Antioxidant activity and Cytotoxic evaluation of Phytofabricated Silver Nanoparticles of Fig (Ficus mollis Vahl)
DOI:
https://doi.org/10.14719/pst.2249Keywords:
Ficus mollis, FmF-AgNPs, MCF-7, DPPH Assay, MTT assayAbstract
The present study aimed to evaluate Antioxidant and Cytotoxic activity of phytofabricated silver nanoparticles (FmF-AgNPs) derived from Figs of Ficus mollis. This green synthesized FmF-AgNPs were tested for antioxidant activity with DPPH assay and cytotoxicity activity against MCF-7 (Human breast adenocarcinoma cell lines) with MTT assay at various concentrations. The data obtained demonstrated that FmF-AgNPs posses both antioxidant activity and cytotoxicity activity which is dosage-dependent. In conclusion, results obtained revealed the potent therapeutic value of phytofabricated silver nanoparticles (FmF-AgNPs) can act as potent antioxidant and anticancer agent.
Downloads
References
Netala VR, Bukke S, Domdi L, Soneya S, G Reddy S, Bethu MS, Kotakdi VS, Saritha KV, & Tartte V. Biogenesis of silver nanoparticles using leaf extract of Indigofera hirsuta L. and their potential biomedical applications (3-in-1 system). Artif Cells Nanomed Biotechnol. 2018; 46(1):1138–1148. https://doi.org/10.1080/21691401.2018.1446967
Paduraru DN, Ion D, Niculescu AG, Mu?at F, Andronic O, Grumezescu AM, & Bolocan A. Recent Developments in Metallic Nanomaterials for Cancer Therapy, Diagnosing and Imaging Applications. Pharmaceutics. 2022; 14(2): 435. https://doi.org/10.3390/pharmaceutics14020435
Reddy NV, Li H, Hou T, Bethu MS, Ren Z, & Zhang Z. Phytosynthesis of Silver Nanoparticles Using Perilla frutescens Leaf Extract: Characterization and Evaluation of Antibacterial, Antioxidant, and Anticancer Activities. Int J Nanomedicine. 2021; 16: 15–29. https://doi.org/10.2147/IJN.S265003
Mikhailova EO. Silver Nanoparticles: Mechanism of Action and Probable Bio- Application. J Funct Biomater, 2020; 11(4): 84. https://doi.org/10.3390/jfb11040084
Abbasi E, Milani M, Aval S F, Kouhi M, Akbarzadeh A, Nasrabadi H T, Nikasa P, Joo S W, Y Hanifehpour, K Nejati-Koshki & M Samiei. Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol. 2016; 42(2),173–180. 10.3109/1040841X.2014.912200
Jabeen S, Qureshi R, Munazir M, Maqsood M, Munir M, Shah SSH and Rahim BZ. Application of green synthesized silver nanoparticles in cancer treatment—a critical review. Mater. Res. Express. 2021; 8(9) : 092001. https://doi.org/10.1088/2053-1591/ac1de3
Syafiuddin A, Salmiati, Salim MR, Kueh ABH, Hadibarata T and Nur H. A review of silver nanoparticles: research trends, global consumption, synthesis, properties, and future challenges. J Chin Chem Soc. 2017; 64 (7):732–756. https://doi.org/10.1002/jccs.201700067
Ankanna S, Prasad TNVKV, Elumalai EK, & Savithramma N. Production of Biogenic Silver nanoparticles Using Boswellia ovalifolliata Stem bark: Dig. J. Nanomater. Biostructures 2010; 5(2): 369 – 372.
Kumar CMK, Yugandhar P & Savithramma N. Biological synthesis of silver nanoparticles from Adansonia digitata L. fruit extract, characterization, and its antimicrobial properties: J. Intercult. Ethnopharmacol. 2016; 5(1), 79–85. https://doi.org/10.5455/jice.20160124113632
LingaRao M & Savithramma N. Antibacterial activity of SNPs synthesized by using
stem extract of Svensonia hyderabadensis (Walp.) Mold- a rare medicinal plant. Res. biotechnol. 2012; 3(3) 41-47.
Prasad KS & Savithramma N. Green synthesis of silver nanoparticles from aquatic resources to control cell proliferation: J. Pharm. Sci. & Res. 2016; 8 (8) 721-724.
Ramamohan P &, Savithramma N. Screening of phytochemicals and biosynthesis of silver nanoparticles from leaf, bark, and fruit of medicinal tree species Terminalia pallida Brandis. An endemic to Seshachalam Hill ranges. Pharma Innovation. 2019; 8(4): 408-416.
