Influence of metal and metal oxide nanoparticles on growth and total phenolic content accumulation of Anoectochilus roxburghii cultured in vitro
DOI:
https://doi.org/10.14719/pst.2943Keywords:
Anoectochilus roxburghii, AgNPs, AuNPs, CuNPs, Fe3O4NPs, phenolicAbstract
The application of metal nanoparticles in agriculture and related fields, especially in plant cell tissue culture has increased interest in recent years due to its potential benefits. This study used gold nanoparticles (AuNPs), silver nanoparticles (AgNPs), copper nanoparticles (CuNPs) and magnetite nanoparticles (Fe3O4NPs) to evaluate their effect on the growth and total phenolic content (TPC) of Anoectochilus roxburghii. The results showed that Fe3O4 NPs were the most positively influenced metal nanoparticles in increasing biomass and TPC of A. roxburghii among metal nanoparticles tested. After 8 weeks of culture, the dry weight (DW) and TPC of the plants cultured on the medium containing 5 ppm Fe3O4NPs were 39.07 mg and 13.0 mg gallic acid respectively per g of dry weight (mg GAE/g DW). Meanwhile, on the medium without Fe3O4NPs, they were 30.47 mg and 6.71 mg GAE/g DW respectively. This study proposed an effective approach to improve the growth and accumulation of TPC in A. roxburghii. Moreover, it suggests the potential application of metal nanoparticles in plant tissue culture and the production of bioactive compounds.
Downloads
References
Xu M, Shao Q, Ye S, Li S, Wu M, Ding M, Li Y. Simultaneous extraction and identification of phenolic compounds in Anoectochilus roxburghii using microwave-assisted extraction combined with UPLC-Q-TOF-MS/MS and their antioxidant activities. Front Plant Sci. 2017;8:1474. https://doi.org/10.3389/fpls.2017.01474
Zeng B, Su M, Chen Q, Chang Q, Wang W, Li H. Antioxidant and hepatoprotective activities of polysaccharides from Anoectochilus roxburghii. Carbohydr Polym. 2016;153:391-98. https://doi:10.1016/j.carbpol.2016.07.067
Liu Q, Li Y, Sheng SM. Anti-aging effects and mechanisms of Anoectochilus roxburghii (Wall.) Lindl polysaccharose. J Huaqiao Univ. 2020;41(01):77-83.
Fu L, Zhu W, Tian D, Tang Y, Ye Y, Wei Q et al. Dietary supplement of Anoectochilus roxburghii (Wall.) Lindl. polysaccharides ameliorates cognitive dysfuntion induced by high fat diet via “ Gut-Brain” axis. Drug Design, Development and Therapy. 2022;16:1931-45. https://doi.org/10.2147/DDDT.S356934
Tian D, Zhong X, Fu L, Zhu W, Liu X, Wu Z et al. Therapeutic effect and mechanism of polysaccharides from Anoectochilus roxburghii (Wall.) Lindl. in diet-induced obesity. Phytomedicine. 2022;99:154031. https://doi:10.1016/j.phymed.2022.154031
Bin YL, Liu SZ, Xie TT, Feng WZ, Li HY, Ye ZJ et al. Three new compounds from Anoectochilus roxburghii (Wall.) Lindl. Nat Prod Res. 2023;37(19):3276-82. https://doi.org/10.1080/14786419.2022.2070746
Gunes BA, Ozkan T, Gonulkirmaz N, Sunguroglu A. The evaluation of the anti-cancer effects of Anoectochilus roxburghii on hematological cancers in vitro. Med Oncol. 2023;41(1):6. https://doi: 10.1007/s12032-023-02231-2.
Huang T, Wu Y, Huang L, Lin R, Li Z, Wang X et al. Mechanism of the effect of compound Anoectochilus roxburghii (Wall.) Lindl. oral liquid in treating alcoholic rat liver injury by metabolomics. Drug Des Devel Ther. 2023;15:17:3409-28. https://doi:10.2147/DDDT.S427837.
