A review of approaches to enhance salt stress tolerance in cotton by genetic engineering
DOI:
https://doi.org/10.14719/pst.2525Keywords:
Defense-related genes, Gossypium species, Soil salinization, stress resistanceAbstract
Due to climate change, deserts are expanding, water reservoirs are drying, soil erosion is becoming more serious, and salinity areas are expanding worldwide. Among these disasters, soil salinization is one of the serious issues that affect agricultural production, with significant effects on plant development. Although plants have a solid adaptation to severe environmental conditions, their vulnerability to some abiotic stresses is still preserved in the plant genome. Cotton is a salt stress-tolerant crop among other main cash crops. However, its tolerance is limited in overwatered soil conditions or water-deficient soil. Several research investigations have been carried out to date to better understand salinity stress responses in various cotton species. The accumulation of salt due to irrigation-dependent practices exerts an adverse impact on crop productivity. However, this deleterious effect can be mitigated through a comprehensive understanding of the mechanisms by which certain plants flourish under saline conditions. Over the past few decades, there has been a notable augmentation in mechanistic comprehension, leading to the initiation of discovery-oriented methodologies aimed at discerning the genetic determinants of salt tolerance. Recent studies are showing the results of the manipulation of some important genes and proteins for salt tolerance using modern approaches. The identification of salt-resistance genes from salt-tolerant germplasm resources plays an essential role in improving the yield of cotton in saline soils. In this paper, we reviewed what has been achieved in cotton in terms of the development of its salt tolerance using genetic engineering.
Downloads
References
Chele KH, Tinte MM, Piater LA, Dubery IA, Tugizimana F. Soil Salinity, a Serious Environmental Issue and Plant Responses: A Metabolomics Perspective. Metabolites. 2021;11(11). https://doi.org/10.3390/metabo11110724
Navarro-Torre S, Garcia-Caparrós P, Nogales A, Abreu MM, Santos E, Cortinhas AL, et al. Sustainable agricultural management of saline soils in arid and semi-arid Mediterranean regions through halophytes, microbial, and soil-based technologies. Environmental and Experimental Botany. 2023;212:105397. https://doi.org/10.1016/j.envexpbot.2023.105397
Stavi I, Thevs N, Priori S. Soil Salinity and Sodicity in Drylands: A Review of Causes, Effects, Monitoring, and Restoration Measures. 2021;9. https://doi.org/10.3389/fenvs.2021.712831
Oren A. Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiology Ecology. 2002;39(1):1-7. https://doi.org/10.1111/j.1574-6941.2002.tb00900.x
Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S, et al. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environmental Microbiology. 2007;9(10):2603-21. https://doi.org/10.1111/j.1462-2920.2007.01377.x
Shrivastava P, Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi journal of biological sciences. 2015;22(2):123-31. https://doi.org/10.1016/j.sjbs.2014.12.001
Khondoker M, Mandal S, Gurav R, Hwang S. Freshwater Shortage, Salinity Increase, and Global Food Production: A Need for Sustainable Irrigation Water Desalination—A Scoping Review. Earth. 2023;4(2):223-40. https://doi.org/10.3390/earth4020012
Ullah A, Bano A, Khan N. Climate Change and Salinity Effects on Crops and Chemical Communication Between Plants and Plant Growth-Promoting Microorganisms Under Stress. Frontiers in sustainable food systems. 2021;5. https://doi.org/10.3389/fsufs.2021.618092
Kumar A, Singh S, Gaurav AK, Srivastava S, Verma JP. Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants. Frontiers in microbiology. 2020;11. https://doi.org/10.3389/fmicb.2020.01216
Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy. 2017;7(1):18. https://doi.org/10.3390/agronomy7010018
Arora NK. Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability. 2019;2(2):95-6. https://doi.org/10.1007/s42398-019-00078-w
Ferreira TMM, Santos ML, Lopes CL, de Sousa CAF, Souza Junior MT. Effect of salinity stress in Setaria viridis (L.) P. Beauv. accession A10.1 during seed germination and plant development. Ciência e Agrotecnologia. 2020;44(44):e010020. https://doi.org/10.1590/1413-7054202044010020
Isayenkov SV, Maathuis FJM. Plant Salinity Stress: Many Unanswered Questions Remain. Frontiers in Plant Science. 2019;10:80. https://doi.org/10.3389/fpls.2019.00080
Sattar S, Husnain T, Javaid A. Effect of NaCl salinity on cotton (Gossypium arboreum L.) grown on MS medium and in hydroponic cultures. Journal of Animal and Plant Sciences. 2010;20:87-9.
