic extracts of Argemone ochroleuca (Papaveraceae) on the food consumption and development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Florida Entomol. 2017;100(2):339-45. https://doi.org/10.1653/024.100.0232

Zhong B, Lv C, Qin W. Effectiveness of the botanical insecticide azadirachtin against Tirathaba rufivena (Lepidoptera: Pyralidae). Florida Entomol. 2017;100(2):215-18. https://doi.org/10.1653/024.100.0215

Li Z, Huang R, Li W, Cheng D, Mao R, Zhang Z. Addition of cinnamon oil improves toxicity of rotenone to Spodoptera litura (Lepidoptera: Noctuidae) larvae. Florida Entomol. 2017;100(3):515-21. https://doi.org/10.1653/024.100.0304

Song C, Zhao J, Zheng R, Hao C, Yan X. Chemical composition and bioactivities of thirteen non-host plant essential oils against Plutella xylostella L. (Lepidoptera: Plutellidae). J Asia Pac Entomol [Internet]. 2022;25(2):101881. Available from: https://doi.org/10.1016/j.aspen.2022.101881

Tanaskovi? S, Gvozdenac S, Kolarov R, Bursi? V, Konstantinovi? B, Prvulovi? D. Antifeeding and insecticidal activity of Ailanthus altissima and Morus alba extracts against gipsy moth (Lymantria dispar (L.), lepidoptera, lymantridae) larvae under laboratory conditions. J Entomol Res Soc. 2021;23(3):197-212. 10.51963/jers.v23i3.1989 https://doi.org/10.51963/jers.v23i3.1989

Shu B, Yu H, Li Y, Zhong H, Li X, Cao L et al. Identification of azadirachtin responsive genes in Spodoptera frugiperda larvae based on RNA-seq. Pestic Biochem Physiol [Internet]. 2021;172(November 2020):104745. Available from: https://doi.org/10.1016/j.pestbp.2020.104745

Bader A, Omran Z, Al-Asmari AI, Santoro V, De Tommasi N, D’Ambola M et al. Systematic phytochemical screening of different organs of Calotropis procera and the ovicidal effect of their extracts to the foodstuff pest Cadra cautella. Molecules. 2021;26(4). https://doi.org/10.3390/molecules26040905

Sun Z, Xue L, Li Y, Cui G, Sun R, Hu M et al. Rotenone-induced necrosis in insect cells via the cytoplasmic membrane damage and mitochondrial dysfunction. Pestic Biochem Physiol [Internet]. 2021;173(February):104801. Available from: https://doi.org/10.1016/j.pestbp.2021.104801

Santos AA, Wanderley-Teixeira V, dos Santos Cruz G, de Andrade Dutra K, do Amaral Ferraz Navarro DM, de Oliveira JV et al. Essential oil toxicity on biological and reproductive parameters of Alabama argillacea (Hübner) (Lepidoptera: Erebidae). Acta Histochem. 2021;123(4). https://doi.org/10.1016/j.acthis.2021.151714

Kosti? I, Lazarevi? J, Jovanovi? DŠ, Kosti? M, Markovi? T, Milanovi? S. Potential of essential oils from anise, dill and fennel seeds for the gypsy moth control. Plants. 2021;10(10). https://doi.org/10.3390/plants10102194

Palmer AL, Sesé A, Montano JJ. Tourism and statistics. Bibliometric Study 1998-2002. Ann Tour Res. 2005;32(1):167-78. https://doi.org/10.1016/j.annals.2004.06.003

Olisah C, Okoh OO, Okoh AI. Global evolution of organochlorine pesticides research in biological and environmental matrices from 1992 to 2018: A bibliometric approach. Emerg Contam [Internet]. 2019;5:157-67. Available from: https://doi.org/10.1016/j.emcon.2019.05.001

Peres LLS, Sobreiro AI, Couto IFS, Silva RM, Pereira FF, Heredia-Vieira SC et al. Chemical compounds and bioactivity of aqueous extracts of Alibertia spp. In the control of Plutella xylostella L. (Lepidoptera: Plutellidae). Insects. 2017;8(4). https://doi.org/10.3390/insects8040125

Alves DS, Costa VA, Machado ART, Oliveira DF, Carvalho GA. Duguetia lanceolata A. St.-Hil. Stem bark produces phenylpropanoids lethal to Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Crop Prot [Internet]. 2020;127(September 2019):104965. Available from: https://doi.org/10.1016/j.cropro.2019.104965

Santos AA, Wanderley-Teixeira V, Navarro DMAF, Dutra KA, Cruz GS, Teixeira ÁAC et al. Oviposition behaviour and electrophysiological responses of Alabama argillacea (Hübner, 1823) (Lepidoptera: Erebidae) to essential oils and chemical compounds. Austral Entomol. 2021;60(2):390-99. https://doi.org/10.1111/aen.12524

Syahputra E. Insecticidal activities of Barringtonia sarcostachys bark extract against cabbage head caterpillar Crocidolomia pavonana (F.). J Int Soc Southeast Asian Agric Sci. 2013;19(2):8-17.

Widjayanti T, Tarno H, Anggiah G. Antifeedant activity and toxicity of pontianak citrus peel extract (pcpe) againts spodoptera litura. Fab (Lepidoptera: Noctuidae). Bioscience Research. Biosci Res. 2018;15(1):316-24.

Lina EC, Widhianingrum I, Putri ME, Evalia NF, Makky M. Insecticidal activity of Piper aduncum fruit and Tephrosia vogelii leaf mixed formulations against Plutella xylostella (L.) (Lepidoptera: Plutellidae). J Biopestic. 2018;11(1):69-75.

Schubert A, Braun T. International Collaboration in the Sciences 1981-1985. Scientometrics. 1990;19(1-2):3-10. https://doi.org/10.1007/BF02130461

Lee S, Bozeman B. The impact of research collaboration on scientific productivity. Soc Stud Sci. 2005;35(5):673-702. https://doi.org/10.1177/0306312705052359

Nguyen TV, Ho-Le TP, Le UV. International collaboration in scientific research in Vietnam: an analysis of patterns and impact. Scientometrics. 2017;110(2):1035-51. https://doi.org/10.1007/s11192-016-2201-1

Garfield E. Current Commments. Essay of an Information Scientist. 1990;3-7.

Xie S, Zhang J, Ho YS. Assessment of world aerosol research trends by bibliometric analysis. Scientometrics. 2008;77(1):113-30. https://doi.org/10.1007/s11192-007-1928-0

Bamel UK, Pandey R, Gupta A. Safety climate: Systematic literature network analysis of 38 years (1980-2018) of research. Accid Anal Prev [Internet]. 2020;135(March 2019):105387. Available from: https://doi.org/10.1016/j.aap.2019.105387

Grames EM, Stillman AN, Tingley MW, Elphick CS. An automated approach to identifying search terms for systematic reviews using keyword co-occurrence networks. Methods Ecol Evol. 2019;10(10):1645-54. https://doi.org/10.1111/2041-210X.13268

Published

19-11-2022 — Updated on 12-01-2023

Versions

How to Cite

1.
Sofia Siti Sa’adah N, Sukirno S, Alwandri H, Rini Nuringtyas T, Hartanto Nugroho L. A bibliometric analysis of botanical insecticides for Lepidopteran insects over the period 1985-2022. Plant Sci. Today [Internet]. 2023 Jan. 12 [cited 2024 Dec. 22];10(1):232-41. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/1997

Issue

Section

Review Articles

Most read articles by the same author(s)