Biosorption of Mn (II) by Spirogyra verrucosa collected from Manganese Mine Water
DOI:
https://doi.org/10.14719/pst.2016.3.3.244Keywords:
AMD, Green alga, Spirogyra verrucosa, Manganese(II), Biosorption, Kinetics, Isotherm modelingAbstract
Mining industries frequently generates acid mine drainage (AMD) either by its operating or abandoned mines which are often characterized by an elevated levels of certain heavy metals, sulphate, low pH and some other toxic impurities in mine water creates environmental and ecological problems. Present study planned to suggest role of alga Spirogyra verrucosa in Manganese (Mn) removal by biosorption process from the mine water of Manganese mines of Nagpur District, Vidarbha Region, Maharashtra. The biosorption of Mn(II) ions from aqueous solution by using dead green algal (S.verrucosa) biomass was investigated by studying effect of pH, temperature, quantity of biosorbent, contact time as well as initial metal ion concentration. The optimized values obtained with respect to these parameters clearly indicates that pH 5, temperature 30°C, biosorbent quantity 1.0 gm/l, contact time 120 min. and initial metal ion concentration 50mg/l were the basic requirement for the biosorption of Mn(II) ions by dead algal biomass. Also, the biosorption kinetic and isotherm modeling applied to the equilibrium data for biosorption of Mn(II) ions onto alga reveals the fitness of the pseudo-second-order rate expression (R2=0.994) as well as the suitability of Langmuir (R2=0.859) and Freundlich (R2=0.761) isotherm models with an indication of the applicability of this metal ion-dried algal system for removal of Mn(II) ions in a monolayer biosorption as well as heterogenous surface conditions. However, comparatively biosorption equilibrium was better described by Langmuir isotherm model with monolayer biosorption capacity of S.verrucosa biomass 21.80 mg/g. Also, the maximum removal 40.66 mg/g (80.20%) of Mn(II) ion by alga under optimized conditions promises the potential use in mine water treatment technology.
Downloads
References
Ahalya, N., Ramachandra, T.V., Kanamadi, R.D. 2003. Biosorption of heavy metals. Research. Journal of. Chemistry and Environment. 7: 71-78
Aksu, Z., Egretli, G. and Kutsal, T. 1998. A comparative study of Cu (II) biosorption on Ca-alginate agarose and immobilized Chlorella vulgaris in a packed bed column. Process Biochem., 33(4): 393-400.doi:10.1016/s0032-9592(98)00002-8.
Arica, M.Y., Kacar, Y., Genc, O. 2001. Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: Preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Journal of Bioresource Technology,80 (2), 121-129.doi:10.1016/s0960-8524(01)00084.
Aydin, H., Buluta, Y. and Yerlikaya, C. 2008. Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents, J. Environ. Manage., 87(1):37–45.doi:10.1016/jenvman.2007.01.005.
Bailey, J.E., Olin, T.J., Bricka, R.M. and Adrian, D.D. 1999. Areview of potentially low-cost sorbents for heavy metals. Water research.,33(11): 2469-2479.doi:10.1016/s0043-1354(98)00475-8.
Bansod, S.R. and Nandkar,P.B. 2015. Physiological effects of mining contaminants on algae with special reference to heavy metal toxicity. International Journal of Researches in Biosciences, Agriculture and Technology, 3:43-55.
Bishnoi, N.R., Kumar, R., Kumar, S. and Rani, S. 2007. Biosorption of Cr (III) from aqueous solution using algal biomass of Spirogyra spp., J. Hazard. Mater. 145(1-2): 142 – 147.doi:10.1016/j.jhazmat.2006.10.093.
Brenner, F.J. 2001. Use of Constructed Wetlands for Acid Mine Drainage Abatement and Stream Restoration. Wat. Sci. Technol., 44, 11-12, 449.doi:10.1061/40569 (2001)495.
Crist, H.R., Oberholser, K., Shank, N. and Nguyen, M. 1981. Nature of bonding between metallic ions and algal cell walls, Environ.Sci.Technol. 15(10),1212-1217. doi:10.1021/es0092a010.
Deng, L.P., Zhu, X., Wang, X. and Su, Y. 2007. Biosorption of copper (II) from aqueous solutions by green alga Cladophora fascicularis, Biodegradation. 18(4): 393–402.doi:10.1007/s10532-006-9074-6.
