Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 10 No. 2 (2023)

Evolutionary Insights into the Enzymes involved in the Biosynthesis of the Volatile Organic Compounds Isoprene and Pinene in Plants

DOI
https://doi.org/10.14719/pst.2115
Submitted
12 September 2022
Published
15-01-2023 — Updated on 01-04-2023
Versions

Abstract

Volatile organic compounds (often abbreviated as VOCs) are emitted as secondary metabolites by plants, and contribute to a wide range of ecological processes, owing to their pivotal role in plant interactions with biotic and abiotic variables. As a result, they differ greatly between species and explain disparities in ecological strategy. In an effort to comprehend their genesis and assess potential evolutionary trends, this work probes into the enzymatic pathways that lead to their synthesis. Correspondingly, we adopt and propose an in-silico approach to analyze connections between the species evolution and the gene evolution of two major plant volatile organic compounds. We lay focus on isoprene and pinene, volatile organic compounds synthesized by two common yet compartmentally isolated pathways - the methylerythritol phosphate (MEP) pathway and the mevalonic acid (MVA) pathway, respectively. Analyses of gene-specific and protein-specific phylogenetic trees of the enzymes involved in these pathways thereby indicate a mixed trend in the evolution as per the APG IV (Angiosperm Phylogeny Group IV) system. These results and the in-silico pipeline thus provide us with future opportunities to explore different networks of plant communication for a holistic understanding of intraspecific and interspecific interactions in different natural ecosystems.

