Role of microalgae as a sustainable alternative of biopolymers and its application in industries
DOI:
https://doi.org/10.14719/pst.2460Keywords:
Algae, Biopolymers, Pharmaceutical Industry, Food industryAbstract
The escalating accumulation of petroleum-based polymers has depleted resources and raised environmental concerns due to their non-recyclable and non-biodegradable nature. Consequently, there has been a growing interest in bio-based plastics, particularly algal-based biopolymers, which offer recyclability and eco-friendliness. Algae-derived polymers have distinct advantages, such as autotrophic growth reducing greenhouse gas emissions, rapid growth rate, low nutritional requirements, and resilience to harsh environments. Additionally, algae exhibit higher photosynthetic potential (10-20%) compared to terrestrial plants (1%-2%). The range of algal-derived polymers includes alginate, laminarin, fucoidan, carrageenan, agar, ulvan, polyhydroxyalkanoates (PHA), and poly-(Hydroxybutyrate) (PHB). However, further efforts are required to implement them on a large scale. This review highlights algae's potential as a raw material for biopolymer production, exploring their characteristics and applications in diverse industries like food and pharmaceuticals.
Downloads
References
Solonaru AM, Asandulesa M, Honciuc A. Homologous Series of Polyaniline Derivatives Block Copolymers with Amphiphilic and Semiconducting Properties. Polymers. 2022 May 25;14(11):2149. https://doi.org/10.3390/polym14112149
Singh A, Pramanik J, Gururani P. Different Materials Used For Edible Coating, Their Characteristics and Properties. Indian Journal of Pure & Applied Biosciences. 2020;8(3):70-7
Formela K, Kura?ska M, Barczewski M. Recent advances in development of waste-based polymer materials: A review. Polymers. 2022 Mar 6;14(5):1050. https://doi.org/10.3390/polym14051050
Dintcheva NT, Infurna G, Baiamonte M, D’Anna F. Natural compounds as sustainable additives for biopolymers. Polymers. 2020 Mar 25;12(4):732. https://doi.org/10.3390/polym12040732
Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, Abu-Omar M, Scott SL, Suh S. Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering. 2020 Feb 3;8(9):3494-511. https://doi.org/10.1021/acssuschemeng.9b06635
Baranwal J, Barse B, Fais A, Delogu GL, Kumar A. Biopolymer: A sustainable material for food and medical applications. Polymers. 2022 Feb 28;14(5):983. https://doi.org/10.3390/polym14050983
Yaashikaa PR, Kumar PS, Karishma SJ. Review on biopolymers and composites–Evolving material as adsorbents in removal of environmental pollutants. Environmental Research. 2022 Sep 1;212:113114. https://doi.org/10.1016/j.envres.2022.113114
Koncar V. Composites and hybrid structures. Collections. 2019 Jul 28;153(215). https://dx.doi.org/10.1016/B978-0-08-102308-2.00002-4
Madadi R, Maljaee H, Serafim LS, Ventura SP. Microalgae as contributors to produce biopolymers. Marine Drugs. 2021 Aug 19;19(8):466. https://doi.org/10.3390/md19080466
Zhang C, Show PL, Ho SH. Progress and perspective on algal plastics–a critical review. Bioresource technology. 2019 Oct 1;289:121700. https://doi.org/10.1016/j.biortech.2019.121700
