Skip to main navigation menu Skip to main content Skip to site footer

Special issue on Mini Reviews

Vol. 10 No. sp2 (2023)

Role of microalgae as a sustainable alternative of biopolymers and its application in industries

DOI
https://doi.org/10.14719/pst.2460
Submitted
23 February 2023
Published
13-08-2023 — Updated on 22-09-2023
Versions

Abstract

The escalating accumulation of petroleum-based polymers has depleted resources and raised environmental concerns due to their non-recyclable and non-biodegradable nature. Consequently, there has been a growing interest in bio-based plastics, particularly algal-based biopolymers, which offer recyclability and eco-friendliness. Algae-derived polymers have distinct advantages, such as autotrophic growth reducing greenhouse gas emissions, rapid growth rate, low nutritional requirements, and resilience to harsh environments. Additionally, algae exhibit higher photosynthetic potential (10-20%) compared to terrestrial plants (1%-2%). The range of algal-derived polymers includes alginate, laminarin, fucoidan, carrageenan, agar, ulvan, polyhydroxyalkanoates (PHA), and poly-(Hydroxybutyrate) (PHB). However, further efforts are required to implement them on a large scale. This review highlights algae's potential as a raw material for biopolymer production, exploring their characteristics and applications in diverse industries like food and pharmaceuticals.

References

  1. Solonaru AM, Asandulesa M, Honciuc A. Homologous Series of Polyaniline Derivatives Block Copolymers with Amphiphilic and Semiconducting Properties. Polymers. 2022 May 25;14(11):2149. https://doi.org/10.3390/polym14112149
  2. Singh A, Pramanik J, Gururani P. Different Materials Used For Edible Coating, Their Characteristics and Properties. Indian Journal of Pure & Applied Biosciences. 2020;8(3):70-7
  3. Formela K, Kura?ska M, Barczewski M. Recent advances in development of waste-based polymer materials: A review. Polymers. 2022 Mar 6;14(5):1050. https://doi.org/10.3390/polym14051050
  4. Dintcheva NT, Infurna G, Baiamonte M, D’Anna F. Natural compounds as sustainable additives for biopolymers. Polymers. 2020 Mar 25;12(4):732. https://doi.org/10.3390/polym12040732
  5. Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, Abu-Omar M, Scott SL, Suh S. Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering. 2020 Feb 3;8(9):3494-511. https://doi.org/10.1021/acssuschemeng.9b06635
  6. Baranwal J, Barse B, Fais A, Delogu GL, Kumar A. Biopolymer: A sustainable material for food and medical applications. Polymers. 2022 Feb 28;14(5):983. https://doi.org/10.3390/polym14050983
  7. Yaashikaa PR, Kumar PS, Karishma SJ. Review on biopolymers and composites–Evolving material as adsorbents in removal of environmental pollutants. Environmental Research. 2022 Sep 1;212:113114. https://doi.org/10.1016/j.envres.2022.113114
  8. Koncar V. Composites and hybrid structures. Collections. 2019 Jul 28;153(215). https://dx.doi.org/10.1016/B978-0-08-102308-2.00002-4
  9. Madadi R, Maljaee H, Serafim LS, Ventura SP. Microalgae as contributors to produce biopolymers. Marine Drugs. 2021 Aug 19;19(8):466. https://doi.org/10.3390/md19080466
  10. Zhang C, Show PL, Ho SH. Progress and perspective on algal plastics–a critical review. Bioresource technology. 2019 Oct 1;289:121700. https://doi.org/10.1016/j.biortech.2019.121700
