Enhancing rooting efficiency and nutrient uptake in Rosa damascena Mill. cuttings: insights into auxin and cutting type optimization
DOI:
https://doi.org/10.14719/pst.2585Keywords:
Indole-3-butyric acid (IBA), leaf presence, nutrient uptake, rooting success, Rosa damascena, sustainable cultivationAbstract
Auxin application plays a crucial role in successfully propagating and cultivating Rosa damascena Mill., a valuable plant species with cultural and economic significance. In this study, we aimed to investigate the effects of auxin dose and leaf presence on rooting success and nutrient uptake efficiency in Rosa damascena cuttings. Our results demonstrated that applying IBA significantly improved rooting success and nutrient absorption capacity, with a concentration of 1000 ppm being the most effective, resulting in a remarkable rooting percentage (48 ? 6%), increased root length (2.52 ? 0.25 cm) and improving leaf area (70.18 ? 5.10 cm2). The inclusion of leaves on cuttings has greatly magnified root success (90 ? 10%), leaf area (98.86 ? 17.86 cm2) and nutrient absorption efficiency, highlighting the vital role of leaves in early root development. Our findings provide valuable insights into the development of sustainable and productive cultivation methods for this significant plant species. Furthermore, our investigation emphasized the importance of optimizing auxin application, with leafy cuttings treated with 1000 ppm of auxin showing the most promising results regarding growth attributes, nutrient assimilation and survival rate.
Downloads
References
Alizadeh Z, Fattahi M. Essential oil, total phenolic, flavonoids, anthocyanins, carotenoids and antioxidant activity of cultivated Damask rose (Rosa damascena) from Iran: With chemotyping approach concerning morphology and composition. Scientia Horticulturae. 15 oct 2021;288:110341. https://doi.org/10.1016/j.scienta.2021.110341
Kumari P, S Hegde A, Gupta S, Sharma S, Srivatsan V. Edible rose flowers: A doorway to gastronomic and nutraceutical research. Food Research International. 29 sept 2022;111977. https://doi.org/10.1016/j.foodres.2022.111977
Maiti S, Geetha KA. Medicinal and aromatic plants in India; 2008.
Ghavam M. Relationships of irrigation water and soil physical and chemical characteristics with yield, chemical composition and antimicrobial activity of Damask rose essential oil. PLoS One. 2021;16(4):e0249363. https://doi.org/10.1371/journal.pone.0249363
Amal A, Abdelghani T, Latifa A, Amina IHL, Mimoun M. Effects of cutting origin and exogenous auxin treatment on the rooting of Rosa damascena (Mill) cuttings from the M’goun-Dades valleys in Morocco. Arabian Journal of Medicinal and Aromatic Plants. 2022;8(1):134-54.
Mahajan M, Pal PK. Flower yield and chemical composition of essential oil from Rosa damascena under foliar application of Ca(NO3)2 and seasonal variation. Acta Physiologiae Plantarum. 2020;42:1-13. https://doi.org/10.1007/s11738-019-2996-5
Shishkova M, Ivanova B, Beluhova-Uzunova R, Harizanova A. Opportunities and challenges for sustainable production and processing of Rosa damascena in Bulgaria. Industrial Crops and Products. 2022;186:115184. https://doi.org/10.1016/j.indcrop.2022.115184
Izadi Z, Rezaei Nejad A, Abadía J. Iron chelate improves rooting in indole-3-butyric acid-treated rosemary (Rosmarinus officinalis) stem cuttings. Agriculture. 2022;12(2):210. https://doi.org/10.3390/agriculture12020210