Gururani P, Bhatnagar P, Kumar V, Vlaskin MS, Grigorenko AV. Algal Consortiums: A Novel and Integrated Approach for Wastewater Treatment. Water. 2022 Nov 21;14(22):3784. https://doi.org/10.3390/w14223784
Nanda S, Patra BR, Patel R, Bakos J, Dalai AK. Innovations in applications and prospects of bioplastics and biopolymers: A review. Environmental Chemistry Letters. 2022 Feb;20(1):379-95. https://doi.org/10.1007/s10311-021-01334-4
Karan H, Funk C, Grabert M, Oey M, Hankamer B. Green bioplastics as part of a circular bioeconomy. Trends in plant science. 2019 Mar 1;24(3):237-49. https://doi.org/10.1016/j.tplants.2018.11.010
Devadas VV, Khoo KS, Chia WY, Chew KW, Munawaroh HS, Lam MK, Lim JW, Ho YC, Lee KT, Show PL. Algae biopolymer towards sustainable circular economy. Bioresource technology. 2021 Apr 1;325:124702. https://doi.org/10.1016/j.biortech.2021.124702
Bisht B, Gururani P, Aman J, Vlaskin MS, Anna K, Joshi S, Kumar S, Kumar V. A review on holistic approaches for fruits and vegetables biowastes valorization. Materials Today: Proceedings. 2023 Jan 1;73:54-63. https://doi.org/10.1016/j.matpr.2022.09.168
Polman EM, Gruter GJ, Parsons JR, Tietema A. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Science of the Total Environment. 2021 Jan 20;753:141953. https://doi.org/10.1016/j.scitotenv.2020.141953
Mal N, Satpati G, Raghunathan S, Davoodbasha M. Current strategies on algae-based biopolymer production and scale-up. Chemosphere. 2022 Feb 1;289:133178. https://doi.org/10.1016/j.chemosphere.2021.133178
Bhatnagar P, Gururani P, Bisht B, Kumar V. Algal Biochar: an advance and sustainable method for wastewater treatment. Octa Journal of Biosciences. 2021 Dec 1;9(2)
Jaiswal KK, Kumar V, Gururani P, Vlaskin MS, Parveen A, Nanda M, Kurbatova A, Gautam P, Grigorenko AV. Bio-flocculation of oleaginous microalgae integrated with municipal wastewater treatment and its hydrothermal liquefaction for biofuel production. Environmental Technology & Innovation. 2022 May 1;26:102340. https://doi.org/10.1016/j.eti.2022.102340
Kakarla R, Choi JW, Yun JH, Kim BH, Heo J, Lee S, Cho DH, Ramanan R, Kim HS. Application of high-salinity stress for enhancing the lipid productivity of Chlorella sorokiniana HS1 in a two-phase process. Journal of microbiology. 2018 Jan;56:56-64. https://doi.org/10.1007/s12275-018-7488-6
Azeem M, Batool F, Iqbal N. Algal-based biopolymers. InAlgae Based Polymers, Blends, and Composites 2017 Jan 1 (pp. 1-31). Elsevier. https://doi.org/10.1016/B978-0-12-812360-7.00001-X
Longino A. International Journal of environmental research and public health. Wilderness & Environmental Medicine. 2015 Mar 1;26(1):99. https://doi.org/10.1016/j.wem.2014.12.007
Rajauria G, Cornish L, Ometto F, Msuya FE, Villa R. Identification and selection of algae for food, feed, and fuel applications. InSeaweed Sustainability 2015 Jan 1 (pp. 315-345). Academic Press. https://doi.org/10.1016/B978-0-12-418697-2.00012-X
Morales-Jiménez M, Gouveia L, Yáñez-Fernández J, Castro-Muñoz R, Barragán-Huerta BE. Production, preparation and characterization of microalgae-based biopolymer as a potential bioactive film. Coatings. 2020 Jan 31;10(2):120. https://doi.org/10.3390/coatings10020120
Johnsson N, Steuer F. Bioplastic material from microalgae: Extraction of starch and PHA from microalgae to create a bioplastic material.