Higbie SM, Wang F, Stewart JM, Sterling TM, Lindemann WC, Hughs E, et al. Physiological Response to Salt (NaCl) Stress in Selected Cultivated Tetraploid Cottons. International Journal of Agronomy. 2010;2010:643475. https://doi.org/10.1155/2010/643475
Hasanuzzaman M, Fujita M. Plant Responses and Tolerance to Salt Stress: Physiological and Molecular Interventions. International Journal of Molecular Sciences. 2022;23(9):4810. https://doi.org/10.3390/ijms23094810
Patel MK, Kumar M, Li W, Luo Y, Burritt DJ, Alkan N, et al. Enhancing Salt Tolerance of Plants: From Metabolic Reprogramming to Exogenous Chemical Treatments and Molecular Approaches. Cells. 2020;9(11):2492. https://doi.org/10.3390/cells9112492
Normamatov IS, Makamov AK, Boykobilov UA, Achilov SG, Khusenov NN, Norbekov JK, et al. Morpho-Biological Traits of Upland Cotton at the Germination Stage under Optimal and Salinity Soil Conditions. Asian Journal of Plant Sciences. 2023;22(1):165-72. https://doi.org/10.3923/ajps.2023.165.172
Thorslund J, Bierkens MFP, Scaini A, Sutanudjaja EH, van Vliet MTH. Salinity impacts on irrigation water scarcity in food bowl regions of the US and Australia. Environmental Research Letters. 2022;17(8):084002. https://doi.org/10.1088/1748-9326/ac7df4
Mishra A, Tanna B. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters. Frontiers in plant science. 2017;8:829. https://doi.org/10.3389/fpls.2017.00829
Zhao G, Song Y, Wang Q, Yao D, Li D, Qin W, et al. Gossypium hirsutum Salt Tolerance Is Enhanced by Overexpression of G. arboreum JAZ1. Front Bioeng Biotechnol. 2020;8:157. https://doi.org/10.3389/fbioe.2020.00157
Billah M, Li F, Yang Z. Regulatory Network of Cotton Genes in Response to Salt, Drought and Wilt Diseases (Verticillium and Fusarium): Progress and Perspective. Frontiers in Plant Science. 2021;12:759245. https://doi.org/10.3389/fpls.2021.759245
Magwanga RO, Lu P, Kirungu JN, Lu H, Wang X, Cai X, et al. Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genetics. 2018;19(1):6. https://doi.org/10.1186/s12863-017-0596-1
Xie F, Wang Q, Sun R, Zhang B. Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. Journal of Experimental Botany. 2015;66(3):789-804. https://doi.org/10.1093/jxb/eru437
Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin KM, et al. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Scientific Reports. 2016;6(1):35040. https://doi.org/10.1038/srep35040
Anwar Z, Ijaz A, Ditta A, Wang B, Liu F, Khan SM, et al. Genomic Dynamics and Functional Insights under Salt Stress in Gossypium hirsutum L. Genes. 2023;14(5). https://doi.org/10.3390/genes14051103
Saud S, Wang L. Mechanism of cotton resistance to abiotic stress, and recent research advances in the osmoregulation related genes. Frontiers in Plant Science 2022;13. https://doi.org/10.3389/fpls.2022.972635
El-Esawi MA, Alayafi AA. Overexpression of StDREB2 Transcription Factor Enhances Drought Stress Tolerance in Cotton (Gossypium barbadense L.). Genes. 2019;10(2):142. https://doi.org/10.3390/genes10020142
Esmaeili N, Cai Y, Tang F, Zhu X, Smith J, Mishra N, et al. Towards doubling fibre yield for cotton in the semiarid agricultural area by increasing tolerance to drought, heat and salinity simultaneously. Plant Biotechnology Journal. 2021;19:462-76. https://doi.org/10.1111/pbi.13476