  11. Gururani P, Bhatnagar P, Kumar V, Vlaskin MS, Grigorenko AV. Algal Consortiums: A Novel and Integrated Approach for Wastewater Treatment. Water. 2022 Nov 21;14(22):3784. https://doi.org/10.3390/w14223784
  12. Nanda S, Patra BR, Patel R, Bakos J, Dalai AK. Innovations in applications and prospects of bioplastics and biopolymers: A review. Environmental Chemistry Letters. 2022 Feb;20(1):379-95. https://doi.org/10.1007/s10311-021-01334-4
  13. Karan H, Funk C, Grabert M, Oey M, Hankamer B. Green bioplastics as part of a circular bioeconomy. Trends in plant science. 2019 Mar 1;24(3):237-49. https://doi.org/10.1016/j.tplants.2018.11.010
  14. Devadas VV, Khoo KS, Chia WY, Chew KW, Munawaroh HS, Lam MK, Lim JW, Ho YC, Lee KT, Show PL. Algae biopolymer towards sustainable circular economy. Bioresource technology. 2021 Apr 1;325:124702. https://doi.org/10.1016/j.biortech.2021.124702
  15. Bisht B, Gururani P, Aman J, Vlaskin MS, Anna K, Joshi S, Kumar S, Kumar V. A review on holistic approaches for fruits and vegetables biowastes valorization. Materials Today: Proceedings. 2023 Jan 1;73:54-63. https://doi.org/10.1016/j.matpr.2022.09.168
  16. Polman EM, Gruter GJ, Parsons JR, Tietema A. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Science of the Total Environment. 2021 Jan 20;753:141953. https://doi.org/10.1016/j.scitotenv.2020.141953
  17. Mal N, Satpati G, Raghunathan S, Davoodbasha M. Current strategies on algae-based biopolymer production and scale-up. Chemosphere. 2022 Feb 1;289:133178. https://doi.org/10.1016/j.chemosphere.2021.133178
  18. Bhatnagar P, Gururani P, Bisht B, Kumar V. Algal Biochar: an advance and sustainable method for wastewater treatment. Octa Journal of Biosciences. 2021 Dec 1;9(2)
  19. Jaiswal KK, Kumar V, Gururani P, Vlaskin MS, Parveen A, Nanda M, Kurbatova A, Gautam P, Grigorenko AV. Bio-flocculation of oleaginous microalgae integrated with municipal wastewater treatment and its hydrothermal liquefaction for biofuel production. Environmental Technology & Innovation. 2022 May 1;26:102340. https://doi.org/10.1016/j.eti.2022.102340
  20. Kakarla R, Choi JW, Yun JH, Kim BH, Heo J, Lee S, Cho DH, Ramanan R, Kim HS. Application of high-salinity stress for enhancing the lipid productivity of Chlorella sorokiniana HS1 in a two-phase process. Journal of microbiology. 2018 Jan;56:56-64. https://doi.org/10.1007/s12275-018-7488-6
  21. Azeem M, Batool F, Iqbal N. Algal-based biopolymers. InAlgae Based Polymers, Blends, and Composites 2017 Jan 1 (pp. 1-31). Elsevier. https://doi.org/10.1016/B978-0-12-812360-7.00001-X
  22. Longino A. International Journal of environmental research and public health. Wilderness & Environmental Medicine. 2015 Mar 1;26(1):99. https://doi.org/10.1016/j.wem.2014.12.007
  23. Rajauria G, Cornish L, Ometto F, Msuya FE, Villa R. Identification and selection of algae for food, feed, and fuel applications. InSeaweed Sustainability 2015 Jan 1 (pp. 315-345). Academic Press. https://doi.org/10.1016/B978-0-12-418697-2.00012-X
  24. Morales-Jiménez M, Gouveia L, Yáñez-Fernández J, Castro-Muñoz R, Barragán-Huerta BE. Production, preparation and characterization of microalgae-based biopolymer as a potential bioactive film. Coatings. 2020 Jan 31;10(2):120. https://doi.org/10.3390/coatings10020120
  25. Johnsson N, Steuer F. Bioplastic material from microalgae: Extraction of starch and PHA from microalgae to create a bioplastic material.