Mendhulkar VD, Shetye LA. Synthesis of biodegradable polymer polyhydroxyalkanoate (PHA) in cyanobacteria Synechococcus elongates under mixotrophic nitrogen-and phosphate-mediated stress conditions. Industrial Biotechnology. 2017 Apr 1;13(2):85-93. https://doi.org/10.1089/ind.2016.0021
Costa SS, Miranda AL, Andrade BB, de Jesus Assis D, Souza CO, de Morais MG, Costa JA, Druzian JI. Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. International journal of biological macromolecules. 2018 Sep 1;116:552-62. https://doi.org/10.1016/j.ijbiomac.2018.05.064
Vanessa CC, Cleber KD, Ana LT, Jorge AV, Michele GD. Polyhydroxybutyrate production by Spirulina sp. LEB 18 grown under different nutrient concentrations. African Journal of Microbiology Research. 2015 Jun 17;9(24):1586-94. https://doi.org/10.5897/AJMR2015.7530
Arun J, Vigneshwar SS, Swetha A, Gopinath KP, Basha S, Brindhadevi K, Pugazhendhi A. Bio-based algal (Chlorella vulgaris) refinery on de-oiled algae biomass cake: A study on biopolymer and biodiesel production. Science of The Total Environment. 2022 Apr 10;816:151579. https://doi.org/10.1016/j.scitotenv.2021.151579
Martins RG, Gonçalves IS, Morais MG, Costa JA. New technologies from the bioworld: selection of biopolymer-producing microalgae. Polímeros. 2017 Oct;27:285-9. https://doi.org/10.1590/0104-1428.2375
Costa SS, Miranda AL, de Morais MG, Costa JA, Druzian JI. Microalgae as source of polyhydroxyalkanoates (PHAs)—A review. International journal of biological macromolecules. 2019 Jun 15;131:536-47. https://doi.org/10.1016/j.ijbiomac.2019.03.099
Bisht B, Bhatnagar P, Gururani P, Kumar V, Tomar MS, Sinhmar R, Rathi N, Kumar S. Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables–a review. Trends in Food Science & Technology. 2021 Aug 1;114:372-85. https://doi.org/10.1016/j.tifs.2021.06.002
Sharma V, Sehgal R, Gupta R. Polyhydroxyalkanoate (PHA): Properties and modifications. Polymer. 2021 Jan 6;212:123161. https://doi.org/10.1016/j.polymer.2020.123161
Li Z, Yang J, Loh XJ. Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Materials. 2016 Apr;8(4):e265-. https://doi.org/10.1038/am.2016.48
Lutzu GA, Ciurli A, Chiellini C, Di Caprio F, Concas A, Dunford NT. Latest developments in wastewater treatment and biopolymer production by microalgae. Journal of Environmental Chemical Engineering. 2021 Feb 1;9(1):104926. https://doi.org/10.1016/j.jece.2020.104926
Kovalcik A, Meixner K, Mihalic M, Zeilinger W, Fritz I, Fuchs W, Kucharczyk P, Stelzer F, Drosg B. Characterization of polyhydroxyalkanoates produced by Synechocystis salina from digestate supernatant. International journal of biological macromolecules. 2017 Sep 1;102:497-504. https://doi.org/10.1016/j.ijbiomac.2017.04.054
Apriyanto A, Compart J, Fettke J. A review of starch, a unique biopolymer–Structure, metabolism and in planta modifications. Plant Science. 2022 May 1;318:111223. https://doi.org/10.1016/j.plantsci.2022.111223
Gifuni I, Olivieri G, Krauss IR, D'Errico G, Pollio A, Marzocchella A. Microalgae as new sources of starch: Isolation and characterization of microalgal starch granules. Chemical Engineering Transactions. 2017 Mar 20;57:1423-8. https://doi.org/10.3303/CET1757238
Bisht B, Lohani UC, Kumar V, Gururani P, Sinhmar R. Edible hydrocolloids as sustainable substitute for non-biodegradable materials. Critical Reviews in Food Science and Nutrition. 2022 Jan 25;62(3):693-725. https://doi.org/10.1080/10408398.2020.1827219
