Identification of bioactive compounds from the ethnomedicinal plant Senna alata (L.) Roxb. (fabaceae) through in vitro and molecular docking analysis against ?-glucosidase enzyme: a diabetic drug target

Authors

  • Bhagyasankar Thilak Department of Botany, University of Kerala, kariavattom 69558, India
  • Chakkinga Thodi Riyas Department of Botany, University of Kerala, kariavattom 69558, India
  • Thacheril Sukumaran Swapna Department of Botany, University of Kerala, kariavattom 69558, India

DOI:

https://doi.org/10.14719/pst.2279

Keywords:

Senna alata, α amylase, α glucosidase, HR-LCMS technique

Abstract

Senna alata (L.) Roxb. belongs to the family Fabaceae, is reported to have traditional use to treat diabetics and is selected for the study. Preliminary phytochemical analysis was carried out in the selected plant, indicating comparatively higher amounts of phenol, flavonoid, tannin and alkaloids in quantification. The antidiabetic activity of the plant was analyzed and the result indicated that the acetone and methanolic extract showed the lowest IC50 values in a-amylase and a-glucosidase assays respectively. The methanolic extract, which showed an IC50 (39.977 ug/ml) value similar to the standard (35.151 ug/ml), was selected for HR-LCMS analysis. HR-LCMS analysis indicated compounds that exhibit antidiabetic properties, including rutin, kaempferol, rhein and luteolin in the extract. Molecular docking analysis revealed 5 compounds showing better binding affinity namely 5-methoxyhydnocarpin-D, quercetin 3-rhamnoside-7-glucoside, marimetin, kaempferol and luteolin, than the standard drugs voglibose and acarbose. The present in vitro antidiabetic study against 5NN8 target protein was supported by molecular docking analysis. Therefore, further study of bioactive compounds identified through HR-LC MS can help develop future drug leads. Using such medicinal plants can support the improvement of the healthcare system as they do not have many side effects. S. alata is an important medicinal plant, but at the same time, it has become a weed in different parts of Kerala. Validation of medicinal properties and identification of bioactive molecules can help the sustainable utilization of the plant.

Downloads

Download data is not yet available.

References

Ezuruike UF, Prieto JM. The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations. J Ethnopharmacol [Internet]. 2014;155(2):857-924. Available from: http://dx.doi.org/10.1016/j.jep.2014.05.055

Collado-Mesa F, Barceló A, Arheart KL, Messiah SE. An ecological analysis of childhood-onset type 1 diabetes incidence and prevalence in latin America. Rev Panam Salud Publica/Pan Am J Public Heal. 2004;15(6):388-94. https://doi.org/10.1590/S1020-49892004000600004

Sharma S, Chaturvedi M, Edwin E, Shukla S, Sagrawat H. Evaluation of the phytochemicals and antidiabeticactivity of Ficus bengalensis. Int J Diab Dev Ctries [Internet]. 2007;27(2):56-59. Available from: http://www.ijddc.com; https://doi.org/10.4103/0973-3930.37036

WHO. World Health Organization. World malaria report. 2015. 2016.

Carracher AM, Marathe PH, Close KL. International Diabetes Federation 2017. J Diabetes. 2018;10(5):353-56. https://doi.org/10.1111/1753-0407.12644

Prabhakar PK, Doble M. Mechanism of action of natural products used in the treatment of diabetes mellitus. Chin J Integr Med. 2011;17(8):563-74. https://doi.org/10.1007/s11655-011-0810-3

Roselli M, Lentini G, Habtemariam S. Phytochemical, antioxidant and anti-?-glucosidase activity evaluations of Bergenia cordifolia. Phyther Res. 2012;26(6):908-14. https://doi.org/10.1002/ptr.3655

Zhao C, Yang C, Wai STC, Zhang YP, Portillo M, Paoli P. Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Crit Rev Food Sci Nutr [Internet]. 2019;59(6):830-47. Available from: https://doi.org/10.1080/10408398.2018.1501658

Alam S, Sarker MMR, Sultana TN, Chowdhury MNR, Rashid MA, Chaity NI, Mohamed I N. Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Diabetes mellitus and COVID-19: understanding the association in light of current evidence. Front in endocrinol. 2022;9(28):8327-39. https://doi.org/10.3389/fendo.2022.800714

Abatan MO. A note on the anti-inflammatory action of plants of some Cassia species. Fitoterapia. 1990;61(4):336-38.