References

  1. Picazo-Aragonés J, Terrab A, Balao F. Plant volatile organic compounds evolution: Transcriptional regulation, epigenetics and polyploidy. Int J Mol Sci. 2020;21(23):8956. http://dx.doi.org/10.3390/ijms21238956
  2. Effah, Evans. Holopainen, Jarmo K. Clavijo McCormick, Andrea. (2019). Potential roles of volatile organic compounds in plant competition. Perspectives in plant ecology evolution and systematics, 2019: 38, 58-63. http://dx.doi.org/10.1016/j.ppees.2019.04.003
  3. Kigathi, R. N., Weisser, W. W., Reichelt, M., Gershenzon, J., &Unsicker, S. B. Plant volatile emission depends on the species composition of the neighboring plant community. BMC plant biology, 2019; 19(1): 1-17. https://doi.org/10.1186/s12870-018-1541-9
  4. Dudareva N, Klempien A, Muhlemann JK, Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013;198(1):16–32. http://dx.doi.org/10.1111/nph.12145
  5. Vivaldo G, Masi E, Taiti C, Caldarelli G, Mancuso S. The network of plants volatile organic compounds. Sci Rep. 2017;7(1):11050. http://dx.doi.org/10.1038/s41598-017-10975-x
  6. Zhao L, Chang W-C, Xiao Y, Liu H-W, Liu P. Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem. 2013;82(1):497–530. http://dx.doi.org/10.1146/annurev-biochem-052010-100934
  7. Jozwiak A, Lipko A, Kania M, Danikiewicz W, Surmacz L, Witek A, et al. Modeling of dolichol mass spectra isotopic envelopes as a tool to monitor isoprenoid biosynthesis. Plant Physiol. 2017;174(2):857–74. http://dx.doi.org/10.1104/pp.17.00036
  8. Nagegowda DA. Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett. 2010;584(14):2965–73. http://dx.doi.org/10.1016/j.febslet.2010.05.045
  9. de Souza VF, NiinemetsÜ, Rasulov B, Vickers CE, Duvoisin Júnior S, Araújo WL, et al. Alternative carbon sources for isoprene emission. Trends Plant Sci. 2018;23(12):1081–101. http://dx.doi.org/10.1016/j.tplants.2018.09.012
  10. Sato N, Kishida M, Nakano M, Hirata Y, Tanaka T. Metabolic engineering of shikimic acid-producing Corynebacterium glutamicum from glucose and cellobiose retaining its phosphotransferase system function and pyruvate kinase activities. Front BioengBiotechnol. 2020;8:569406. http://dx.doi.org/10.3389/fbioe.2020.569406
  11. Matsui K, Koeduka T. Green leaf volatiles in plant signaling and response. SubcellBiochem. 2016;86:427–43. http://dx.doi.org/10.1007/978-3-319-25979-6_17
  12. Parthasarathy A, Borrego EJ, Savka MA, Dobson RCJ, Hudson AO. Amino acid-derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J Biol Chem. 2021;296(100438):100438. http://dx.doi.org/10.1016/j.jbc.2021.100438
  13. Gonda I, Bar E, Portnoy V, Lev S, Burger J, Schaffer AA, et al. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J Exp Bot. 2010;61(4):1111–23. http://dx.doi.org/10.1093/jxb/erp390
  14. Maurya, A. K. (2020). Application of plant volatile organic compounds (VOCs) in agriculture. In New Frontiers in Stress Management for Durable Agriculture (pp. 369-388). Springer, Singapore. ISBN-10 ? : ? 9811513244
  15. Zhou S, Jander G. Molecular ecology of plant volatiles in interactions with insect herbivores. J Exp Bot. 2022; 73(2):449–62. http://dx.doi.org/10.1093/jxb/erab413
  16. Tumlinson JH. The importance of volatile organic compounds in ecosystem functioning. J Chem Ecol. 2014; 40(3):212–3. http://dx.doi.org/10.1007/s10886-014-0399-z
  17. Weng J-K. The evolutionary paths towards complexity: a metabolic perspective. New Phytol. 2014;201(4):1141–9. http://dx.doi.org/10.1111/nph.12416
  18. Zamioudis C, Korteland J, Van Pelt JA, van Hamersveld M, Dombrowski N, Bai Y, et al. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant J. 2015; 84(2):309–22. http://dx.doi.org/10.1111/tpj.12995
  19. Martínez-Medina A, Van Wees SCM, Pieterse CMJ. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell Environ. 2017;40(11):2691–705. http://dx.doi.org/10.1111/pce.13016
  20. Riedlmeier M, Ghirardo A, Wenig M, Knappe C, Koch K, Georgii E, et al. Monoterpenes support systemic acquired resistance within and between plants. Plant Cell. 2017;29(6):1440–59. http://dx.doi.org/10.1105/tpc.16.00898
  21. Frank L, Wenig M, Ghirardo A, van der Krol A, Vlot AC, Schnitzler J-P, et al. Isoprene and ?-caryophyllene confer plant resistance via different plant internal signalling pathways. Plant Cell Environ. 2021;44(4):1151–64. http://dx.doi.org/10.1111/pce.14010
  22. Brosset A, Blande JD. Volatile-mediated plant-plant interactions: volatile organic compounds as modulators of receiver plant defence, growth, and reproduction. J Exp Bot. 2022;73(2):511–28. http://dx.doi.org/10.1093/jxb/erab487
  23. Vlot AC, Rosenkranz M. Volatile compounds-the language of all kingdoms? J Exp Bot. 2022;73(2):445–8. http://dx.doi.org/10.1093/jxb/erab528
  24. Angiosperm Phylogeny Group. APG IV: Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Gbif.org. 2017. https://doi.org/10.15468/fzuaam
  25. Pichersky E, Gang DR. Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci. 2000;5(10):439–45. http://dx.doi.org/10.1016/s1360-1385(00)01741-6
  26. Pichersky E, Lewinsohn E. Convergent evolution in plant specialized metabolism. Annu Rev Plant Biol. 2011; 62(1):549–66. http://dx.doi.org/10.1146/annurev-arplant-042110-103814
  27. Amrad A, Moser M, Mandel T, de Vries M, Schuurink RC, Freitas L, et al. Gain and loss of floral scent production through changes in structural genes during pollinator-mediated speciation. Curr Biol. 2016;26(24):3303–12. http://dx.doi.org/10.1016/j.cub.2016.10.023
  28. Pulido P, Perello C, Rodriguez-Concepcion M. New insights into plant isoprenoid metabolism. Mol Plant. 2012; 5(5):964–7. http://dx.doi.org/10.1093/mp/sss088
  29. Jantzen F, Lynch JH, Kappel C, Höfflin J, Skaliter O, Wozniak N, et al. Retracing the molecular basis and evolutionary history of the loss of benzaldehyde emission in the genus Capsella. New Phytol. 2019; 224(3):1349–60. http://dx.doi.org/10.1111/nph.16103
  30. Quadrana L, Colot V. Plant transgenerational epigenetics. Annu Rev Genet. 2016;50(1):467–91. http://dx.doi.org/10.1146/annurev-genet-120215-035254
  31. Kellenberger RT, Desurmont GA, Schlüter PM, Schiestl FP. Trans-generational inheritance of herbivory-induced phenotypic changes in Brassica rapa. Sci Rep. 2018;8(1). http://dx.doi.org/10.1038/s41598-018-21880-2
  32. Shockey J, Browse J. Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants: Biochemistry and evolution of plant AAE proteins. Plant J. 2011;66(1):143–60. http://dx.doi.org/10.1111/j.1365-313X.2011.04512.x
  33. Turchetto-Zolet AC, Christoff AP, Kulcheski FR, Loss-Morais G, Margis R, Margis-Pinheiro M. Diversity and evolution of plant diacylglycerol acyltransferase (DGATs) unveiled by phylogenetic, gene structure and expression analyses. Genet Mol Biol. 2016;39(4):524–38. http://dx.doi.org/10.1590/1678-4685-GMB-2016-0024
  34. Dievart A, Gottin C, Périn C, Ranwez V, Chantret N. Origin and diversity of plant receptor-like kinases. Annu Rev Plant Biol. 2020;71(1):131–56. http://dx.doi.org/10.1146/annurev-arplant-073019-025927
  35. Han G-Z. Origin and evolution of the plant immune system. New Phytol. 2019;222(1):70–83. http://dx.doi.org/10.1111/nph.15596
  36. Maeda HA, Fernie AR. Evolutionary history of plant metabolism. Annu Rev Plant Biol. 2021;72(1):185–216. http://dx.doi.org/10.1146/annurev-arplant-080620-031054
  37. Kashtan N, Noor E, Alon U. Varying environments can speed up evolution. Proc Natl Acad Sci U S A. 2007;104(34):13711–6. http://dx.doi.org/10.1073/pnas.0611630104

Downloads

Download data is not yet available.