Deo, N. and Ali, M., 1993. Dye adsorption by a newlow-cost material: Congored. Indian J. Environ. Prot., 12: 828.
Donmez, G. and Aksu, Z. 2002. Removal of Chromium (IV) from saline wastewaters by Dunaliella species. Process Biochem., 38(5), 751-762.doi:10.1016/s0032-9592 (02) 00204.
Dundar, M., Nuhoglu, C. and Nuhoglu, Y. 2008. Adsorption of Cu (II) ions onto the litter of natural trembling poplar forest. Journal of Hazardous Materials 151(1): 86–95.doi:10.1016/j.jhazmat.2007.05.055.
Dursun, A.Y. 2006. “A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger,” Biochem. Eng. J., 28(2), 187-195. doi:10.1016/j.bej.2005.11.003.
Freundlich, H. 1906. Adsorption in solution. J. Phys. Chem., 57: 385-470.
Guiry, M.D. and Guiry, G.M. 2014. Algae base. Word wide electronic publication, National University of Ireland, Galway. www.algaebase.org; searched on 10th August 2014.
Gupta, V., Agarwal, J., Sharma, S. 2008. Adsorption Analysis of Mn(VII) from Aqueous Medium by Natural Polymer Chitin and Chitosan. Asian J.of Chem.,20(8): 6195-98.
Gupta, V.K. and Rastogi, A. 2008. Sorption and desorption studies of chromium (VI) from nonviable Cyanobacterium, Nostoc muscorum biomass. J. Hazard. Mater., 154(1-3): 347–354.doi:10.1016/j.jhazmzt.2007.10.032.
Gupta, V.K., A.K. Shrivastava. N. Jain 2001. Biosorption of chromium (VI) from aqueous solution by green algae Spirogyra species. Water Research. 35(17): 4079-4085.doi:10.1016/s0043-1354 (01) 00138-5.
Gupta, V.K., Rastogi, A., Saini, V.K. and Jain, N. 2006. Biosorption of copper (II) from aqueous solutions by Spirogyra species. Journal of Colloid and Interface Science, 296(1): 59-63.doi:10.1016/j.jcis.2005.08.033.
Han, X., Wong Y.S. and Tam, N.F.Y. 2006. Surface complexation mechanism and modeling in Cr (III) biosorption by a microalgal isolate, Chlorella miniata, J. Colloid Interface Sci., 303(2): 365–371.doi:10.1016/j.jcis. 2006.08.028.
Ho, Y.S. and McKay, G. 1999. Pseudo-second order model for sorption process. Process Biochem., 34(5): 451–465.doi:10.1016/s0032-9592(98)00112-5.
Kiran, B., Kaushik, A. and Kaushik, C.P. 2007. Biosorption of Cr (VI) by native isolate of Lyngbya putealis(HH-15) in the presence of salts. J. Hazard. Mater., 141(3), 662-667.doi:10.1016/j.jhazmat. 2006.07.026.
Kratochvil, D. and Volesky, B. 1998. Advances in biosorption of heavy metals. Trends in Biotechnology., 16(7): 291-300.doi:10.1016/s0167-7799(98) 01218-9.
Langmuir, I. 1918. The adsorption of gases on plane surface of glass, mica and platinum. J. Am. Chem. Soc., 40(9): 1361-1403.doi:10.1021/ja02242a004.
Mashitah, M.D., Yus Azila, Y. and Bhatia, S. 2008. Biosorption of Cadmium (II) ions by immobilized cells of Pycnoporus sanguineus from aqueous solution. Bioresource Technology., 99(11): 4742-4748.doi:10.1016/j.biortech.2007.09.062.
Matei, G.M., Kiptoo, J.K., Oyaro, N. and Onditi, A.O. 2015. Biosorption of selected heavy metals by green algae, Spirogyra species and its potential as a pollution Biomonitor. Chemistry and Materials Research, 7 (7), 42-52.
Matheickal, J.T. and Yu, Q. 1996. Biosorption of lead from aqueous solutions by marine alga Eklonia radiate. Water Sci.Technol.34(9): 1-7.doi:10.1016/s0273-1223(96) 00780-9.
Modis, K., Adam, K., Panagopoulas, K and Kontopulos, A. 1998. Development and validation of a geostatistical model for prediction of acid mine drainage in underground sulphide mines. Trans. Instn. Min. Metall., sect A, pp 102-107.