Devi J, Kumar R, Singh K, Gehlot A, Bhushan S, Kumar S. In vitro adventitious roots: A non-disruptive technology for the production of phytoconstituents on the industrial scale. Critical Reviews in Biotechnology. 2021;41(4):564-79. https://doi.org/10.1080/07388551.2020.1869690
Pamfil D, Bellini C. Auxin control in the formation of adventitious roots. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2011;39(1):307-16. https://doi.org/10.15835/nbha3916101
Sofo A, Bochicchio R, Amato M, Rendina N, Vitti A, Nuzzaci M et al. Plant architecture, auxin homeostasis and phenol content in Arabidopsis thaliana grown in cadmium-and zinc-enriched media. Journal of Plant Physiology. 2017;216:174-80. https://doi.org/10.1016/j.jplph.2017.06.008
Mao J, Niu C, Li K, Mobeen Tahir M, Khan A, Wang H et al. Exogenous 6-benzyladenine application affects root morphology by altering hormone status and gene expression of developing lateral roots in Malus hupehensis. Plant Biology. 2020;22(6):1150-59. https://doi.org/10.1111/plb.13154
Ruiz Herrera LF, Shane MW, López-Bucio J. Nutritional regulation of root development. Wiley Interdisciplinary Reviews: Developmental Biology. 2015;4(4):431-43. https://doi.org/10.1002/wdev.183
Opuni-Frimpong E, Karnosky DF, Storer AJ, Cobbinah JR. Key roles of leaves, stockplant age and auxin concentration in vegetative propagation of two African mahoganies: Khaya anthotheca Welw. and Khaya ivorensis A. Chev. New Forests. 2008;36:115-23. https://doi.org/10.1007/s11056-008-9087-6
Querejeta JI, Ren W, Prieto I. Vertical decoupling of soil nutrients and water under climate warming reduces plant cumulative nutrient uptake, water-use efficiency and productivity. New Phytologist. 2021;230(4):1378-93. https://doi.org/10.1111/nph.17258
Wang X lan, Su C jiang, Peng L, Wang H e, Wang H ming, Liu W et al. Ecological suitability assessment and introduction experiment on Rosa damascenatrigintipetala in Sichuan Province, China. Journal of Mountain Science. 2014;11:805-15. https://doi.org/10.1007/s11629-013-2802-6
Magyar Z, De Veylder L, Atanassova A, Bako L, Inze D, Bögre L. The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division. The Plant Cell. 2005;17(9):2527-41. https://doi.org/10.1105/tpc.105.033761
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist. 2012;193(1):30-50. https://doi.org/10.1111/j.1469-8137.2011.03952.x
Pallardy SG. Physiology of woody plants. Academic Press; 2010.
Druege U, Hilo A, Pérez-Pérez JM, Klopotek Y, Acosta M, Shahinnia F et al. Molecular and physiological control of adventitious rooting in cuttings: Phytohormone action meets resource allocation. Annals of Botany. 2019;123(6):929-49. https://doi.org/10.1093/aob/mcy234
Pacurar DI, Perrone I, Bellini C. Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiologia Plantarum. 2014;151(1):83-96. https://doi.org/10.1111/ppl.12171
Zhang P, Su ZQ, Xu L, Shi XP, Du KB, Zheng B et al. Effects of fragment traits, burial orientation and nutrient supply on survival and growth in Populus deltoides× P. simonii. Scientific Reports. 2016;6(1):21031. https://doi.org/10.1038/srep21031
Mubarok S, Fauzi AA, Nuraini A, Rufaidah F, Qonit MAH. Effect of benzyl amino purine and 1-methylcyclopropene in maintaining rooting quality of Chrysanthemum (Chrysanthemum morifolium Ramat cv.‘White Fiji’) cuttings. Research on Crops. 2020;21(1):141-50. https://doi.org/10.31830/2348-7542.2020.024