Joshi NC, Gururani P. A mini review on heavy metal contamination in vegetable crops. International Journal of Environmental Analytical Chemistry. 2023 May 8:1-2. https://doi.org/10.1080/03067319.2023.2210058
Saha SK, Murray P. Exploitation of microalgae species for nutraceutical purposes: Cultivation aspects. Fermentation. 2018 Jun 14;4(2):46. https://doi.org/10.3390/fermentation4020046
Nanda M, Jaiswal KK, Kumar V, Verma M, Vlaskin MS, Gururani P, Kim H, Alajmi MF, Hussain A. Bio-remediation capacity for Cd (II) and Pb (II) from the aqueous medium by two novel strains of microalgae and their effect on lipidomics and metabolomics. Journal of Water Process Engineering. 2021 Dec 1;44:102404. https://doi.org/10.1016/j.jwpe.2021.102404
Bisht B, Gururani P, Pandey S, Jaiswal KK, Kumar S, Vlaskin MS, Verma M, Kim H, Kumar V. Multi-stage hydrothermal liquefaction modeling of sludge and microalgae biomass to increase bio-oil yield. Fuel. 2022 Nov 15;328:125253. https://doi.org/10.1016/j.fuel.2022.125253
Kumar V, Gururani P, Parveen A, Verma M, Kim H, Vlaskin M, Grigorenko AV, Rindin KG. Dairy Industry wastewater and stormwater energy valorization: Effect of wastewater nutrients on microalgae-yeast biomass. Biomass Conversion and Biorefinery. 2022 Jun 21:1-0. https://doi.org/10.1007/s13399-022-02947-7
Bhatnagar P, Gururani P, Joshi S, Singh YP, Vlaskin MS, Kumar V. Enhancing the bio-prospects of microalgal-derived bioactive compounds in food industry: a review. Biomass Conversion and Biorefinery. 2023 Jun 9:1-7. https://doi.org/10.1007/s13399-023-04410-7
Ramanan R, Tran QG, Cho DH, Jung JE, Kim BH, Shin SY, Choi SH, Liu KH, Kim DS, Lee SJ, Crespo JL. The ancient phosphatidylinositol 3-kinase signaling system is a master regulator of energy and carbon metabolism in algae. Plant Physiology. 2018 Jul 1;177(3):1050-65. https://doi.org/10.1104/pp.17.01780
Mohan AA, Antony AR, Greeshma K, Yun JH, Ramanan R, Kim HS. Algal biopolymers as sustainable resources for a net-zero carbon bioeconomy. Bioresource Technology. 2022 Jan 1;344:126397. https://doi.org/10.1016/j.biortech.2021.126397
Kratzer R, Murkovic M. Food ingredients and nutraceuticals from microalgae: main product classes and biotechnological production. Foods. 2021 Jul 14;10(7):1626. https://doi.org/10.3390/foods10071626
Jha D, Jain V, Sharma B, Kant A, Garlapati VK. Microalgae?based pharmaceuticals and nutraceuticals: an emerging field with immense market potential. ChemBioEng Reviews. 2017 Aug;4(4):257-72. https://doi.org/10.1002/cben.201600023
Kartik A, Akhil D, Lakshmi D, Gopinath KP, Arun J, Sivaramakrishnan R, Pugazhendhi A. A critical review on production of biopolymers from algae biomass and their applications. Bioresource Technology. 2021 Jun 1;329:124868. https://doi.org/10.1016/j.biortech.2021.124868
Hammed AM, Jaswir I, Amid A, Alam Z, Asiyanbi-H TT, Ramli N. Enzymatic hydrolysis of plants and algae for extraction of bioactive compounds. Food Reviews International. 2013 Oct 2;29(4):352-70. https://doi.org/10.1080/87559129.2013.818012
Costa JA, Lucas BF, Alvarenga AG, Moreira JB, de Morais MG. Microalgae polysaccharides: an overview of production, characterization, and potential applications. Polysaccharides. 2021 Oct 1;2(4):759-72. https://doi.org/10.3390/polysaccharides2040046
Bhatnagar P, Gururani P, Bisht B, Kumar V, Kumar N, Joshi R, Vlaskin MS. Impact of irradiation on physico-chemical and nutritional properties of fruits and vegetables: A mini review. Heliyon. 2022 Oct 3. https://doi.org/10.1016/j.heliyon.2022.e10918