  26. Mendhulkar VD, Shetye LA. Synthesis of biodegradable polymer polyhydroxyalkanoate (PHA) in cyanobacteria Synechococcus elongates under mixotrophic nitrogen-and phosphate-mediated stress conditions. Industrial Biotechnology. 2017 Apr 1;13(2):85-93. https://doi.org/10.1089/ind.2016.0021
  27. Costa SS, Miranda AL, Andrade BB, de Jesus Assis D, Souza CO, de Morais MG, Costa JA, Druzian JI. Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. International journal of biological macromolecules. 2018 Sep 1;116:552-62. https://doi.org/10.1016/j.ijbiomac.2018.05.064
  28. Vanessa CC, Cleber KD, Ana LT, Jorge AV, Michele GD. Polyhydroxybutyrate production by Spirulina sp. LEB 18 grown under different nutrient concentrations. African Journal of Microbiology Research. 2015 Jun 17;9(24):1586-94. https://doi.org/10.5897/AJMR2015.7530
  29. Arun J, Vigneshwar SS, Swetha A, Gopinath KP, Basha S, Brindhadevi K, Pugazhendhi A. Bio-based algal (Chlorella vulgaris) refinery on de-oiled algae biomass cake: A study on biopolymer and biodiesel production. Science of The Total Environment. 2022 Apr 10;816:151579. https://doi.org/10.1016/j.scitotenv.2021.151579
  30. Martins RG, Gonçalves IS, Morais MG, Costa JA. New technologies from the bioworld: selection of biopolymer-producing microalgae. Polímeros. 2017 Oct;27:285-9. https://doi.org/10.1590/0104-1428.2375
  31. Costa SS, Miranda AL, de Morais MG, Costa JA, Druzian JI. Microalgae as source of polyhydroxyalkanoates (PHAs)—A review. International journal of biological macromolecules. 2019 Jun 15;131:536-47. https://doi.org/10.1016/j.ijbiomac.2019.03.099
  32. Bisht B, Bhatnagar P, Gururani P, Kumar V, Tomar MS, Sinhmar R, Rathi N, Kumar S. Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables–a review. Trends in Food Science & Technology. 2021 Aug 1;114:372-85. https://doi.org/10.1016/j.tifs.2021.06.002
  33. Sharma V, Sehgal R, Gupta R. Polyhydroxyalkanoate (PHA): Properties and modifications. Polymer. 2021 Jan 6;212:123161. https://doi.org/10.1016/j.polymer.2020.123161
  34. Li Z, Yang J, Loh XJ. Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Materials. 2016 Apr;8(4):e265-. https://doi.org/10.1038/am.2016.48
  35. Lutzu GA, Ciurli A, Chiellini C, Di Caprio F, Concas A, Dunford NT. Latest developments in wastewater treatment and biopolymer production by microalgae. Journal of Environmental Chemical Engineering. 2021 Feb 1;9(1):104926. https://doi.org/10.1016/j.jece.2020.104926
  36. Kovalcik A, Meixner K, Mihalic M, Zeilinger W, Fritz I, Fuchs W, Kucharczyk P, Stelzer F, Drosg B. Characterization of polyhydroxyalkanoates produced by Synechocystis salina from digestate supernatant. International journal of biological macromolecules. 2017 Sep 1;102:497-504. https://doi.org/10.1016/j.ijbiomac.2017.04.054
  37. Apriyanto A, Compart J, Fettke J. A review of starch, a unique biopolymer–Structure, metabolism and in planta modifications. Plant Science. 2022 May 1;318:111223. https://doi.org/10.1016/j.plantsci.2022.111223
  38. Gifuni I, Olivieri G, Krauss IR, D'Errico G, Pollio A, Marzocchella A. Microalgae as new sources of starch: Isolation and characterization of microalgal starch granules. Chemical Engineering Transactions. 2017 Mar 20;57:1423-8. https://doi.org/10.3303/CET1757238
  39. Bisht B, Lohani UC, Kumar V, Gururani P, Sinhmar R. Edible hydrocolloids as sustainable substitute for non-biodegradable materials. Critical Reviews in Food Science and Nutrition. 2022 Jan 25;62(3):693-725. https://doi.org/10.1080/10408398.2020.1827219
