Antioxidant activity and Cytotoxic evaluation of Phytofabricated Silver Nanoparticles of Fig (Ficus mollis Vahl)

Authors

DOI:

https://doi.org/10.14719/pst.2249

Keywords:

Ficus mollis, FmF-AgNPs, MCF-7, DPPH Assay, MTT assay

Abstract

The present study aimed to evaluate Antioxidant and Cytotoxic activity of phytofabricated silver nanoparticles (FmF-AgNPs) derived from Figs of Ficus mollis. This green synthesized FmF-AgNPs were tested for antioxidant activity with DPPH assay and cytotoxicity activity against MCF-7 (Human breast adenocarcinoma cell lines) with MTT assay at various concentrations. The data obtained demonstrated that FmF-AgNPs posses both antioxidant activity and cytotoxicity activity which is dosage-dependent. In conclusion, results obtained revealed the potent therapeutic value of phytofabricated silver nanoparticles (FmF-AgNPs) can act as potent antioxidant and anticancer agent.

Downloads

Download data is not yet available.

References

Netala VR, Bukke S, Domdi L, Soneya S, G Reddy S, Bethu MS, Kotakdi VS, Saritha KV, & Tartte V. Biogenesis of silver nanoparticles using leaf extract of Indigofera hirsuta L. and their potential biomedical applications (3-in-1 system). Artif Cells Nanomed Biotechnol. 2018; 46(1):1138–1148. https://doi.org/10.1080/21691401.2018.1446967

Paduraru DN, Ion D, Niculescu AG, Mu?at F, Andronic O, Grumezescu AM, & Bolocan A. Recent Developments in Metallic Nanomaterials for Cancer Therapy, Diagnosing and Imaging Applications. Pharmaceutics. 2022; 14(2): 435. https://doi.org/10.3390/pharmaceutics14020435

Reddy NV, Li H, Hou T, Bethu MS, Ren Z, & Zhang Z. Phytosynthesis of Silver Nanoparticles Using Perilla frutescens Leaf Extract: Characterization and Evaluation of Antibacterial, Antioxidant, and Anticancer Activities. Int J Nanomedicine. 2021; 16: 15–29. https://doi.org/10.2147/IJN.S265003

Mikhailova EO. Silver Nanoparticles: Mechanism of Action and Probable Bio- Application. J Funct Biomater, 2020; 11(4): 84. https://doi.org/10.3390/jfb11040084

Abbasi E, Milani M, Aval S F, Kouhi M, Akbarzadeh A, Nasrabadi H T, Nikasa P, Joo S W, Y Hanifehpour, K Nejati-Koshki & M Samiei. Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol. 2016; 42(2),173–180. 10.3109/1040841X.2014.912200

Jabeen S, Qureshi R, Munazir M, Maqsood M, Munir M, Shah SSH and Rahim BZ. Application of green synthesized silver nanoparticles in cancer treatment—a critical review. Mater. Res. Express. 2021; 8(9) : 092001. https://doi.org/10.1088/2053-1591/ac1de3

Syafiuddin A, Salmiati, Salim MR, Kueh ABH, Hadibarata T and Nur H. A review of silver nanoparticles: research trends, global consumption, synthesis, properties, and future challenges. J Chin Chem Soc. 2017; 64 (7):732–756. https://doi.org/10.1002/jccs.201700067

Ankanna S, Prasad TNVKV, Elumalai EK, & Savithramma N. Production of Biogenic Silver nanoparticles Using Boswellia ovalifolliata Stem bark: Dig. J. Nanomater. Biostructures 2010; 5(2): 369 – 372.

Kumar CMK, Yugandhar P & Savithramma N. Biological synthesis of silver nanoparticles from Adansonia digitata L. fruit extract, characterization, and its antimicrobial properties: J. Intercult. Ethnopharmacol. 2016; 5(1), 79–85. https://doi.org/10.5455/jice.20160124113632

LingaRao M & Savithramma N. Antibacterial activity of SNPs synthesized by using

stem extract of Svensonia hyderabadensis (Walp.) Mold- a rare medicinal plant. Res. biotechnol. 2012; 3(3) 41-47.

Prasad KS & Savithramma N. Green synthesis of silver nanoparticles from aquatic resources to control cell proliferation: J. Pharm. Sci. & Res. 2016; 8 (8) 721-724.

Ramamohan P &, Savithramma N. Screening of phytochemicals and biosynthesis of silver nanoparticles from leaf, bark, and fruit of medicinal tree species Terminalia pallida Brandis. An endemic to Seshachalam Hill ranges. Pharma Innovation. 2019; 8(4): 408-416.

