Influence of metal and metal oxide nanoparticles on growth and total phenolic content accumulation of Anoectochilus roxburghii cultured in vitro

Authors

DOI:

https://doi.org/10.14719/pst.2943

Keywords:

Anoectochilus roxburghii, AgNPs, AuNPs, CuNPs, Fe3O4NPs, phenolic

Abstract

The application of metal nanoparticles in agriculture and related fields, especially in plant cell tissue culture has increased interest in recent years due to its potential benefits. This study used gold nanoparticles (AuNPs), silver nanoparticles (AgNPs), copper nanoparticles (CuNPs) and magnetite nanoparticles (Fe3O4NPs) to evaluate their effect on the growth and total phenolic content (TPC) of Anoectochilus roxburghii. The results showed that Fe3O4 NPs were the most positively influenced metal nanoparticles in increasing biomass and TPC of A. roxburghii among metal nanoparticles tested. After 8 weeks of culture, the dry weight (DW) and TPC of the plants cultured on the medium containing 5 ppm Fe3O4NPs were 39.07 mg and 13.0 mg gallic acid respectively per g of dry weight (mg GAE/g DW). Meanwhile, on the medium without Fe3O4NPs, they were 30.47 mg and 6.71 mg GAE/g DW respectively. This study proposed an effective approach to improve the growth and accumulation of TPC in A. roxburghii. Moreover, it suggests the potential application of metal nanoparticles in plant tissue culture and the production of bioactive compounds.

Downloads

Download data is not yet available.

References

Xu M, Shao Q, Ye S, Li S, Wu M, Ding M, Li Y. Simultaneous extraction and identification of phenolic compounds in Anoectochilus roxburghii using microwave-assisted extraction combined with UPLC-Q-TOF-MS/MS and their antioxidant activities. Front Plant Sci. 2017;8:1474. https://doi.org/10.3389/fpls.2017.01474

Zeng B, Su M, Chen Q, Chang Q, Wang W, Li H. Antioxidant and hepatoprotective activities of polysaccharides from Anoectochilus roxburghii. Carbohydr Polym. 2016;153:391-98. https://doi:10.1016/j.carbpol.2016.07.067

Liu Q, Li Y, Sheng SM. Anti-aging effects and mechanisms of Anoectochilus roxburghii (Wall.) Lindl polysaccharose. J Huaqiao Univ. 2020;41(01):77-83.

Fu L, Zhu W, Tian D, Tang Y, Ye Y, Wei Q et al. Dietary supplement of Anoectochilus roxburghii (Wall.) Lindl. polysaccharides ameliorates cognitive dysfuntion induced by high fat diet via “ Gut-Brain” axis. Drug Design, Development and Therapy. 2022;16:1931-45. https://doi.org/10.2147/DDDT.S356934

Tian D, Zhong X, Fu L, Zhu W, Liu X, Wu Z et al. Therapeutic effect and mechanism of polysaccharides from Anoectochilus roxburghii (Wall.) Lindl. in diet-induced obesity. Phytomedicine. 2022;99:154031. https://doi:10.1016/j.phymed.2022.154031

Bin YL, Liu SZ, Xie TT, Feng WZ, Li HY, Ye ZJ et al. Three new compounds from Anoectochilus roxburghii (Wall.) Lindl. Nat Prod Res. 2023;37(19):3276-82. https://doi.org/10.1080/14786419.2022.2070746

Gunes BA, Ozkan T, Gonulkirmaz N, Sunguroglu A. The evaluation of the anti-cancer effects of Anoectochilus roxburghii on hematological cancers in vitro. Med Oncol. 2023;41(1):6. https://doi: 10.1007/s12032-023-02231-2.

Huang T, Wu Y, Huang L, Lin R, Li Z, Wang X et al. Mechanism of the effect of compound Anoectochilus roxburghii (Wall.) Lindl. oral liquid in treating alcoholic rat liver injury by metabolomics. Drug Des Devel Ther. 2023;15:17:3409-28. https://doi:10.2147/DDDT.S427837.