Urbancova H. Competitive advantage achievement through innovation and knowledge. J Compet. 2013;5:82-96. https://doi.org/10.7441/joc.2013.01.06
Muo I, Azeez AA. Green entrepreneurship: Literature review and agenda for future research. Int J Entrep Knowl. 2019;7:17-29. https://doi.org/10.37335/ijek.v7i2.90
Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013;31:346-56. https://doi.org/10.1016/j.biotechadv.2013.01.003
Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, Hong J. Green synthesis of nanoparticles: Current developments and limitations. Environ Technol Innov. 2022;26:102336. https://doi.org/10.1016/j.eti.2022.102336
Marous?ek J, Marous?kova? A, Periakaruppan R, Gokul GM, Anbukumaran A, Bohata? A et al. Silica nanoparticles from coir pith synthesized by acidic sol-gel method improve germination economics. Polymers. 2022;14:266. https://doi.org/10.3390/polym14020266
Weng X, Jin X, Lin J, Naidu R, Chen Z. Removal of mixed contaminants Cr(VI) and Cu(II) by green synthesized iron based nanoparticles. Ecol Eng. 2016;97:32-39. https://doi.org/10.1016/j.ecoleng.2016.08.003
Wang T, Jin X, Chen Z, Megharaj M, Naidu R. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci Total Environ. 2014;466-467:210-13. https://doi.org/10.1016/j.scitotenv.2013.07.022
Wei Y, Fang Z, Zheng L, Tsang EP. Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal. Appl Surf Sci. 2017;399:322-29. https://doi.org/10.1016/j.apsusc.2016.12.090
Judit O, Pe?ter L, Pe?ter B, Mo?nika HR, Jo?zsef P. The role of biofuels in food commodity prices volatility and land use. J Compet. 2017;9:81-93. https://doi.org/10.7441/joc.2017.04.06
Singh D, Gurjar BR. Nanotechnology for agricultural applications: Facts, issues, knowledge gaps and challenges in environmental risk assessment. J Environ Manag. 2022;322:116033. https://doi.org/10.1016/J.JENVMAN.2022.116033
Snehal S, Lohani P. Silica nanoparticles: Its green synthesis and importance in agriculture. J Pharmacogn Phytochem. 2018;7(5):3383-93.
de Rivero-Montejo SJ, Vargas-Hernandez M, Torres-Pacheco I. Nanoparticles as novel elicitors to improve bioactive compounds in plants. Agric. 2021;11(2):1-16. https://doi.org/10.3390/agriculture11020134
Javed R, Ahmad MA, Gul A, Ahsan T, Cheema M. Chapter 7 - Comparison of chemically and biologically synthesized nanoparticles for the production of secondary metabolites and growth and development of plants. In: Comprehensive Analytical Chemistry. Elsevier. 2021;Vol. 94:p.303-29. https://doi.org/10.1016/bs.coac.2021.02.002
Shah V, Belozerova I. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollution. 2009;197:143-48. https://doi.org/10.1007/s11270-008-9797-6
Sarmast MK, Salehi H, Khosh-Khui M. Nano silver treatment is effective in reducing bacterial contamination of Araucaria excelsa R. Br. var. glauca explants. Acta Biol Hung. 2011;62:477-84. https://doi.org/10.1556/abiol.62.2011.4.12
Fazal H, Abbasi BH, Ahmad N, Ali M. Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Appl Biochem Biotechnol. 2016;180(6):1076-92. https://doi.org/10.1007/s12010-016-2153-1
Singh OS, Pant NC, Laishram L, Tewari M, Dhoundiyal R, Joshi K, Pandey CS. Effect of CuO nanoparticles on polyphenols content and antioxidant activity in Ashwagandha (Withania somnifera L. Dunal). J Pharmacog Phytochem. 2018;7(2):3433-39. https://www.phytojournal.com/archives/2018.v7.i2.4088/effect-of-cuo-nanoparticles-on-polyphenols-content-and-antioxidant-activity-in-ashwagandha-ltemgtwithania-somniferaltemgt-l-dunal
Gan RY, Xu XR, Song FL, Kuang L, Li HB. Antioxidant activity and total phenolic content of medicinal plants associated with prevention and treatment of cardiovascular and cerebrovascular diseases. J Med Plant Res. 2010;4(22):2438-44. Http://DOI.org/10.5897/JMPR10.581
Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473-97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc. 2007;2(4):875-77. https://doi.org/10.1038/nprot.2007.102