Motafeghi F, Gerami M, Mortazavi P, Khayambashi B, Ghassemi-Barghi N, & Shokrzadeh M. Green synthesis of silver nanoparticles, graphene, and silver-graphene nanocomposite using Melissa officinalis ethanolic extract: Anticancer effect on MCF-7 cell line. Iran J Basic Med Sci. (2023); 26(1): 57–68. https://doi.org/10.22038/IJBMS.2022.65503.14410

Subbaiah KV, Sujatha K, Savithramma N. Bark assisted green synthesis of silver nanoparticles from Walsura trifoliata (A.Juss.) Harms. Characterization and antimicrobial efficacy. Int. J Pharm and Bio sci. 2020; 10(3): 246-255. https://doi.org/10.21276/ijpbs.2020.10.3.32

Yugandhar P, Savithramma N. Leaf assisted green synthesis of silver nanoparticles from Syzygium alternifolium (Wt). Walp. Characterization and antimicrobial studies. Nano Biomed. Eng. 2015; 7(2):29-37. 10.5101/nbe.v7i2.p29-37.

Donga S & Chanda S. Facile green synthesis of silver nanoparticles using Mangifera indica seed aqueous extract and its antimicrobial, antioxidant and cytotoxic potential (3-in-1 system), Artif Cells Nanomed Biotechnol. 2021; 49(1): 292-302. 10.1080/21691401.2021.1899193

Sasikala A, Linga Rao M, Savithramma N, Prasad TNVKV. Syntheses of silver nanoparticles from the stem bark of Cochlospermum religiosum L. an important medicinal plant, evaluation of the antimicrobial efficacy. Appl Nanosci 2015; 5:827–835. https://doi.org/10.1007/s13204-014-0380-8

Ratan ZA, Haidere MF, Nurunnabi M, Shahriar SM, Ahammad A, Shim YY, Reaney M, & Cho JY. Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects. Cancers, 2020; 12(4): 855. https://doi.org/10.3390/cancers12040855

Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, & Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano convergence, 2019; 6(1): 23. https://doi.org/10.1186/s40580-019-0193-2

Kuruba R and Savithramma N. Production of Silver Nanoparticles Through Eco-Friendly Approach from Stem Bark of Ficus Mollis vahl Characterization and Evaluation. Int. Pharm and Bio. Sci. 2019; 9 (1): 1502-1508.

Kuruba RK, Ankanna S, Savithramma N. Bio-fabrication of silver nanoparticles using Ficus mollis vahl. aqueous leaf extract, characterization, and evaluation of the antibacterial efficacy. Int. J. Creative Res.Thoughts. 2021; 9(12) : e836-e845.

RamaKrishna Kuruba. Studies on Synthesis, Characterization, Validation and Application of Nanoparticles from Ficus mollis Vahl-A medicinal plant species. Ph.D Thesis, Submitted to Sri Venkateswara University, Tirupati. (2023) pp.200

Arunachalam K, Shanmuganathan B, Sreeja PS, Parimelazhagan T. Phytosynthesis of silver nanoparticles using the leaves extract of Ficus talboti king and evaluation of antioxidant and antibacterial activities. Environ Sci Pollut Res. 2015; 22(22):18066-18075. https://doi.org/10.1007/s11356-015-4992-7

Arvaniti OS, Samaras Y, Gatidou G, Thomaidis NS, Stasinakis AS. Review on fresh and dried figs: chemical analysis and occurrence of phytochemical compounds, antioxidant capacity and health effects. Food Res. Int. 2019; 119:244–267. 10.1016/j.foodres.2019.01.055

Cruz JMDA, Corrêa RF, Lamarão CV, Kinupp VF, Sanches EA, Campelo PH, Bezerra JA. Ficus spp. fruits: Bioactive compounds and chemical, biological and pharmacological properties. Food Res. Int. 2022; 152:110928. https://doi.org/10.1016/j.foodres.2021.110928

Hssaini L, Hernandez F, Viuda-Martos M, Charafi J, Razouk R, Houmanat K, Ouaabou R, Ennahli S, Elothmani D, Hmid I, Fauconnier ML, Hanine H. Survey of Phenolic Acids, Flavonoids and In Vitro Antioxidant Potency Between Fig Peels and Pulps: Chemical and Chemometric Approach. Molecules. 2021; 26(9): 2574. https://doi.org/10.3390/molecules26092574

Hssaini L, Razouk R, Bouslihim Y. Rapid Prediction of Fig Phenolic Acids and Flavonoids Using Mid-Infrared Spectroscopy Combined With Partial Least Square Regression. Front. Plant Sci.. 2022; 13:782159. 10.3389/fpls.2022.782159

Ejidike IP. & Clayton H S. Green synthesis of silver nanoparticles mediated by Daucus carota L.: antiradical, antimicrobial potentials, invitro cytotoxicity against brain glioblastoma cells, Green Chem Lett Rev. 2022; 15:2, 298-311, https://doi.org/10.1080/17518253.2022.2054290

Kumar P, Arvindhan N, Uchil PD. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb Protoc. 2018; 6: 469-471 10.1101/pdb.prot095505

Ramamohan P, Savithramma N. Screening of phytochemicals and biosynthesis of silver nanoparticles from leaf, bark, and fruit of medicinal tree species Terminalia pallida Brandis. an endemic to Seshachalam Hill ranges. Pharma Innovation. 2019; 8(4)408-416.