Mohan, D. and Chander, S. 2001. Single Component and Multi-Component Adsorption of Metal Ions by Activated Carbons. Coll. Surf. Physico. Eng. Aspects, 177(2-3), 183-196.doi:10.1016/s0927-7757(00) 00670-1.
Moreno, N., Querol, X., Ayora, C., Alastuey, A., Fernandez-Pereira, C. and Janssen-Jurkovicova, M. 2001.Potential Environmental Applications of Pure Zeolitic Material Synthesized from Fly Ash. J. Environ. Eng.-ASCE, 127 (11) 994-1002.doi:10.1061/(asce) 0733-9372 (2001) 127:11(994).
Morgan, B.E., Loewenthal,R.E. and Lahav, O. 2004. Fundamental Study of a One-Step Ambient Temperature Ferrite Process for Treatmentof Acid Mine Drainage Waters. Wat. SA, 27(2), 277. doi:10.4314/wsa.v27i2.5001.
Onyancha, D., Mavura, W., Ngila, J.C., Ongoma, P., and Chacha, J. 2008. Studies of chromium removal from tannery wastewaters by algae biosorbents, Spirogyra condensata and Rhizoclonium hieroglyphicum. J. Hazard. Mater., 158(2-3): 605–614.doi:10.1016/j.jhazmat. 2008.02.043.
Pahlvanzadeh, H., Keshtkar, A.R., Safdari, J. and Abadi, Z. 2010. Biosorption of nickel (II) from aqueous solution by brown algae: Equilibrium, dynamic and thermodynamic studies. J. Hazard. Mater., 175 (1-3): 304-310.doi:10.1016/j.jhazmzt. 2009.10.004.
Park, D. Yun, Y. S. and Park, J. M. 2005. Use of dead fungal biomass for the detoxification of hexavalent chromium: Screening and kinetics. Process Biochem., 40(7): 2559-2565.doi:10.1016/j.procbio.2004.12.002.
Romera, E., Gonzalez, F., Ballester, A., Blazquez, M.L. and Munoz, J.A. 2006. Biosorption with algae: A Statistical Review. J. Crit. Rev. Biotechnol., 26(4): 223-235.doi:10.1080/07388550600972153.
Saha, U.K., Taniguchi, S. and Sakurai, K. 2002. Simultaneous adsorption of cadmium, zinc, and lead on hydroxyalumium- and hydoroxyaluminosilica temontmorillinite complexes. Soil Sci. Soc. Am. J., 66(1): 117–128.doi:10.2136/sssaj2002.0117.
Sandau, E., Sandau, P., Pulz, O. and Zimmermann, M. 1996. Heavy metal sorption by marine algae and algal byproducts. Acta Biotechnol. 16(2-3): 103-119.doi:10.1002/abio.370160203.
Shen, J.C. and Duvnjak, Z. 2004. Effects of temperature and pH on adsorption isotherms for cupric and cadmium ions in their single and binary solutions using corncob particles as adsorbent, Sep. Sci Technol.39(13): 3023 – 3041.doi:10.1081/ss-200030335.
Sheng, P.X., Ting, Y.P., Chen P.J. and Hong, L. 2004. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms, J. Colloids Interf. Sci. 275(1): 131–141.doi:10.1016/j.jcis.2004.01.036.
Shuja, A. and Azizullah. 2006. Effects of biomass concentration on the biosorption of Chromium by Spirogyra sp. Biologia, Pakistan. 52: 01-06.
Tunali, S., Akar, T., Ozcan, A. S. and Kiran, I. 2006. Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola. Sep. Purif. Technol., 47(3): 105 – 112.doi:10.1016/j.seppur.2005.06.009.
Volesky, B. 2001. Detoxification of metal-bearing effluents: Biosorption for the next century. Hydrometallurgy, 59(2-3): 203-216.doi:10.1016/s0304-386x(00) 00160-2.
Volesky, B. 2003. Sorption and Biosorption. BV-Sorbex Inc, St. Lambert, Quebec, Canadá. p. 316.
Volesky, B. 2007. Biosorption and me, Water Res. 41(18): 4017 – 4029.doi:10.1016/j.watres.2007.05.062.
Wang, H.L. and Chen, C. 2006. Biosorption of heavy metals by Saccharomyces cerevisiae: A review, Biotechnol. Adv. 24(5), 427 – 451.doi:10.1016/j.biotechadv.2006.03.001.
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).