Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 10 No. 3 (2023)

Floral biology and pollinator captivating semiochemicals in Goniothalamus wynaadensis (Bedd.) Bedd. (Annonaceae) an endemic tree species of the Western Ghats

DOI
https://doi.org/10.14719/pst.2392
Submitted
30 January 2023
Published
28-06-2023 — Updated on 01-07-2023
Versions

Abstract

Goniothalamus wynaadensis (Bedd.) Bedd. (Family Annonaceae) is an endemic tree species growing in the evergreen forests of the Western Ghats up to 900m asl. The present study aims at understanding the functional floral traits and semiochemicals found in G. wynaadensis which support plant-pollinator interactions. The study revealed G. wynaadensis exhibits abbreviated anthesis (c.28hrs). Goniothalamus flowers exhibit unique features of cantharophily. The study indicated that outcrossing is promoted by protogyny, and pollination efficiency is enhanced by pollen aggregation, anthesis duration, and pollinator trapping which involves a close alignment between petal movements and the circadian rhythm of pollinators. Curculionidae and Nitidulidae beetles are effective pollinators of the plant. In beetle-pollinated flowers, floral scent is a crucial component for pollinator attraction. G. wynaadensis has a strong fruity aroma. The floral scent analysis performed using headspace solid- phase microextraction combined with GC-MS detected various semiochemicals that support plant-pollinator interactions. Ethyl butyrate, isobutyl acetate, 3 hydroxy 3 methyl 2 butanol, isopentyl acetate, and 3 methyl 1 butanol dominate the floral scent of G. wynaadensis.

References

  1. Goniothalamus wynaadensis (Bedd.) Bedd.: Species [Internet]. India Biodiversity Portal. [cited 2023Jan20]. Available from https://indiabiodiversity.org/species/show/12827?lang=en
  2. Richardm S, Piya C. A synopsis of Goniothalamus species (Annonaceae) in Thailand, with descriptions of three new species. Botanical Journal of the Linnean Society. 2008;156(3):355-84. https://doi.org/10.1111/j.1095-8339.2007.00762.x
  3. Endress PK. Evolutionary diversification of the flowers in angiosperms. American Journal of Botany. 2011;98(3):370-96. https://doi.org/10.3732/ajb.1000299
  4. Gottsberger G. Beetle pollination and flowering rhythm of Annona spp. (Annonaceae) in Brazil. Plant Systematics and Evolution. 1989;167(3-4):165-87. https://www.jstor.org/stable/23673946 https://doi.org/10.1007/BF00936404
  5. Gottsberger G. How diverse are Annonaceae with regard to pollination?. Botanical Journal of the Linnean Society. 2012;169(1):245-61. https://doi.org/10.1111/j.1095-8339.2011.01209.x
  6. Webber AC, Gottsberger G. Floral Biology and pollination of Bocageopsis multiflora and Oxandra euneura in central Amazonia, with remarks on the evolution of stamens in Annonaceae. Journal of Botanical Taxonomy and Geobotany. 1996;106(5-8):515-24. https://doi.org/10.1002/fedr.19961060521
  7. Rosell P, Herrero M, Galán Saúco V. Pollen germination of cherimoya (Annona Cherimola Mill.). Scientia Horticulturae. 1999;81(3):251-65. https://doi.org/10.1016/S0304-4238(99)00012-6
  8. Shao Y, Xu F. Studies on pollen morphology of selected species of Annonaceae from Thailand. Grana. 2017;57(3):161-77. https://doi.org/10.1080/00173134.2017.1350204
  9. Dafni A. Pollination ecology: A practical approach. New York: Oxford University Press; 1992.
  10. Dafni A, Maues MM. A rapid and simple procedure to determine stigma receptivity. Sexual Plant Reproduction. 1998;11(3):177-80. http://dx.doi.org/10.1007/s004970050138
  11. Shivanna KR, Rangaswamy NS. Pollen Biology: A laboratory manual. Berlin: Springer-Verlag; 1992. https://doi.org/10.1007/978-3-642-77306-8
  12. Rodriguez-Riano T, Dafni A. A new procedure to assess pollen viability. Sexual Plant Reproduction. 2000;12(4):241-44. https://doi.org/10.1007/s004970050008
  13. Lau JY, Pang CC, Ramsden L, Saunders RM. Reproductive resource partitioning in two sympatric Goniothalamus species (Annonaceae) from Borneo: Floral biology, pollinator trapping and plant breeding system. Scientific Reports. 2016;6(1). https://doi.org/10.1038/srep35674
  14. The Croonian Lecture, 1974 - the physiology of the pollen grain surface. Proceedings of the Royal Society of London Series B Biological Sciences. 1975;190(1100):275-99. https://doi.org/10.1098/rspb.1975.0093
  15. Lau JY, Guo X, Pang C-C, Tang CC, Thomas DC, Saunders RM. Time-dependent trapping of pollinators driven by the alignment of floral phenology with insect circadian rhythms. Frontiers in Plant Science. 2017;8:1119. http://dx.doi.org/10.3389/fpls.2017.01119
  16. Richardm S. The diversity and evolution of pollination systems in Annonaceae. Botanical Journal of the Linnean Society. 2012;169(1):222-44. https://doi.org/10.1111/j.1095-8339.2011.01208.x
  17. Gottsberger G. Pollination and evolution in neotropical Annonaceae. Plant Species Biology. 1999;14(2):143-52. https://doi.org/10.1046/j.1442-1984.1999.00018.x
  18. Teichert H, Dötterl S, Gottsberger G. Heterodichogamy and nitidulid beetle pollination in Anaxagorea prinoides, an early divergent Annonaceae. Plant Systematics and Evolution. 2010;291(1-2):25-33. https://doi.org/10.1007/s00606-010-0367-1
  19. Buellesbach J, Cash E, Schmitt T. Communication, insects. Encyclopedia of Reproduction. 2018;78-83. https://doi.org/10.1016/B978-0-12-809633-8.20539-6
  20. Kairomone [Internet]. Kairomone - an overview |Science Direct Topics. [cited 2023 Jan21]. Available from: http://www.sciencedirect.com/topics/earth-and-planetary-sciences/kairomone.
  21. Honda K, Hori M, Omura H, Kainoh Y. Allelochemicals in plant-insect interactions. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. 2013;4. https://doi.org/10.1016/B978-0-12-409547-2.02803-1
  22. Semiochemicals - index [Internet]. Pherobase. [cited 2023Jan20]. Available from: https://www.pherobase.com/database/compound/compounds-index.php
  23. Gries G, Gries R, Perez AL, Gonzales LM, Pierce HD, Cameron Oehlschlager A et al. Ethyl propionate: Synergistic kairomone for African palm weevil, Rhynchophorus phoenicis L. (Coleoptera: Curculionidae). Journal of Chemical Ecology. 1994;20(4):889-97. https://doi.org/10.1007/BF02059585.
  24. Baig F, Farnier K, Ishtiaq M, Cunningham JP. Volatiles produced by symbiotic yeasts improve trap catches of Carpophilus davidsoni (Coleoptera: Nitidulidae): An important pest of stone fruits in Australia. Journal of Economic Entomology. 2023 Apr;116(2):505-12. https://doi.org/10.1093/jee/toad027

Downloads

Download data is not yet available.