Oladeji OS, Odelade KA, Oloke JK. Phytochemical screening and antimicrobial investigation of Moringa oleifera leaf extracts. African J Sci Technol Innov Dev [Internet]. 2020;12(1):79-84. Available from: https://doi.org/10.1080/20421338.2019.1589082

Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses and diabetes mellitus. Am J Physiol Endocrinol Metab. 2020 Apr 26.

Fatmawati S, Purnomo AS, Bakar MF. Chemical constituents, usage and pharmacological activity of Cassia alata. Heliyon. 2020 Jul 1;6(7). https://doi.org/10.1016/j.heliyon.2020.e04396

Oladeji OS, Odelade KA, Oloke JK. Ethnobotanical description and biological activities of Senna alata. J Evid Based Complementary Altern Med. 2020;12(1):79-84. Available from; https://doi.org/10.1080/20421338.2019.1589082

Gul R, Jan SU, Faridullah S, Sherani S, Jahan N. Preliminary phytochemical screening, quantitative analysis of alkaloids and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. Sci World J. 2017.https://doi.org/10.1155/2017/5873648

Hiai S, Oura HN. Color reaction of some sapogenins with vanillin sulphuric acid. Planta Med. 1976;29(2):116-22. https://doi.org/10.1055/s-0028-1097639

Lister E, Wilson P. Measurement of total phenolics and ABTS assay for antioxidant activity (personal communication). Crop Research Institute, Lincoln, New Zealand. 2001;7:235-39.

Chang CV, Felício AC, Reis JE de P, Guerra MDO, Peters VM. Fetal toxicity of Solanum lycocarpum (Solanaceae) in rats. J Ethnopharmacol. 2002;81(2):265-69. https://doi.org/10.1016/S0378-8741(02)00092-2

Mukhopadhyay N, Sarkar S, Bandyopadhyay S. Effect of extrusion cooking on anti-nutritional factor tannin in linseed (Linum usitatissimum) meal. Int J Food Sci Nutr. 2007;58(8):588-94. https://doi.org/10.1080/09637480701343952

Kim YM, Jeong YK, Wang MH, Lee WY, Rhee HI. Inhibitory effect of pine extract on ?-glucosidase activity and postprandial hyperglycemia. Nutrition. 2005;21(6):756-61. https://doi.org/10.1016/j.nut.2004.10.014

Kwon YII, Vattem DA, Shetty K. Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pac J Clin Nutr. 2006;15(1):107-18.

Kumbhar ST, Patil SP, Une HD. Phytochemical analysis of Canna indica L. roots and rhizomes extract. Biochem Biophys Reports [Internet]. 2018;16(September):50-55. Available from: https://doi.org/10.1016/j.bbrep.2018.09.002

Junejo JA, Zaman K, Rudrapal M, Celik I, Attah EI. Antidiabetic bioactive compounds from Tetrastigma angustifolia (Roxb.) Deb and Oxalis debilis Kunth.: Validation of ethnomedicinal claim by in vitro and in silico studies. South African J Bot. 2021;143:164-75. https://doi.org/10.1016/j.sajb.2021.07.023

Fatiha B, Khodir M, Farid D, Tiziri R, Karima B, Sonia O et al. Optimisation of solvent extraction of antioxidants ( phenolic compounds ) from Algerian Mint ( Mentha spicata L .). Pharmacogn Commun. 2012;2(4):72-86. http://hdl.handle.net/123456789/27

Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: Extraction, isolation and identification of bioactive compounds from plant extracts. Plants. 2017;6(4). https://doi.org/10.3390/plants6040042