Doty SL, James CA, Moore AL, Vajzovic A, Singleton GL, Ma C et al. Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. In: Proceedings of the National Academy of Sciences. 2007;104(43):16816-21. https://doi.org/10.1073/pnas.0703276104
Wang J, Moeen-ud-din M, Yang S. Dose-dependent responses of Arabidopsis thaliana to zinc are mediated by auxin homeostasis and transport. Environmental and Experimental Botany. 1 sept 2021;189:104554. https://doi.org/10.1016/j.envexpbot.2021.104554
Nasri F, Fadakar A, Saba MK, Yousefi B. Study of indole butyric acid (IBA) effects on cutting rooting improving some of wild genotypes of Damask roses (Rosa damascena Mill.). Journal of Agricultural Sciences, Belgrade. 2015;60(3):263-75. https://doi.org/10.2298/JAS1503263N
Thompson M, Gamage D, Hirotsu N, Martin A, Seneweera S. Effects of elevated carbon dioxide on photosynthesis and carbon partitioning: A perspective on root sugar sensing and hormonal crosstalk. Frontiers in Physiology. 2017;578. https://doi.org/10.3389/fphys.2017.00578
Para?ikovi? N, Tekli? T, Zeljkovi? S, Lisjak M, Špoljarevi? M. Biostimulants research in some horticultural plant species—A review. Food and Energy Security. 2019;8(2):e00162. https://doi.org/10.1002/fes3.162
Yeshiwas T, Alemayehu M, Alemayehu G. Effects of indole butyric acid (IBA) and stem cuttings on growth of stenting-propagated rose in Bahir Dar, Ethiopia. World Journal of Agricultural Sciences. 2015;11(4):191-97.
Loconsole D, Sdao AE, Cristiano G, De Lucia B. Different responses to adventitious rhizogenesis under indole-3-butyric acid and seaweed extracts in ornamental’s cuttings: First Results in Photinia x fraseri ‘Red Robin’. Agriculture. 2023;13(3):513. https://doi.org/10.3390/agriculture13030513
Baig MMQ, Hafiz IA, Hussain A, Ahmad T, Abbasi NA. An efficient protocol for in vitro propagation of Rosa gruss an teplitz and Rosa centifolia. African Journal of Biotechnology. 2011;10(22):4564-73.
Shiri M, Mudyiwa RM, Takawira M, Musara C, Gama T. Effects of rooting media and indole-3-butyric acid (IBA) concentration on rooting and shoot development of Duranta erecta tip cuttings. African Journal of Plant Science. 2019;13(10):279-85. https://doi.org/10.5897/AJPS2019.1851
Yeshiwas T, Alemayehu M, Alemayehu G. Effects of indole butyric acid (IBA) and stem cuttings on growth of stenting-propagated rose in Bahir Dar, Ethiopia. World Journal of Agricultural Sciences. 2015;11(4):191-97.
Begum S, Nakaba S, Yamagishi Y, Oribe Y, Funada R. Regulation of cambial activity in relation to environmental conditions: Understanding the role of temperature in wood formation of trees. Physiologia Plantarum. 2013;147(1):46-54. https://doi.org/10.1111/j.1399-3054.2012.01663.x
Teixeira da Silva JA, Nezami-Alanagh E, Barreal ME, Kher MM, Wicaksono A, Gulyás A et al. Shoot tip necrosis of in vitro plant cultures: A reappraisal of possible causes and solutions. Planta. 2020;252:1-35. https://doi.org/10.1007/s00425-020-03449-4
Lopez-Moya F, Escudero N, Zavala-Gonzalez EA, Esteve-Bruna D, Blázquez MA, Alabadí D et al. Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Scientific Reports. 2017;7(1):1-14. https://doi.org/10.1038/s41598-017-16874-5
Krajnc AU, Ivanus A, Kristl J, Susek A. Seaweed extract elicits the metabolic responses in leaves and enhances growth of pelargonium cuttings. Eur J Hortic Sci. 2012;77:170-81.