Urbancova H. Competitive advantage achievement through innovation and knowledge. J Compet. 2013;5:82-96. https://doi.org/10.7441/joc.2013.01.06

Muo I, Azeez AA. Green entrepreneurship: Literature review and agenda for future research. Int J Entrep Knowl. 2019;7:17-29. https://doi.org/10.37335/ijek.v7i2.90

Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013;31:346-56. https://doi.org/10.1016/j.biotechadv.2013.01.003

Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, Hong J. Green synthesis of nanoparticles: Current developments and limitations. Environ Technol Innov. 2022;26:102336. https://doi.org/10.1016/j.eti.2022.102336

Marous?ek J, Marous?kova? A, Periakaruppan R, Gokul GM, Anbukumaran A, Bohata? A et al. Silica nanoparticles from coir pith synthesized by acidic sol-gel method improve germination economics. Polymers. 2022;14:266. https://doi.org/10.3390/polym14020266

Weng X, Jin X, Lin J, Naidu R, Chen Z. Removal of mixed contaminants Cr(VI) and Cu(II) by green synthesized iron based nanoparticles. Ecol Eng. 2016;97:32-39. https://doi.org/10.1016/j.ecoleng.2016.08.003

Wang T, Jin X, Chen Z, Megharaj M, Naidu R. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci Total Environ. 2014;466-467:210-13. https://doi.org/10.1016/j.scitotenv.2013.07.022

Wei Y, Fang Z, Zheng L, Tsang EP. Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal. Appl Surf Sci. 2017;399:322-29. https://doi.org/10.1016/j.apsusc.2016.12.090

Judit O, Pe?ter L, Pe?ter B, Mo?nika HR, Jo?zsef P. The role of biofuels in food commodity prices volatility and land use. J Compet. 2017;9:81-93. https://doi.org/10.7441/joc.2017.04.06

Singh D, Gurjar BR. Nanotechnology for agricultural applications: Facts, issues, knowledge gaps and challenges in environmental risk assessment. J Environ Manag. 2022;322:116033. https://doi.org/10.1016/J.JENVMAN.2022.116033

Snehal S, Lohani P. Silica nanoparticles: Its green synthesis and importance in agriculture. J Pharmacogn Phytochem. 2018;7(5):3383-93.

de Rivero-Montejo SJ, Vargas-Hernandez M, Torres-Pacheco I. Nanoparticles as novel elicitors to improve bioactive compounds in plants. Agric. 2021;11(2):1-16. https://doi.org/10.3390/agriculture11020134

Javed R, Ahmad MA, Gul A, Ahsan T, Cheema M. Chapter 7 - Comparison of chemically and biologically synthesized nanoparticles for the production of secondary metabolites and growth and development of plants. In: Comprehensive Analytical Chemistry. Elsevier. 2021;Vol. 94:p.303-29. https://doi.org/10.1016/bs.coac.2021.02.002

Shah V, Belozerova I. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollution. 2009;197:143-48. https://doi.org/10.1007/s11270-008-9797-6

Sarmast MK, Salehi H, Khosh-Khui M. Nano silver treatment is effective in reducing bacterial contamination of Araucaria excelsa R. Br. var. glauca explants. Acta Biol Hung. 2011;62:477-84. https://doi.org/10.1556/abiol.62.2011.4.12

Fazal H, Abbasi BH, Ahmad N, Ali M. Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Appl Biochem Biotechnol. 2016;180(6):1076-92. https://doi.org/10.1007/s12010-016-2153-1

Singh OS, Pant NC, Laishram L, Tewari M, Dhoundiyal R, Joshi K, Pandey CS. Effect of CuO nanoparticles on polyphenols content and antioxidant activity in Ashwagandha (Withania somnifera L. Dunal). J Pharmacog Phytochem. 2018;7(2):3433-39. https://www.phytojournal.com/archives/2018.v7.i2.4088/effect-of-cuo-nanoparticles-on-polyphenols-content-and-antioxidant-activity-in-ashwagandha-ltemgtwithania-somniferaltemgt-l-dunal

Gan RY, Xu XR, Song FL, Kuang L, Li HB. Antioxidant activity and total phenolic content of medicinal plants associated with prevention and treatment of cardiovascular and cerebrovascular diseases. J Med Plant Res. 2010;4(22):2438-44. Http://DOI.org/10.5897/JMPR10.581

Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473-97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc. 2007;2(4):875-77. https://doi.org/10.1038/nprot.2007.102

Siddiqi K, Husen A. Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res Lett. 2016;11:400. https://doi.org/10.1186/s11671-016-1607-2

Jadczak P, Kulpa D, Bihun M, Przewodowski W. Positive effect of AgNPs and AuNPs in in vitro cultures of Lavandula angustifolia Mill. Plant Cell Tiss Organ Cult. 2019;146:191-97. https://doi.org/10.1007/s11240-019-01656-w

Stepanova AN, Yun J, Likhacheva AV, Alonso JM. Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell. 2007;19:2169-85. https://doi.org/10.1105/tpc.107.052068

Ghazal B, Saif S, Farid K, Khan A, Rehman S, Reshma A et al. Stimulation of secondary metabolites by copper and gold nanoparticles in submerge adventitious root cultures of Stevia rebaudiana (Bert.). IET Nanobiotechnology. 2018;12:569-73. https://doi.org/10.1049/iet-nbt.2017.0093

Kang H, Hwang YG, Lee, TG, Jin CR, Cho CH, Jeong HY, Kim DO. Use of gold nanoparticle fertilizer enhances the ginsenoside contents and anti-inflammatory effects of red ginseng. J Microbiol Biotechnol. 2016;26(10):1668-74. https://doi.org/10.4014/jmb.1604.04034

Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol. 2014;171:1142-48. https://doi.org/10.1016/j.jplph.2014.05.002

Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L, Bracale M. Morphological and proteomic responses of Eruca sativa exposed silver nanoparticles or silver nitrate. PLoS One. 2013;8(7):e68752. https://doi.org/10.1371/journal.pone.0068752

Shaikhaldein HO, Al-Qurainy F, Nadeem M, Khan S, Tarroum M, Salih AM. Biosynthesis and characterization of silver nanoparticles using Ochradenus arabicus and their physiological effect on Maerua oblongifolia raised in vitro. Sci Rep. 2020;10:17569. https://doi.org/10.1038/s41598-020-74675-9

Jiang HS, Li M, Chang FY, Li W, Yin LY. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Toxicol Chem. 2012;31:1880-86. https://doi.org/10.1002/etc.1899

Tomaszewska-Sowa M, Lisiecki K, Pa?ka D. Response of rapeseed (Brassica napus L.) to silver and gold nanoparticles as a function of concentration and length of exposure. Agronomy. 2022;12(11):2885. https://doi.org/10.3390/agronomy12112885

Seif SM, Sorooshzadeh AH, Rezazadeh S, Naghdibadi HA. Effect of nano silver and silver nitrate on seed yield of borage. J Med Plant Res. 2011;5(2):171-75. https://doi.org/10.5897/JMPR.9000486

Tamimi SM, Othman H. Silver nanoparticles for enhancing the efficiency of micropropagation of banana (Musa acuminata L.). Trop Life Sci Res. 2023;34(2):161-75. https://doi.org/10.21315/tlsr2023.34.2.8

Chung IM, Rajakumar G, Thiruvengadam M. Effect of silver nanoparticles on phenolic compounds production and biological activities in hairy root cultures of Cucumis anguria. Acta Biol Hung. 2018;69(1):97-109. https://doi.org/10.1556/018.68.2018.1.8

Spinoso-Castillo JL, Chavez-Santoscoy RA, Bogdanchikova N, Pérez-Sato JA, Morales-Ramos V, Bello-Bello JJ. Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. Plant Cell Tissue Organ Cult. 2017;129:195-207. https://doi.org/10.1007/s11240-017-1169-8

Hong J, Rico C, Zhao L, Adeleye A, Keller A, Peralta-Videa J, Gardea-Torresdey J. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Processes Impacts. 2013;17(1):177-85. https://doi.org/10.1039/C4EM00551A

Adams J, Wright M, Wagner H, Valiente J, Britt D, Anderson A. Cu from the dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol Bioch. 2017;110:108-17. https://doi.org/10.1016/j.plaphy.2016.08.005