Mujeeb F, Bajpai P, Pathak N. Phytochemical evaluation, antimicrobial activity and determination of bioactive components from leaves of Aegle marmelos. Biomed Res Int. 2014. https://doi.org/10.1155/2014/497606

Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr Metab [Internet]. 2015;12(1):1-20. Available from: http://dx.doi.org/10.1186/s12986-015-0057-7

Vertommen J, van den Enden M, Simoens L, de Leeuw I. Flavonoid treatment reduces glycation and lipid peroxidation in experimental diabetic rats. Phyther Res. 1994;8(7):43032. https://doi.org/10.1002/ptr.2650080711

Panda S, Kar A. Apigenin (4‘,5,7-trihydroxyflavone) regulates hyperglycaemia, thyroid dysfunction and lipid peroxidation in alloxan-induced diabetic mice. J Pharm Pharmacol. 2010;59(11):1543-48. https://doi.org/10.1211/jpp.59.11.0012

Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother. 2017;96 (September):305-12. https://doi.org/10.1016/j.biopha.2017.10.001

Ola MS, Ahmed MM, Ahmad R, Abuohashish HM, Al-Rejaie SS, Alhomida AS. Neuroprotective effects of rutin in streptozotocin-induced diabetic rat retina. J Mol Neurosci. 2015;56(2):440-48. https://doi.org/10.1007/s12031-015-0561-2

Alam MM, Meerza D, Naseem I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci [Internet]. 2014;109(1):8-14. Available from: http://dx.doi.org/10.1016/j.lfs.2014.06.005

Habtemariam S. ?-Glucosidase inhibitory activity of kaempferol-3-O-rutinoside. Nat Prod Commun. 2011;6(2):201-03. https://doi.org/10.1177/1934578X1100600211

Zang Y, Igarashi K, Li YL. Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-Ay mice. Biosci Biotechnol Biochem. 2016;80(8):1580-86. https://doi.org/10.1080/09168451.2015.1116928

Zhou YX, Xia W, Yue W, Peng C, Rahman K, Zhang H. Rhein: A review of pharmacological activities. Evidence-based Complement Altern Med. 2015. https://doi.org/10.1155/2015/578107

Rajah RV. Antioxidant and antihyperglycemic activities of Aquilaria sinensis leaves (Gaharu). Doctoral dissertation, University of Malaya. 2018.

Hermans MMP, Kroos MA, Van Beeumen J, Oostra BA, Reuser AJJ. Human lysosomal ?-glucosidase: Characterization of the catalytic site. J Biol Chem. 1991;266(21):13507-12. https://doi.org/10.1016/S0021-9258(18)92727-4

Thodi RC, Ibrahim JM, Surendran VA, Nair AS, Sukumaran ST. Rutaretin1?-(6? sinapoylglucoside): promising inhibitor of COVID 19 mpro catalytic dyad from the leaves of Pittosporum dasycaulon miq (Pittosporaceae). J Biomol Struct Dyn [Internet]. 2021;0(0):1-17. Available from; https://doi.org/10.1080/07391102.2021.1972841

Shah B, Modi P, Sagar SR. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci [Internet]. 2020;252(April):117652. Available from: https://doi.org/10.1016/j.lfs.2020.117652

Moheb M, Iraji A, Dastyafteh N, Khalili Ghomi M, Noori M, Mojtabavi S et al. Synthesis and bioactivities evaluation of quinazolin-4(3H)-one derivatives as ?-glucosidase inhibitors. BMC Chem [Internet]. 2022;16(1):1-12. Available from; https://doi.org/10.1186/s13065-022-00885-z

Published

20-04-2023 — Updated on 01-07-2023

Versions

How to Cite

1.
Thilak B, Riyas CT, Swapna TS. Identification of bioactive compounds from the ethnomedicinal plant Senna alata (L.) Roxb. (fabaceae) through in vitro and molecular docking analysis against ?-glucosidase enzyme: a diabetic drug target. Plant Sci. Today [Internet]. 2023 Jul. 1 [cited 2024 May 13];10(3):235-49. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/2279

Issue

Section

Research Articles

Similar Articles

You may also start an advanced similarity search for this article.