Siddiqi K, Husen A. Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res Lett. 2016;11:400. https://doi.org/10.1186/s11671-016-1607-2
Jadczak P, Kulpa D, Bihun M, Przewodowski W. Positive effect of AgNPs and AuNPs in in vitro cultures of Lavandula angustifolia Mill. Plant Cell Tiss Organ Cult. 2019;146:191-97. https://doi.org/10.1007/s11240-019-01656-w
Stepanova AN, Yun J, Likhacheva AV, Alonso JM. Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell. 2007;19:2169-85. https://doi.org/10.1105/tpc.107.052068
Ghazal B, Saif S, Farid K, Khan A, Rehman S, Reshma A et al. Stimulation of secondary metabolites by copper and gold nanoparticles in submerge adventitious root cultures of Stevia rebaudiana (Bert.). IET Nanobiotechnology. 2018;12:569-73. https://doi.org/10.1049/iet-nbt.2017.0093
Kang H, Hwang YG, Lee, TG, Jin CR, Cho CH, Jeong HY, Kim DO. Use of gold nanoparticle fertilizer enhances the ginsenoside contents and anti-inflammatory effects of red ginseng. J Microbiol Biotechnol. 2016;26(10):1668-74. https://doi.org/10.4014/jmb.1604.04034
Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol. 2014;171:1142-48. https://doi.org/10.1016/j.jplph.2014.05.002
Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L, Bracale M. Morphological and proteomic responses of Eruca sativa exposed silver nanoparticles or silver nitrate. PLoS One. 2013;8(7):e68752. https://doi.org/10.1371/journal.pone.0068752
Shaikhaldein HO, Al-Qurainy F, Nadeem M, Khan S, Tarroum M, Salih AM. Biosynthesis and characterization of silver nanoparticles using Ochradenus arabicus and their physiological effect on Maerua oblongifolia raised in vitro. Sci Rep. 2020;10:17569. https://doi.org/10.1038/s41598-020-74675-9
Jiang HS, Li M, Chang FY, Li W, Yin LY. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Toxicol Chem. 2012;31:1880-86. https://doi.org/10.1002/etc.1899
Tomaszewska-Sowa M, Lisiecki K, Pa?ka D. Response of rapeseed (Brassica napus L.) to silver and gold nanoparticles as a function of concentration and length of exposure. Agronomy. 2022;12(11):2885. https://doi.org/10.3390/agronomy12112885
Seif SM, Sorooshzadeh AH, Rezazadeh S, Naghdibadi HA. Effect of nano silver and silver nitrate on seed yield of borage. J Med Plant Res. 2011;5(2):171-75. https://doi.org/10.5897/JMPR.9000486
Tamimi SM, Othman H. Silver nanoparticles for enhancing the efficiency of micropropagation of banana (Musa acuminata L.). Trop Life Sci Res. 2023;34(2):161-75. https://doi.org/10.21315/tlsr2023.34.2.8
Chung IM, Rajakumar G, Thiruvengadam M. Effect of silver nanoparticles on phenolic compounds production and biological activities in hairy root cultures of Cucumis anguria. Acta Biol Hung. 2018;69(1):97-109. https://doi.org/10.1556/018.68.2018.1.8
Spinoso-Castillo JL, Chavez-Santoscoy RA, Bogdanchikova N, Pérez-Sato JA, Morales-Ramos V, Bello-Bello JJ. Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. Plant Cell Tissue Organ Cult. 2017;129:195-207. https://doi.org/10.1007/s11240-017-1169-8
Hong J, Rico C, Zhao L, Adeleye A, Keller A, Peralta-Videa J, Gardea-Torresdey J. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Processes Impacts. 2013;17(1):177-85. https://doi.org/10.1039/C4EM00551A
Adams J, Wright M, Wagner H, Valiente J, Britt D, Anderson A. Cu from the dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol Bioch. 2017;110:108-17. https://doi.org/10.1016/j.plaphy.2016.08.005
Javed R, Yucesan B, Zia M, Gurel E. Elicitation of secondary metabolites in callus cultures of Stevia rebaudiana Bertoni grown under ZnO and CuO nanoparticles stress. Sugar Tech. 2018;20(2):1-8. https://doi.org/10.1007/s12355-017-0539-1
Lee WM, An YJ, Yoon H, Kweon HS. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem. 2008;27(9):1915-21. https://doi.org/10.1897/07-481.1