Ulm R, Ichimura K, Mizoguchi T, Peck SC, Zhu T, Wang X, et al. Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. The EMBO journal. 2002;21(23):6483-93. https://doi.org/10.1093/emboj/cdf646
Zhang J, Zou D, Li Y, Sun X, Wang NN, Gong SY, et al. GhMPK17, a cotton mitogen-activated protein kinase, is involved in plant response to high salinity and osmotic stresses and ABA signaling. PLoS One. 2014;9(4):e95642. https://doi.org/10.1371/journal.pone.0095642
Yuan Y, Xing H, Zeng W, Xu J, Mao L, Wang L, et al. Genome-wide association and differential expression analysis of salt tolerance in Gossypium hirsutum L at the germination stage. BMC Plant Biology. 2019;19(1):394. https://doi.org/10.1186/s12870-019-1989-2
Bano N, Fakhrah S, Mohanty CS, Bag SK. Genome-Wide Identification and Evolutionary Analysis of Gossypium Tubby-Like Protein (TLP) Gene Family and Expression Analyses During Salt and Drought Stress. Frontiers in Plant Science. 2021;12:667929. https://doi.org/10.3389/fpls.2021.667929
Kirungu JN, Magwanga RO, Lu P, Cai X, Zhou Z, Wang X, et al. Functional characterization of Gh_A08G1120 (GH3.5) gene reveal their significant role in enhancing drought and salt stress tolerance in cotton. BMC Genetics. 2019;20(1):62. https://doi.org/10.1186/s12863-019-0756-6
Xu Y, Magwanga RO, Cai X, Zhou Z, Wang X, Wang Y, et al. Deep Transcriptome Analysis Reveals Reactive Oxygen Species (ROS) Network Evolution, Response to Abiotic Stress, and Regulation of Fiber Development in Cotton. International Journal of Molecular Sciences. 2019;20(8):1863. https://doi.org/10.3390/ijms20081863
Magwanga RO, Lu P, Kirungu JN, Dong Q, Cai X, Zhou Z, et al. Knockdown of Cytochrome P450 Genes Gh_D07G1197 and Gh_A13G2057 on Chromosomes D07 and A13 Reveals Their Putative Role in Enhancing Drought and Salt Stress Tolerance in Gossypium hirsutum. Genes. 2019;10(3):226. https://doi.org/10.3390/genes10030226
Che B, Cheng C, Fang J, Liu Y, Jiang L, Yu B. The Recretohalophyte Tamarix TrSOS1 Gene Confers Enhanced Salt Tolerance to Transgenic Hairy Root Composite Cotton Seedlings Exhibiting Virus-Induced Gene Silencing of GhSOS1. International Journal of Molecular Sciences. 2019;20(12):2930. https://doi.org/10.3390/ijms20122930
Yin Z, Han X, Li Y, Wang J, Wang D, Wang S, et al. Comparative Analysis of Cotton Small RNAs and Their Target Genes in Response to Salt Stress. Genes. 2017;8(12):369. https://doi.org/10.3390/genes8120369
Imran M, Shafiq S, Farooq MA, Naeem MK, Widemann E, Bakhsh A, et al. Comparative Genome-wide Analysis and Expression Profiling of Histone Acetyltransferase (HAT) Gene Family in Response to Hormonal Applications, Metal and Abiotic Stresses in Cotton. International Journal of Molecular Sciences. 2019;20(21):5311. https://doi.org/10.3390/ijms20215311
Feng J, Chen Y, Xiao X, Qu Y, Li P, Lu Q, et al. Genome-wide analysis of the CalS gene family in cotton reveals their potential roles in fiber development and responses to stress. PeerJ. 2021;9:e12557. https://doi.org/10.7717/peerj.12557
Downloads
Published
Versions
- 23-10-2023 (2)
- 20-10-2023 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 S Ayubov Mirzakamol, M Asrorov Akmal, M. Darmanov Mukhtor, E. Narmatov Sardor, Mamajanov Akramjon, E Bozorov Ilhomjon, N Khusenov Naim, Matusikova Ildiko, T Buriev Zabardast, Y Abdurakhmonov Ibrokhim
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).