  40. Joshi NC, Gururani P. A mini review on heavy metal contamination in vegetable crops. International Journal of Environmental Analytical Chemistry. 2023 May 8:1-2. https://doi.org/10.1080/03067319.2023.2210058
  41. Saha SK, Murray P. Exploitation of microalgae species for nutraceutical purposes: Cultivation aspects. Fermentation. 2018 Jun 14;4(2):46. https://doi.org/10.3390/fermentation4020046
  42. Nanda M, Jaiswal KK, Kumar V, Verma M, Vlaskin MS, Gururani P, Kim H, Alajmi MF, Hussain A. Bio-remediation capacity for Cd (II) and Pb (II) from the aqueous medium by two novel strains of microalgae and their effect on lipidomics and metabolomics. Journal of Water Process Engineering. 2021 Dec 1;44:102404. https://doi.org/10.1016/j.jwpe.2021.102404
  43. Bisht B, Gururani P, Pandey S, Jaiswal KK, Kumar S, Vlaskin MS, Verma M, Kim H, Kumar V. Multi-stage hydrothermal liquefaction modeling of sludge and microalgae biomass to increase bio-oil yield. Fuel. 2022 Nov 15;328:125253. https://doi.org/10.1016/j.fuel.2022.125253
  44. Kumar V, Gururani P, Parveen A, Verma M, Kim H, Vlaskin M, Grigorenko AV, Rindin KG. Dairy Industry wastewater and stormwater energy valorization: Effect of wastewater nutrients on microalgae-yeast biomass. Biomass Conversion and Biorefinery. 2022 Jun 21:1-0. https://doi.org/10.1007/s13399-022-02947-7
  45. Bhatnagar P, Gururani P, Joshi S, Singh YP, Vlaskin MS, Kumar V. Enhancing the bio-prospects of microalgal-derived bioactive compounds in food industry: a review. Biomass Conversion and Biorefinery. 2023 Jun 9:1-7. https://doi.org/10.1007/s13399-023-04410-7
  46. Ramanan R, Tran QG, Cho DH, Jung JE, Kim BH, Shin SY, Choi SH, Liu KH, Kim DS, Lee SJ, Crespo JL. The ancient phosphatidylinositol 3-kinase signaling system is a master regulator of energy and carbon metabolism in algae. Plant Physiology. 2018 Jul 1;177(3):1050-65. https://doi.org/10.1104/pp.17.01780
  47. Mohan AA, Antony AR, Greeshma K, Yun JH, Ramanan R, Kim HS. Algal biopolymers as sustainable resources for a net-zero carbon bioeconomy. Bioresource Technology. 2022 Jan 1;344:126397. https://doi.org/10.1016/j.biortech.2021.126397
  48. Kratzer R, Murkovic M. Food ingredients and nutraceuticals from microalgae: main product classes and biotechnological production. Foods. 2021 Jul 14;10(7):1626. https://doi.org/10.3390/foods10071626
  49. Jha D, Jain V, Sharma B, Kant A, Garlapati VK. Microalgae?based pharmaceuticals and nutraceuticals: an emerging field with immense market potential. ChemBioEng Reviews. 2017 Aug;4(4):257-72. https://doi.org/10.1002/cben.201600023
  50. Kartik A, Akhil D, Lakshmi D, Gopinath KP, Arun J, Sivaramakrishnan R, Pugazhendhi A. A critical review on production of biopolymers from algae biomass and their applications. Bioresource Technology. 2021 Jun 1;329:124868. https://doi.org/10.1016/j.biortech.2021.124868
  51. Hammed AM, Jaswir I, Amid A, Alam Z, Asiyanbi-H TT, Ramli N. Enzymatic hydrolysis of plants and algae for extraction of bioactive compounds. Food Reviews International. 2013 Oct 2;29(4):352-70. https://doi.org/10.1080/87559129.2013.818012
  52. Costa JA, Lucas BF, Alvarenga AG, Moreira JB, de Morais MG. Microalgae polysaccharides: an overview of production, characterization, and potential applications. Polysaccharides. 2021 Oct 1;2(4):759-72. https://doi.org/10.3390/polysaccharides2040046