Motafeghi F, Gerami M, Mortazavi P, Khayambashi B, Ghassemi-Barghi N, & Shokrzadeh M. Green synthesis of silver nanoparticles, graphene, and silver-graphene nanocomposite using Melissa officinalis ethanolic extract: Anticancer effect on MCF-7 cell line. Iran J Basic Med Sci. (2023); 26(1): 57–68. https://doi.org/10.22038/IJBMS.2022.65503.14410
Subbaiah KV, Sujatha K, Savithramma N. Bark assisted green synthesis of silver nanoparticles from Walsura trifoliata (A.Juss.) Harms. Characterization and antimicrobial efficacy. Int. J Pharm and Bio sci. 2020; 10(3): 246-255. https://doi.org/10.21276/ijpbs.2020.10.3.32
Yugandhar P, Savithramma N. Leaf assisted green synthesis of silver nanoparticles from Syzygium alternifolium (Wt). Walp. Characterization and antimicrobial studies. Nano Biomed. Eng. 2015; 7(2):29-37. 10.5101/nbe.v7i2.p29-37.
Donga S & Chanda S. Facile green synthesis of silver nanoparticles using Mangifera indica seed aqueous extract and its antimicrobial, antioxidant and cytotoxic potential (3-in-1 system), Artif Cells Nanomed Biotechnol. 2021; 49(1): 292-302. 10.1080/21691401.2021.1899193
Sasikala A, Linga Rao M, Savithramma N, Prasad TNVKV. Syntheses of silver nanoparticles from the stem bark of Cochlospermum religiosum L. an important medicinal plant, evaluation of the antimicrobial efficacy. Appl Nanosci 2015; 5:827–835. https://doi.org/10.1007/s13204-014-0380-8
Ratan ZA, Haidere MF, Nurunnabi M, Shahriar SM, Ahammad A, Shim YY, Reaney M, & Cho JY. Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects. Cancers, 2020; 12(4): 855. https://doi.org/10.3390/cancers12040855
Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, & Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano convergence, 2019; 6(1): 23. https://doi.org/10.1186/s40580-019-0193-2
Kuruba R and Savithramma N. Production of Silver Nanoparticles Through Eco-Friendly Approach from Stem Bark of Ficus Mollis vahl Characterization and Evaluation. Int. Pharm and Bio. Sci. 2019; 9 (1): 1502-1508.
Kuruba RK, Ankanna S, Savithramma N. Bio-fabrication of silver nanoparticles using Ficus mollis vahl. aqueous leaf extract, characterization, and evaluation of the antibacterial efficacy. Int. J. Creative Res.Thoughts. 2021; 9(12) : e836-e845.
RamaKrishna Kuruba. Studies on Synthesis, Characterization, Validation and Application of Nanoparticles from Ficus mollis Vahl-A medicinal plant species. Ph.D Thesis, Submitted to Sri Venkateswara University, Tirupati. (2023) pp.200
Arunachalam K, Shanmuganathan B, Sreeja PS, Parimelazhagan T. Phytosynthesis of silver nanoparticles using the leaves extract of Ficus talboti king and evaluation of antioxidant and antibacterial activities. Environ Sci Pollut Res. 2015; 22(22):18066-18075. https://doi.org/10.1007/s11356-015-4992-7
Arvaniti OS, Samaras Y, Gatidou G, Thomaidis NS, Stasinakis AS. Review on fresh and dried figs: chemical analysis and occurrence of phytochemical compounds, antioxidant capacity and health effects. Food Res. Int. 2019; 119:244–267. 10.1016/j.foodres.2019.01.055
Cruz JMDA, Corrêa RF, Lamarão CV, Kinupp VF, Sanches EA, Campelo PH, Bezerra JA. Ficus spp. fruits: Bioactive compounds and chemical, biological and pharmacological properties. Food Res. Int. 2022; 152:110928. https://doi.org/10.1016/j.foodres.2021.110928
Hssaini L, Hernandez F, Viuda-Martos M, Charafi J, Razouk R, Houmanat K, Ouaabou R, Ennahli S, Elothmani D, Hmid I, Fauconnier ML, Hanine H. Survey of Phenolic Acids, Flavonoids and In Vitro Antioxidant Potency Between Fig Peels and Pulps: Chemical and Chemometric Approach. Molecules. 2021; 26(9): 2574. https://doi.org/10.3390/molecules26092574
Hssaini L, Razouk R, Bouslihim Y. Rapid Prediction of Fig Phenolic Acids and Flavonoids Using Mid-Infrared Spectroscopy Combined With Partial Least Square Regression. Front. Plant Sci.. 2022; 13:782159. 10.3389/fpls.2022.782159
Ejidike IP. & Clayton H S. Green synthesis of silver nanoparticles mediated by Daucus carota L.: antiradical, antimicrobial potentials, invitro cytotoxicity against brain glioblastoma cells, Green Chem Lett Rev. 2022; 15:2, 298-311, https://doi.org/10.1080/17518253.2022.2054290
Kumar P, Arvindhan N, Uchil PD. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb Protoc. 2018; 6: 469-471 10.1101/pdb.prot095505
Ramamohan P, Savithramma N. Screening of phytochemicals and biosynthesis of silver nanoparticles from leaf, bark, and fruit of medicinal tree species Terminalia pallida Brandis. an endemic to Seshachalam Hill ranges. Pharma Innovation. 2019; 8(4)408-416.
