This is an outdated version published on 23-08-2023. Read the most recent version.
Forthcoming

Brassinosteroids: Orchestrating Resilience and Growth in Modern Fruit Production

Authors

DOI:

https://doi.org/10.14719/pst.2544

Keywords:

Brassinosteroids, Development, Growth, post-harvest, yield

Abstract

Plant growth regulators control various physiological processes in plants, including growth and development. Among these regulators, brassinosteroids (BRs) have emerged as important phytohormones with diverse roles in crop development and metabolism. They influence processes like cell division, elongation, reproduction, flowering, vascular differentiation, fruit ripening, root formation, and responses to both biotic and abiotic stressors. Additionally, BRs enhance tolerance and resilience to these stressors. Their impact on fruit trees' defense mechanisms holds significant potential for the fruit industry. This review focuses on the wide-ranging physiological and economic importance of BRs in modern fruit production, highlighting their applications and implications through conceptual research and development efforts.

Downloads

Download data is not yet available.

References

Li J, Li Y, Chen S, An L. Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. J Exp Bot. 2010;61(15):4221-4230. https://doi.org/10.1093/jxb/erq241

De Bruyne L, Höfte M, De Vleesschauwer D. Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol Plant. (2014);7(6):943-959. http://dx.doi.org/10.1093/mp/ssu050

Bajguz A. Brassinosteroids–occurence and chemical structures in plants. Brassinosteroids: a class of plant hormone. 2011;1-27.

Vandenbussche F, Suslov D, De Grauwe L, Leroux O, Vissenberg K, Van Der Straeten, D. The role of brassinosteroids in shoot gravitropism. Plant Physiol. 2011;156(3):1331-1336.

Bechtold U, & Field B. Molecular mechanisms controlling plant growth during abiotic stress. J. Exp. Bot. 2018;69(11):2753-2758. https://doi.org/10.1093/jxb/ery157

Feng W, Lindner H, Robbins NE, & Dinneny JR. Growing out of stress: the role of cell-and organ-scale growth control in plant water-stress responses. Plant Cell. 2016;28(8):1769-1782. https://doi.org/10.1105/tpc.16.00182

Ye H, Liu S, Tang B, Chen J, Xie Z, Nolan TM, ... & Yin Y. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat. Commun. 2017;8(1):14573. https://doi.org/10.1038/ncomms14573

Lima JV, & Lobato AKS. Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. Physiol. Mol. Biol. Plants. 2017;23:59-72. https://doi.org/10.1007/s12298-016-0410-y

Tunc-Ozdemir M, & Jones AM. BRL3 and AtRGS1 cooperate to fine tune growth inhibition and ROS activation. PloS one. 2017;12(5), e0177400. https://doi.org/10.1371/journal.pone.0177400

Zou L J, Deng XG, Zhang LE, Zhu T, Tan WR, Muhammad A, ... & Lin HH. Nitric oxide as a signaling molecule in brassinosteroid?mediated virus resistance to Cucumber mosaic virus in Arabidopsis thaliana. Physiol. Plant. 2018;163(2):196-210. https://doi.org/10.1111/ppl.12677

Fàbregas N, Lozano-Elena F, Blasco-Escámez D, Tohge T, Martínez-Andújar C, Albacete A, ... & Caño-Delgado AI. Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nat. Commun. 2018;9(1):4680. https://doi.org/10.1038/s41467-018-06861-3

Yoshida T, Mogami J, & Yamaguchi-Shinozaki K. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr. Opin. Plant Biol. 2014;21:133-139. https://doi.org/10.1016/j.pbi.2014.07.009

Zhu Y, Wang B, Tang K, Hsu CC, Xie S, Du H, ... & Zhu JK. An Arabidopsis Nucleoporin NUP85 modulates plant responses to ABA and salt stress. PLoS Genetics. 2017;13(12):e1007124. https://doi.org/10.1371/journal.pgen.1007124

Cai Z, Liu J, Wang H, Yang C, Chen Y, Li Y, & Wang X. GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proc. Natl. Acad. Sci. 2014;111(26):9651-9656. https://doi.org/10.1073/pnas.1316717111

Hu Y, & Yu D. BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. Plant Cell. 2014;26(11):4394-4408. https://doi.org/10.1105/tpc.114.130849

Chung Y, Kwon SI, & Choe S. Antagonistic regulation of Arabidopsis growth by brassinosteroids and abiotic stresses. Mol. Cells. 2014;37(11):795. https://doi.org/10.14348%2Fmolcells.2014.0127

Nolan TM, Brennan B, Yang M, Chen J, Zhang M, Li Z, ... & Yin Y. Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. Dev. Cell. 2017;41(1):33-46. https://doi.org/10.1016/j.devcel.2017.03.013

Petridis A, Döll S, Nichelmann L, Bilger W, & Mock HP. Arabidopsis thaliana G2?LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low?temperature regulators of flavonoid accumulation. New Phytol., 2016;211(3):912-925. https://doi.org/10.1111/nph.13986