  53. Bhatnagar P, Gururani P, Bisht B, Kumar V, Kumar N, Joshi R, Vlaskin MS. Impact of irradiation on physico-chemical and nutritional properties of fruits and vegetables: A mini review. Heliyon. 2022 Oct 3. https://doi.org/10.1016/j.heliyon.2022.e10918
  54. Bisht B, Kumar V, Gururani P, Tomar MS, Nanda M, Vlaskin MS, Kumar S, Kurbatova A. The potential of nuclear magnetic resonance (NMR) in metabolomics and lipidomics of microalgae-a review. Archives of Biochemistry and Biophysics. 2021 Oct 15;710:108987. https://doi.org/10.1016/j.abb.2021.108987
  55. Amini M, Yousefi-Massumabad H, Younesi H, Abyar H, Bahramifar N. Production of the polyhydroxyalkanoate biopolymer by Cupriavidus necator using beer brewery wastewater containing maltose as a primary carbon source. Journal of Environmental Chemical Engineering. 2020 Feb 1;8(1):103588. https://doi.org/10.1016/j.jece.2019.103588
  56. Searchinger T, Waite R, Hanson C, Ranganathan J, Dumas P, Matthews E, Klirs C. Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050. Final report
  57. Randrianarison G, Ashraf MA. Microalgae: a potential plant for energy production. Geology, Ecology, and Landscapes. 2017 Apr 3;1(2):104-20. https://doi.org/10.1080/24749508.2017.1332853
  58. Adeyeye OA, Sadiku ER, Babu Reddy A, Ndamase AS, Makgatho G, Sellamuthu PS, Perumal AB, Nambiar RB, Fasiku VO, Ibrahim ID, Agboola O. The use of biopolymers in food packaging. Green biopolymers and their nanocomposites. 2019:137-58. https://doi.org/10.1007/978-981-13-8063-1_6
  59. Muthulakshmi L, Annaraj J, Ramakrishna S, Ranjan S, Dasgupta N, Mavinkere Rangappa S, Siengchin S. A sustainable solution for enhanced food packaging via a science?based composite blend of natural sourced chitosan and microbial extracellular polymeric substances. Journal of Food Processing and Preservation. 2021 Jan;45(1):e15031. https://doi.org/10.1111/jfpp.15031
  60. Caporgno MP, Mathys A. Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in nutrition. 2018 Jul 31;5:58. https://doi.org/10.3389/fnut.2018.00058
  61. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH. Algae as nutritional and functional food sources: revisiting our understanding. Journal of applied phycology. 2017 Apr;29:949-82. https://doi.org/10.1007/s10811-016-0974-5
  62. Matos J, Cardoso CL, Falé P, Afonso CM, Bandarra NM. Investigation of nutraceutical potential of the microalgae Chlorella vulgaris and Arthrospira platensis. International Journal of Food Science & Technology. 2020 Jan;55(1):303-12. https://doi.org/10.1111/ijfs.14278
  63. Andrade LM, Andrade CJ, Dias M, Nascimento C, Mendes MA. Chlorella and spirulina microalgae as sources of functional foods. Nutraceuticals, and Food Supplements. 2018;6(1):45-58. http://dx.doi.org/10.15406/mojfpt.2018.06.00144
  64. Sen T, Barrow CJ, Deshmukh SK. Microbial pigments in the food industry—challenges and the way forward. Frontiers in nutrition. 2019 Mar 5;6:7. https://doi.org/10.3389/fnut.2019.00007
  65. Potijun S, Yaisamlee C, Sirikhachornkit A. Pigment production under cold stress in the green microalga Chlamydomonas reinhardtii. Agriculture. 2021 Jun 20;11(6):564. https://doi.org/10.3390/agriculture11060564
  66. de Morais MG, de Morais EG, Silva Vaz BD, Goncalves CF, Lisboa C, Vieira Costa JA. Nanoencapsulation of the bioactive compounds of Spirulina with a microalgal biopolymer coating. Journal of Nanoscience and Nanotechnology. 2016 Jan 1;16(1):81-91. https://doi.org/10.1166/jnn.2016.10899
  67. Cybulska J, Halaj M, Cepák V, Lukavský J, Capek P. Nanostructure features of microalgae biopolymer. Starch?Stärke. 2016 Jul;68(7-8):629-36. https://doi.org/10.1002/star.201500159