Wang H, Yang J, Zhang M, Fan W, Firon N, Pattanaik S et al. Altered phenylpropanoid metabolism in the maize Lc-expressed sweet potato (Ipomoea batatas) affects storage root development. Scientific Reports. 2016;6(1):18645. https://doi.org/10.1038/srep18645
Kuzmicheva YV, Shaposhnikov AI, Petrova SN, Makarova NM, Tychinskaya IL, Puhalsky JV et al. Variety specific relationships between effects of rhizobacteria on root exudation, growth and nutrient uptake of soybean. Plant and Soil. 2017;419:83-96. https://doi.org/10.1007/s11104-017-3320-z
Farooq A, Kiani M, Khan MA, Riaz A, Khan AA, Anderson N et al. Microsatellite analysis of Rosa damascena from Pakistan and Iran. Hortic Environ Biotechnol. 1 apr 2013;54(2):141-47. https://doi.org/10.1007/s13580-013-0042-x
Monteiro MV, Blanuša T, Verhoef A, Hadley P, Cameron RW. Relative importance of transpiration rate and leaf morphological traits for the regulation of leaf temperature. Australian Journal of Botany. 2016;64(1):32-44. https://doi.org/10.1071/BT15198
Nagasuga K, Murai-Hatano M, Kuwagata T. Effects of low root temperature on dry matter production and root water uptake in rice plants. Plant Production Science. jan 2011;14(1):22-29. https://doi.org/10.1626/pps.14.22
Ai G, Huang R, Zhang D, Li M, Li G, Li W et al. SlGH3.15, a member of the GH3 gene family, regulates lateral root development and gravitropism response by modulating auxin homeostasis in tomato. Plant Science. 1 may 2023;330:111638. https://doi.org/10.1016/j.plantsci.2023.111638
Gul MU, Paul A, SM, Chehri A. Hydrotropism: Understanding the impact of water on plant movement and adaptation. Water. jan 2023;15(3):567. https://doi.org/10.3390/w15030567
Yousefi F, Jabbarzadeh Z, Amiri J, Rasouli-Sadaghiani M, Shaygan A. Foliar application of polyamines improve some morphological and physiological characteristics of rose. Folia Horticulturae. 1 jun 2021;33(1):147-56. https://doi.org/10.2478/fhort-2021-0012
Wu W, Du K, Kang X, Wei H. The diverse roles of cytokinins in regulating leaf development. Horticulture Research. 1 jan 2021;8:118. https://doi.org/10.1038/s41438-021-00558-3
Mishra B, Sharma M, Laxmi A. Role of sugar and auxin crosstalk in plant growth and development. Physiologia Plantarum. 4 sept 2021;174. https://doi.org/10.1111/ppl.13546
Abdel-Rahman S, Abdul-Hafeez E, Saleh AMM. Improving rooting and growth of Conocarpus erectus stem cuttings using indole-3-butyric acid (IBA) and some biostimulants. Scientific Journal of Flowers and Ornamental Plants. 1 jun 2020;7(2):109-29. https://doi.org/10.21608/sjfop.2020.96213
Ricci A, Rolli E, Dramis L, Diaz-Sala C. N,N?-bis-(2,3-Methylenedioxyphenyl)urea and N,N?-bis-(3,4-methylenedioxyphenyl)urea enhance adventitious rooting in Pinus radiata and affect expression of genes induced during adventitious rooting in the presence of exogenous auxin. Plant Science. 1 sept 2008;175(3):356-63. https://doi.org/10.1016/j.plantsci.2008.05.009
Wang Y, Xing J, Wan J, Yao Q, Zhang Y, Mi G et al. Auxin efflux carrier ZmPIN1a modulates auxin reallocation involved in nitrate-mediated root formation. BMC Plant Biology. 3 féb 2023;23(1):74. https://doi.org/10.1186/s12870-023-04087-0
Downloads
Published
Versions
- 01-01-2024 (2)
- 15-10-2023 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Soumia El Malahi , Noureddine Sbah, Jamaa Zim, Mounia Ennami, Bahija Zakri , Wafaa Mokhtari, Houda Taimourya, Mimoun Mokhtari, Lalla Mina Idrissi Hassani
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).