Jacob SJP, Prasad VLS, Sivasankar S, Muralidharan P. Biosynthesis of silver nanoparticles using dried fruit extract of Ficus carica - Screening for its anticancer activity and toxicity in animal models. Food Chem Toxicol. 2017; 109(2):951-956.

van Meerloo J, Kaspers GJL, Cloos J. Cell Sensitivity Assays: The MTT Assay. In: Cree I. (eds) Cancer Cell Culture. Methods Mol Biol. 2011; 731: 237-45. 10.1007/978-1-61779-080-5_20

Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int J Mol Sci. 2021; 22(23):12827. https://doi.org/10.3390/ijms222312827

Rai Y, Pathak R, Kumari N, Sah DK, Pandey S, Kalra N, Soni R, Dwarakanath BS, & Bhatt AN. Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition. Sci. Rep. 2018; 8(1):1531 https://doi.org/10.1038/s41598-018-19930-w

Reddy NV, Li H, Hou T, Bethu MS, Ren Z, & Zhang Z. Phytosynthesis of Silver Nanoparticles Using Perilla frutescens Leaf Extract: Characterization and Evaluation of Antibacterial, Antioxidant, and Anticancer Activities. Int. J. nanomedicine. 2021; 16: 15–29. https://doi.org/10.2147/IJN.S265003

Edmondson JM, Armstrang LS, Martiner AO. A rapid and simple MTT-based spectrophotometric assay for determining drug sensitivity in monolayer cultures. J Tissue Culture Meth. 1998; 11:15–17. https://doi.org/10.1007/BF01404408

Vajrabhaya Lo, Korsuwannawong S. Cytotoxicity evaluation of a Thai herb using tetrazolium (MTT) and sulforhodamine B (SRB) assays. J Anal Sci Technol. 2018; 9,15 https://doi.org/10.1186/s40543-018-0146-0

Basli A, Belkacem N, & Amrani I. Health Benefits of Phenolic Compounds Against Cancers. In : M. Soto-Hernandez, M. Palma-Tenango, & M. d. R. Garcia-Mateos (Eds.), Phenolic Compounds - Biological Activity. Intech Open. 2017; pp 238. https://doi.org/10.5772/67232

Lima CF, M Costa , TA Dias , MF Proença , C Pereira-Wilson. Novel synthetic molecules bioinspired in natural phenolic compounds for anticancer drug discovery. Planta Med. 2014; 80 - SL42 . 10.1055/s-0034-1394530

Spilioti E, Jaakkola M, Tolonen T, Lipponen M, Virtanen V, Chinou I, Kassi E, Karabournioti S, & Moutsatsou P. Phenolic Acid Composition, Antiatherogenic and Anticancer Potential of Honeys Derived from Various Regions in Greece. PLoS ONE. 2014; 9(4): e94860. 10.1371/journal.pone.0094860

Anantharaju PG, Gowda PC, Vimalambike MG, Madhunapantula SV. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016; 15:99. https://doi.org/10.1186/s12937-016-0217-2

Carocho M & Ferreira IC. The role of phenolic compounds in the fight against cancer -A review. Anti-cancer agents med chem. 2013; 13(8):1236–1258. https://doi.org/10.2174/ 18715206113139990301

Ravishankar D, Rajora AK, Greco F, Osborn HM. Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol. 2013; 45: 2821 – 2831. 10.1016/j.biocel.2013.10.004

Li Q, Ziliang Dong, Meiwan Chen, Liangzhu Feng,Phenolic molecules constructed nanomedicine for innovative cancer treatment. Coordination Chemistry Reviews, 2021; 439: 213912. https://doi.org/10.1016/j.ccr.2021.213912

Polia F, Marta Pastor-Belda, Alberto Martínez-Blázquez, Marie-Noelle Horcajada, Francisco A. Tomás-Barberán, and Rocío García-Villalba. (2022) Technological and Biotechnological Processes To Enhance the Bioavailability of Dietary (Poly)phenols in Humans. J. Agric. Food Chem (2022); 70 (7):2092-2107. https://doi.org/10.1021/acs.jafc.1c07198

Published

16-05-2023 — Updated on 01-07-2023

Versions

How to Cite

1.
Ramakrishna K, Savithramma N. Antioxidant activity and Cytotoxic evaluation of Phytofabricated Silver Nanoparticles of Fig (Ficus mollis Vahl). Plant Sci. Today [Internet]. 2023 Jul. 1 [cited 2024 May 5];10(3):197-202. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/2249

Issue

Section

Research communications