Jacob SJP, Prasad VLS, Sivasankar S, Muralidharan P. Biosynthesis of silver nanoparticles using dried fruit extract of Ficus carica - Screening for its anticancer activity and toxicity in animal models. Food Chem Toxicol. 2017; 109(2):951-956.
van Meerloo J, Kaspers GJL, Cloos J. Cell Sensitivity Assays: The MTT Assay. In: Cree I. (eds) Cancer Cell Culture. Methods Mol Biol. 2011; 731: 237-45. 10.1007/978-1-61779-080-5_20
Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int J Mol Sci. 2021; 22(23):12827. https://doi.org/10.3390/ijms222312827
Rai Y, Pathak R, Kumari N, Sah DK, Pandey S, Kalra N, Soni R, Dwarakanath BS, & Bhatt AN. Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition. Sci. Rep. 2018; 8(1):1531 https://doi.org/10.1038/s41598-018-19930-w
Reddy NV, Li H, Hou T, Bethu MS, Ren Z, & Zhang Z. Phytosynthesis of Silver Nanoparticles Using Perilla frutescens Leaf Extract: Characterization and Evaluation of Antibacterial, Antioxidant, and Anticancer Activities. Int. J. nanomedicine. 2021; 16: 15–29. https://doi.org/10.2147/IJN.S265003
Edmondson JM, Armstrang LS, Martiner AO. A rapid and simple MTT-based spectrophotometric assay for determining drug sensitivity in monolayer cultures. J Tissue Culture Meth. 1998; 11:15–17. https://doi.org/10.1007/BF01404408
Vajrabhaya Lo, Korsuwannawong S. Cytotoxicity evaluation of a Thai herb using tetrazolium (MTT) and sulforhodamine B (SRB) assays. J Anal Sci Technol. 2018; 9,15 https://doi.org/10.1186/s40543-018-0146-0
Basli A, Belkacem N, & Amrani I. Health Benefits of Phenolic Compounds Against Cancers. In : M. Soto-Hernandez, M. Palma-Tenango, & M. d. R. Garcia-Mateos (Eds.), Phenolic Compounds - Biological Activity. Intech Open. 2017; pp 238. https://doi.org/10.5772/67232
Lima CF, M Costa , TA Dias , MF Proença , C Pereira-Wilson. Novel synthetic molecules bioinspired in natural phenolic compounds for anticancer drug discovery. Planta Med. 2014; 80 - SL42 . 10.1055/s-0034-1394530
Spilioti E, Jaakkola M, Tolonen T, Lipponen M, Virtanen V, Chinou I, Kassi E, Karabournioti S, & Moutsatsou P. Phenolic Acid Composition, Antiatherogenic and Anticancer Potential of Honeys Derived from Various Regions in Greece. PLoS ONE. 2014; 9(4): e94860. 10.1371/journal.pone.0094860
Anantharaju PG, Gowda PC, Vimalambike MG, Madhunapantula SV. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016; 15:99. https://doi.org/10.1186/s12937-016-0217-2
Carocho M & Ferreira IC. The role of phenolic compounds in the fight against cancer -A review. Anti-cancer agents med chem. 2013; 13(8):1236–1258. https://doi.org/10.2174/ 18715206113139990301
Ravishankar D, Rajora AK, Greco F, Osborn HM. Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol. 2013; 45: 2821 – 2831. 10.1016/j.biocel.2013.10.004
Li Q, Ziliang Dong, Meiwan Chen, Liangzhu Feng,Phenolic molecules constructed nanomedicine for innovative cancer treatment. Coordination Chemistry Reviews, 2021; 439: 213912. https://doi.org/10.1016/j.ccr.2021.213912
Polia F, Marta Pastor-Belda, Alberto Martínez-Blázquez, Marie-Noelle Horcajada, Francisco A. Tomás-Barberán, and Rocío García-Villalba. (2022) Technological and Biotechnological Processes To Enhance the Bioavailability of Dietary (Poly)phenols in Humans. J. Agric. Food Chem (2022); 70 (7):2092-2107. https://doi.org/10.1021/acs.jafc.1c07198
Downloads
Published
Versions
- 01-07-2023 (2)
- 16-05-2023 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Kuruba Ramakrishna, Nataru Savithramma
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).