  68. Cunha C, Silva L, Paulo J, Faria M, Nogueira N, Cordeiro N. Microalgal-based biopolymer for nano-and microplastic removal: a possible biosolution for wastewater treatment. Environmental Pollution. 2020 Aug 1;263:114385. https://doi.org/10.1016/j.envpol.2020.114385
  69. Xiao R, Zheng Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology advances. 2016 Nov 15;34(7):1225-44. https://doi.org/10.1016/j.biotechadv.2016.08.004
  70. Moradali MF, Rehm BH. Bacterial biopolymers: from pathogenesis to advanced materials. Nature Reviews Microbiology. 2020 Apr;18(4):195-210. https://doi.org/10.1038/s41579-019-0313-3
  71. Cao H, Ma S, Guo H, Cui X, Wang S, Zhong X, Wu Y, Zheng W, Wang H, Yu J, Ma L. Comparative study on the monosaccharide compositions, antioxidant and hypoglycemic activities in vitro of intracellular and extracellular polysaccharides of liquid fermented Coprinus comatus. International Journal of Biological Macromolecules. 2019 Oct 15;139:543-9. https://doi.org/10.1016/j.ijbiomac.2019.08.017
  72. Kumar CG, Mongolla P, Pombala S. Lasiosan, a new exopolysaccharide from Lasiodiplodia sp. strain B2 (MTCC 6000): Structural characterization and biological evaluation. Process Biochemistry. 2018 Sep 1;72:162-9. https://doi.org/10.1016/j.procbio.2018.06.014
  73. Irbe I, Filipova I, Skute M, Zajakina A, Spunde K, Juhna T. Characterization of novel biopolymer blend mycocel from plant cellulose and fungal fibers. Polymers. 2021 Mar 30;13(7):1086. https://doi.org/10.3390/polym13071086
  74. Beckers SJ, Wetherbee L, Fischer J, Wurm FR. Fungicide loaded and biodegradable xylan?based nanocarriers. Biopolymers. 2020 Dec;111(12):e23413. https://doi.org/10.1002/bip.23413
  75. Goetz SM, Steen DA, Miller MA, Guyer C, Kottwitz J, Roberts JF, Blankenship E, Pearson PR, Warner DA, Reed RN. Argentine Black and White Tegu (Salvator merianae) can survive the winter under semi-natural conditions well beyond their current invasive range. Plos one. 2021 Mar 10;16(3):e0245877. https://doi.org/10.1371/journal.pone.0245877
  76. Morais MG, Stillings C, Dersch R, Rudisile M, Pranke P, Costa JA, Wendorff J. Biofunctionalized nanofibers using Arthrospira (Spirulina) biomass and biopolymer. BioMed Research International. 2015 Jan 15;2015. https://doi.org/10.1155/2015/967814
  77. Kaewbai-Ngam A, Incharoensakdi A, Monshupanee T. Increased accumulation of polyhydroxybutyrate in divergent cyanobacteria under nutrient-deprived photoautotrophy: An efficient conversion of solar energy and carbon dioxide to polyhydroxybutyrate by Calothrix scytonemicola TISTR 8095. Bioresource technology. 2016 Jul 1;212:342-7. https://doi.org/10.1016/j.biortech.2016.04.035
  78. Monshupanee T, Nimdach P, Incharoensakdi A. Two-stage (photoautotrophy and heterotrophy) cultivation enables efficient production of bioplastic poly-3-hydroxybutyrate in auto-sedimenting cyanobacterium. Scientific reports. 2016 Nov 15;6(1):37121. https://doi.org/10.1038/srep37121
  79. Puspanadan S, Wong XJ, Lee CK. Optimization of freshwater microalgae, Arthrospira sp.(Spirulina) for high starch production. International Food Research Journal. 2018 May 1;25(3):1266-72
  80. Hassanpour M, Abbasabadi M, Ebrahimi S, Hosseini M, Sheikhbaglou A. Gravimetric enrichment of high lipid and starch accumulating microalgae. Bioresource technology. 2015 Nov 1;196:17-21. https://doi.org/10.1016/j.biortech.2015.07.046

Downloads

Download data is not yet available.