Ibañez C, Delker C, Martinez C, Bürstenbinder K, Janitza P, Lippmann R, ... & Quint M. Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1. Curr. Biol. 2018;28(2):303-310. https://doi.org/10.1016/j.cub.2017.11.077

Oh E, Zhu J Y, & Wang ZY. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat. Cell Biol. 2012;14(8):802-809. https://doi.org/10.1038/ncb2545

Martínez C, Espinosa?Ruíz A, de Lucas M, Bernardo?García S, Franco?Zorrilla JM, & Prat S. PIF 4?induced BR synthesis is critical to diurnal and thermomorphogenic growth. The EMBO Journal. 2018;37(23):e99552. https://doi.org/10.15252/embj.201899552

Tao JJ, Chen HW, Ma B, Zhang WK, Chen SY, & Zhang JS. The role of ethylene in plants under salinity stress. Front. Plant

Sci. 2015;6:1059. https://doi.org/10.3389/fpls.2015.01059

Zhu T, Deng X, Zhou X, Zhu L, Zou L, Li P, ... & Lin H. Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. Sci. Rep. 2016;6(1):1-15. https://doi.org/10.1038/srep35392

Cui F, Liu L, Zhao Q, Zhang Z, Li Q, Li, B, ... & Xie Q. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell, 2012;24(1):233-244. https://doi.org/10.1105/tpc.111.093062

Tang J, Han Z, Chai J. Q&A: what are brassinosteroids and how do they act in plants? BMC Biol. 2016;14(1):1-5. https://doi.org/10.1186/s12915-016-0340-8

Champa WH, Gill MIS, Mahajan BVC, Aror NK, Bedi S. Brassinosteroids improve quality of table grapes (Vitis vinifera L.) cv. flame seedless. Trop Agric Res. 2015;26:368–379. http://doi.org/10.4038/tar.v26i2.8099

Sirhindi G. Brassinosteroids: biosynthesis and role in growth, development, and thermotolerance responses. Mol Stress Physiol Plants. 2013;309-329.

Liu Q, Xi Z, Gao J, Meng Y, Lin S, Zhang Z. Effects of exogenous 24?epibrassinolide to control grey mould and maintain postharvest quality of table grapes. Int J Food Sci Technol. 2016;51(5):1236-1243. https://doi.org/10.1111/ijfs.13066

Vergara, AE, Díaz K, Carvajal R, Espinoza L, Alcalde JA, Pérez-Donoso AG. Exogenous applications of brassinosteroids improve color of red table grape (Vitis vinifera L. Cv. “Redglobe”) berries. Front Plant Sci. 2018;9:363. https://doi.org/10.3389/fpls.2018.00363

Chervin C, El-Kereamy A, Roustan JP, Latché A, Lamon J, Bouzayen M. Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci. 2004;167(6):1301-1305. http://dx.doi.org/10.1016/j.plantsci.2004.06.026

Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR. Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol. 2006;140(1):150-158. https://doi.org/10.1104/pp.105.070706

Luan LY, Zhang ZW, Xi ZM, Huo SS, Ma LN. Brassinosteroids regulate anthocyanin biosynthesis in the ripening of grape berries. S Afr J Enol Vitic. 2013;34(2):196-203. https://doi.org/10.21548/34-2-1094

Zhu Z, Zhang Z, Qin G, Tian S. Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharvest Biol Technol. 2010;56(1):50-55. https://doi.org/10.1016/j.postharvbio.2009.11.014

Zaharah SS, Singh Z, Symons GM, Reid JB. Role of brassinosteroids, ethylene, abscisic acid, and indole-3-acetic acid in mango fruit ripening. J Plant Growth Regul. 2012;31(3):363-372.

Zaharah SS, Singh Z. Role of brassinosteroids in mango fruit ripening. In XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium. Acta Hortic. 2010;934:929-935. https://doi.org/10.17660/ActaHortic.2012.934.124

Chai YM, Zhang Q, Tian L, Li CL, Xing Y, Qin L, Shen YY. Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regul. 2013;69(1):63-69. https://doi.org/10.1007/s10725-012-9747-6

Ayub RA, Reis L, Bosetto L, Lopes PZ, Galvão CW, Etto RM. Brassinosteroid plays a role on pink stage for receptor and transcription factors involved in strawberry fruit ripening. Plant Growth Regul. 2018;84(1):159-167. https://doi.org/10.1007/s10725-017-0329-5

Roghabadi MA, Pakkish ZAHRA. Role of brassinosteroid on yield, fruit quality and postharvest storage of ‘Tak Danehe Mashhad' sweet cherry (Prunus avium L.). Agric Commun. 2014;2(4):49-56.

Mandava B, Wang Y. Effect of brassinosteroids on cherry maturation, firmness and fruit quality. In III Balkan Symposium on Fruit Growing. Acta Hortic. 2015;1139:451-458. https://doi.org/10.17660/ActaHortic.2016.1139.78

Changfang W, Yong Y, Feng C, Xuesong L, Jun W, Jinshi W. Adjusting effect of brassinolide and GA_ (4) on the orange growth. Acta Agric Universitatis Jiangxiensis. 2004;26(5):759-762.