Bisht B, Kumar V, Gururani P, Tomar MS, Nanda M, Vlaskin MS, Kumar S, Kurbatova A. The potential of nuclear magnetic resonance (NMR) in metabolomics and lipidomics of microalgae-a review. Archives of Biochemistry and Biophysics. 2021 Oct 15;710:108987. https://doi.org/10.1016/j.abb.2021.108987
Amini M, Yousefi-Massumabad H, Younesi H, Abyar H, Bahramifar N. Production of the polyhydroxyalkanoate biopolymer by Cupriavidus necator using beer brewery wastewater containing maltose as a primary carbon source. Journal of Environmental Chemical Engineering. 2020 Feb 1;8(1):103588. https://doi.org/10.1016/j.jece.2019.103588
Searchinger T, Waite R, Hanson C, Ranganathan J, Dumas P, Matthews E, Klirs C. Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050. Final report
Randrianarison G, Ashraf MA. Microalgae: a potential plant for energy production. Geology, Ecology, and Landscapes. 2017 Apr 3;1(2):104-20. https://doi.org/10.1080/24749508.2017.1332853
Adeyeye OA, Sadiku ER, Babu Reddy A, Ndamase AS, Makgatho G, Sellamuthu PS, Perumal AB, Nambiar RB, Fasiku VO, Ibrahim ID, Agboola O. The use of biopolymers in food packaging. Green biopolymers and their nanocomposites. 2019:137-58. https://doi.org/10.1007/978-981-13-8063-1_6
Muthulakshmi L, Annaraj J, Ramakrishna S, Ranjan S, Dasgupta N, Mavinkere Rangappa S, Siengchin S. A sustainable solution for enhanced food packaging via a science?based composite blend of natural sourced chitosan and microbial extracellular polymeric substances. Journal of Food Processing and Preservation. 2021 Jan;45(1):e15031. https://doi.org/10.1111/jfpp.15031
Caporgno MP, Mathys A. Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in nutrition. 2018 Jul 31;5:58. https://doi.org/10.3389/fnut.2018.00058
Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH. Algae as nutritional and functional food sources: revisiting our understanding. Journal of applied phycology. 2017 Apr;29:949-82. https://doi.org/10.1007/s10811-016-0974-5
Matos J, Cardoso CL, Falé P, Afonso CM, Bandarra NM. Investigation of nutraceutical potential of the microalgae Chlorella vulgaris and Arthrospira platensis. International Journal of Food Science & Technology. 2020 Jan;55(1):303-12. https://doi.org/10.1111/ijfs.14278
Andrade LM, Andrade CJ, Dias M, Nascimento C, Mendes MA. Chlorella and spirulina microalgae as sources of functional foods. Nutraceuticals, and Food Supplements. 2018;6(1):45-58. http://dx.doi.org/10.15406/mojfpt.2018.06.00144
Sen T, Barrow CJ, Deshmukh SK. Microbial pigments in the food industry—challenges and the way forward. Frontiers in nutrition. 2019 Mar 5;6:7. https://doi.org/10.3389/fnut.2019.00007
Potijun S, Yaisamlee C, Sirikhachornkit A. Pigment production under cold stress in the green microalga Chlamydomonas reinhardtii. Agriculture. 2021 Jun 20;11(6):564. https://doi.org/10.3390/agriculture11060564
de Morais MG, de Morais EG, Silva Vaz BD, Goncalves CF, Lisboa C, Vieira Costa JA. Nanoencapsulation of the bioactive compounds of Spirulina with a microalgal biopolymer coating. Journal of Nanoscience and Nanotechnology. 2016 Jan 1;16(1):81-91. https://doi.org/10.1166/jnn.2016.10899
Cybulska J, Halaj M, Cepák V, Lukavský J, Capek P. Nanostructure features of microalgae biopolymer. Starch?Stärke. 2016 Jul;68(7-8):629-36. https://doi.org/10.1002/star.201500159