Nair PMG, Chung IM. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere. 2014;112:105-13. https://doi.org/10.1016/j.chemosphere.2014.03.056
Mubashir M, Raja NI, Iqbal M, Sabir S, Yasmeen F. In vitro seed germination and biochemical profiling of Artemisia absinthium exposed to various metallic nanoparticles. Biotech. 2017;7(2):101. https://doi.org/10.1007/s13205-017-0741-6
Zhao L, Huang Y, Keller AA. Comparative metabolic response between cucumber (Cucumis sativus) and corn (Zea mays) to a Cu(OH)2 nanopesticide. J Agric Food Chem. 2018;66(26):6628-36. https://doi.org/10.1021/acs.jafc.7b01306
Feng L, Xu N, Qu Q, Zhang Z, Ke M, Lu T, Qian H. Synergetic toxicity of silver nanoparticle and glyphosate on wheat (Triticum aestivum L.). Sci Total Environ. 2021;797:149200. https://doi.org/10.1016/j.scitotenv.2021.149200
Tripathi DK, Singh S, Gaur S, Singh S, Yadav V, Liu S et al. Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance. Front Environ Sci. 2018;5:86. https://doi.org/10.3389/fenvs.2017.00086
Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem. 2011;59:3485-98. https://doi.org/10.1021/jf104517j
Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J et al. Uptake and distribution of ultra small anatase TiO2 alizarin red S nano conjugates in Arabidopsis thaliana. Nano Lett. 2010;10(7):2296-302. https://doi.org/10.1021/nl903518f
Parsons JG, Lopez ML, Gonzalez CM, Peralta-Videa JR, Gardea-Torresdey JL. Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ Toxicol Chem. 2010;29:1146-54. https://doi.org/10.1002/etc.146
Harris AT, Bali R. On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res. 2008;10:691-95. https://doi.org/10.1007/s11051-007-9288-5
Gardea-Torresdey JL, Gomez E, Peralta-Videa J, Parsons JG, Troiani HE, Yacaman MJ. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir. 2003;19(4):1357-61. https://doi.org/10.1021/la020835i
Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS. Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Sci Biol. 2010;2:112-13. https://doi.org/10.15835/nsb224667
Marcus M, Karni M, Baranes K, Levy I, Alon N, Margel S, Shefi O. Iron oxide nanoparticles for neuronal cell applications: Uptake study and magnetic manipulations. J Nanobiotechnol. 2016;14(1):1-12. https://doi.org/10.1186/s12951-016-0190-0
Rico CM, Peralta-Videa JR, Gardea-Torresdey JL. Chemistry, biochemistry of nanoparticles and their role in antioxidant defense system in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F, editors. Nanotechnology and Plant Sciences. Springer, Cham. 2015;p.1-17. https://doi.org/10.1007/978-3-319-14502-0_1
Ghosh M, Bandyopadhyay M, Mukherjee A. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophies levels: Plant and human lymphocytes. Chemosphere. 2010;81(10):1253-62. https://doi.org/10.1016/j.chemosphere.2010.09.022
El-Temsah YS, Joner EJ. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol. 2012;27(1):42-49. https://doi.org/10.1002/tox.20610.
Racuciu M, Creanga D. TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Rom J Phys. 2007;52(3-4):395-402. https://rjp.nipne.ro/2007_52_3-4/0395_0403.pdf
Tombuloglu H, Slimani Y, Tombuloglu G, Almessiere M, Baykal A. Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.). Chemosphere. 2019;226:110-22. https://doi.org/10.1016/j.chemosphere.2019.03.075
Kim JH, Lee Y, Kim EJ, Gu S, Sohn EJ, Seo YS et al. Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol. 2014;48:3477-85. https://doi.org/10.1021/es4043462
Schopfer P. Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: Implications for the control of elongation growth. Plant J. 2001;28(6):679-88. https://doi.org/10.1046/j.1365-313x.2001.01187.x
Downloads
Published
Versions
- 17-07-2024 (2)
- 15-07-2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 Huong Thi Trinh, Dang Hai Hoang, Tuan Trong Tran
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).