Gomes MDMA, Campostrini E, Leal NR, Viana AP, Ferraz TM, et al. Brassinosteroid 21analogue effects on the yield of yellow passion fruit plants (Passiflora edulis flavicarpa). Sci Hortic. 2006;110(3):235-240. https://doi.org/10.1016/j.scienta.2006.06.030

Thapliyal VS, Rai P N, Bora L. Influence of pre-harvest application of gibberellin and brassinosteroid on fruit growth and quality characteristics of pear (Pyrus pyrifolia (Burm.) Nakai) cv. Gola. J Appl Nat Sci. 2016;8(4):2305-2310. https://doi.org/10.31018/jans.v8i4.1130

Attia SM, Adss IAA. Effect of preharvest applied brassinosteroid on "Anna" apple fruit retention, coloration and quality. Biosci Res. 2021;18(2):1416-1425.

Sun Y, Asghari M, & Zahedipour-Sheshgelani P. Foliar spray with 24-epibrassinolide enhanced strawberry fruit quality, phytochemical content, and postharvest life. J. Plant Growth Regul. 2020;39:920-929. https://doi.org/10.1007/s00344-019-10033-y

Kolhar AH, Rudresh DL, Jhalegar MJ, Mesta RK, Basavaraja N, Awati MG, & DP P. Effect of postharvest application of chemical elicitors on quality attributes and shelf-life of papaya (Carica papaya L.). Pharma J. 2022;11(9):1916-1922.

Lisso J, Altmann T, Müssig C. Metabolic changes in fruits of the tomato dx mutant. Phytochemistry. 2006;67(20):2232-2238. https://doi.org/10.1016/j.phytochem.2006.07.008

Bombarely A, Merchante C, Csukasi F, Cruz-Rus E, Caballero JL, et al. Generation and analysis of ESTs from strawberry (Fragaria xananassa) fruits and evaluation of their utility in genetic and molecular studies. BMC Genom. 2010;11(1):1-17. https://doi.org/10.1186/1471-2164-11-503

Ayub RA, Reis L, Lopes PZ, Bosetto L. Ethylene and brassinosteroid effect on strawberry ripening after field spray. Rev Bras Frutic. 2018;40. https://doi.org/10.1590/0100-29452018544

Gomes MDMDA, Torres Netto A, Campostrini E, Bressan-Smith R, et al. Brassinosteroid analogue affects the senescence in two papaya genotypes submitted to drought stress. Theor Exp Plant Physiol. 2013; 25:186-195.

Peng J, Tang X, Feng H. Effects of brassinolide on the physiological properties of litchi pericarp (Litchi chinensis cv. nuomoci). Sci Hortic. 2004;101(4):407-416. http://dx.doi.org/10.1016/j.scienta.2003.11.012

Sugiyama K, Kuraishi S. Stimulation of fruit set of 'Morita' navel orange with brassinolide. Acta Hortic. 1989;239:345-348. https://doi.org/10.17660/ActaHortic.1989.239.54

Furio RN, Salazar SM, Mariotti-Martínez JA, Martínez-Zamora GM, Coll Y, & Díaz-Ricci JC. Brassinosteroid Applications Enhance the Tolerance to Abiotic Stresses, Production and Quality of Strawberry Fruits. Horticulturae. 2022;8(7):572. https://doi.org/10.3390/horticulturae8070572

Li J, Quan Y, Wang L, & Wang S. Brassinosteroid Promotes Grape Berry Quality-Focus on Physicochemical Qualities and Their Coordination with Enzymatic and Molecular Processes: A Review. Int. J. Mol. Sci. 2023;24(1):445. https://doi.org/10.3390/ijms24010445

Sharma SK. Brassinosteroids Application Responses in Fruit Crops-A Review. Int. J. Agric. Environ. Biotechnol. 2021;14:123–140. http://dx.doi.org/10.30954/0974-1712.02.2021.2

Hussain A, Qarshi IA, Nazir H, & Ullah I. Plant tissue culture: current status and opportunities. Recent advances in plant in vitro culture. 2012;6(10):1-28. http://dx.doi.org/10.5772/50568

Azpeitia A, Chan JL, Saenz L, & Oropeza C. Effect of 22 (S), 23 (S)-homobrassinolide on somatic embryogenesis in plumule explants of Cocos nucifera (L.) cultured in vitro. J. Hortic. Sci. Biotechnol. 2003;78(5):591-596. https://doi.org/10.1080/14620316.2003.11511669

Published

23-08-2023

Versions

How to Cite

1.
Akshay Kumar, Rajan R, Gulbadan Kaur, Tanya Singh, Keerthana Chundurwar, Gundu Boina Gopichand Reddy, Thammali Vamshi. Brassinosteroids: Orchestrating Resilience and Growth in Modern Fruit Production. Plant Sci. Today [Internet]. 2023 Aug. 23 [cited 2024 Dec. 21];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/2544

Issue

Section

Special issue on Mini Reviews

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.