Cunha C, Silva L, Paulo J, Faria M, Nogueira N, Cordeiro N. Microalgal-based biopolymer for nano-and microplastic removal: a possible biosolution for wastewater treatment. Environmental Pollution. 2020 Aug 1;263:114385. https://doi.org/10.1016/j.envpol.2020.114385
Xiao R, Zheng Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology advances. 2016 Nov 15;34(7):1225-44. https://doi.org/10.1016/j.biotechadv.2016.08.004
Moradali MF, Rehm BH. Bacterial biopolymers: from pathogenesis to advanced materials. Nature Reviews Microbiology. 2020 Apr;18(4):195-210. https://doi.org/10.1038/s41579-019-0313-3
Cao H, Ma S, Guo H, Cui X, Wang S, Zhong X, Wu Y, Zheng W, Wang H, Yu J, Ma L. Comparative study on the monosaccharide compositions, antioxidant and hypoglycemic activities in vitro of intracellular and extracellular polysaccharides of liquid fermented Coprinus comatus. International Journal of Biological Macromolecules. 2019 Oct 15;139:543-9. https://doi.org/10.1016/j.ijbiomac.2019.08.017
Kumar CG, Mongolla P, Pombala S. Lasiosan, a new exopolysaccharide from Lasiodiplodia sp. strain B2 (MTCC 6000): Structural characterization and biological evaluation. Process Biochemistry. 2018 Sep 1;72:162-9. https://doi.org/10.1016/j.procbio.2018.06.014
Irbe I, Filipova I, Skute M, Zajakina A, Spunde K, Juhna T. Characterization of novel biopolymer blend mycocel from plant cellulose and fungal fibers. Polymers. 2021 Mar 30;13(7):1086. https://doi.org/10.3390/polym13071086
Beckers SJ, Wetherbee L, Fischer J, Wurm FR. Fungicide loaded and biodegradable xylan?based nanocarriers. Biopolymers. 2020 Dec;111(12):e23413. https://doi.org/10.1002/bip.23413
Goetz SM, Steen DA, Miller MA, Guyer C, Kottwitz J, Roberts JF, Blankenship E, Pearson PR, Warner DA, Reed RN. Argentine Black and White Tegu (Salvator merianae) can survive the winter under semi-natural conditions well beyond their current invasive range. Plos one. 2021 Mar 10;16(3):e0245877. https://doi.org/10.1371/journal.pone.0245877
Morais MG, Stillings C, Dersch R, Rudisile M, Pranke P, Costa JA, Wendorff J. Biofunctionalized nanofibers using Arthrospira (Spirulina) biomass and biopolymer. BioMed Research International. 2015 Jan 15;2015. https://doi.org/10.1155/2015/967814
Kaewbai-Ngam A, Incharoensakdi A, Monshupanee T. Increased accumulation of polyhydroxybutyrate in divergent cyanobacteria under nutrient-deprived photoautotrophy: An efficient conversion of solar energy and carbon dioxide to polyhydroxybutyrate by Calothrix scytonemicola TISTR 8095. Bioresource technology. 2016 Jul 1;212:342-7. https://doi.org/10.1016/j.biortech.2016.04.035
Monshupanee T, Nimdach P, Incharoensakdi A. Two-stage (photoautotrophy and heterotrophy) cultivation enables efficient production of bioplastic poly-3-hydroxybutyrate in auto-sedimenting cyanobacterium. Scientific reports. 2016 Nov 15;6(1):37121. https://doi.org/10.1038/srep37121
Puspanadan S, Wong XJ, Lee CK. Optimization of freshwater microalgae, Arthrospira sp.(Spirulina) for high starch production. International Food Research Journal. 2018 May 1;25(3):1266-72
Hassanpour M, Abbasabadi M, Ebrahimi S, Hosseini M, Sheikhbaglou A. Gravimetric enrichment of high lipid and starch accumulating microalgae. Bioresource technology. 2015 Nov 1;196:17-21. https://doi.org/10.1016/j.biortech.2015.07.046
Downloads
Published
Versions
- 22-09-2023 (2)
- 13-08-2023 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Rohit Dimri, Shivangi Mall, Somya Sinha, Naveen Chandra Joshi, Pooja Bhatnagar, Rohit Sharma, Vinod Kumar, Prateek Gururani
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).