Javed R, Yucesan B, Zia M, Gurel E. Elicitation of secondary metabolites in callus cultures of Stevia rebaudiana Bertoni grown under ZnO and CuO nanoparticles stress. Sugar Tech. 2018;20(2):1-8. https://doi.org/10.1007/s12355-017-0539-1

Lee WM, An YJ, Yoon H, Kweon HS. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem. 2008;27(9):1915-21. https://doi.org/10.1897/07-481.1

Nair PMG, Chung IM. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere. 2014;112:105-13. https://doi.org/10.1016/j.chemosphere.2014.03.056

Mubashir M, Raja NI, Iqbal M, Sabir S, Yasmeen F. In vitro seed germination and biochemical profiling of Artemisia absinthium exposed to various metallic nanoparticles. Biotech. 2017;7(2):101. https://doi.org/10.1007/s13205-017-0741-6

Zhao L, Huang Y, Keller AA. Comparative metabolic response between cucumber (Cucumis sativus) and corn (Zea mays) to a Cu(OH)2 nanopesticide. J Agric Food Chem. 2018;66(26):6628-36. https://doi.org/10.1021/acs.jafc.7b01306

Feng L, Xu N, Qu Q, Zhang Z, Ke M, Lu T, Qian H. Synergetic toxicity of silver nanoparticle and glyphosate on wheat (Triticum aestivum L.). Sci Total Environ. 2021;797:149200. https://doi.org/10.1016/j.scitotenv.2021.149200

Tripathi DK, Singh S, Gaur S, Singh S, Yadav V, Liu S et al. Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance. Front Environ Sci. 2018;5:86. https://doi.org/10.3389/fenvs.2017.00086

Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem. 2011;59:3485-98. https://doi.org/10.1021/jf104517j

Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J et al. Uptake and distribution of ultra small anatase TiO2 alizarin red S nano conjugates in Arabidopsis thaliana. Nano Lett. 2010;10(7):2296-302. https://doi.org/10.1021/nl903518f

Parsons JG, Lopez ML, Gonzalez CM, Peralta-Videa JR, Gardea-Torresdey JL. Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ Toxicol Chem. 2010;29:1146-54. https://doi.org/10.1002/etc.146

Harris AT, Bali R. On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res. 2008;10:691-95. https://doi.org/10.1007/s11051-007-9288-5

Gardea-Torresdey JL, Gomez E, Peralta-Videa J, Parsons JG, Troiani HE, Yacaman MJ. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir. 2003;19(4):1357-61. https://doi.org/10.1021/la020835i

Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS. Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Sci Biol. 2010;2:112-13. https://doi.org/10.15835/nsb224667

Marcus M, Karni M, Baranes K, Levy I, Alon N, Margel S, Shefi O. Iron oxide nanoparticles for neuronal cell applications: Uptake study and magnetic manipulations. J Nanobiotechnol. 2016;14(1):1-12. https://doi.org/10.1186/s12951-016-0190-0

Rico CM, Peralta-Videa JR, Gardea-Torresdey JL. Chemistry, biochemistry of nanoparticles and their role in antioxidant defense system in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F, editors. Nanotechnology and Plant Sciences. Springer, Cham. 2015;p.1-17. https://doi.org/10.1007/978-3-319-14502-0_1

Ghosh M, Bandyopadhyay M, Mukherjee A. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophies levels: Plant and human lymphocytes. Chemosphere. 2010;81(10):1253-62. https://doi.org/10.1016/j.chemosphere.2010.09.022

El-Temsah YS, Joner EJ. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol. 2012;27(1):42-49. https://doi.org/10.1002/tox.20610.

Racuciu M, Creanga D. TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Rom J Phys. 2007;52(3-4):395-402. https://rjp.nipne.ro/2007_52_3-4/0395_0403.pdf

Tombuloglu H, Slimani Y, Tombuloglu G, Almessiere M, Baykal A. Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.). Chemosphere. 2019;226:110-22. https://doi.org/10.1016/j.chemosphere.2019.03.075

Kim JH, Lee Y, Kim EJ, Gu S, Sohn EJ, Seo YS et al. Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol. 2014;48:3477-85. https://doi.org/10.1021/es4043462

Schopfer P. Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: Implications for the control of elongation growth. Plant J. 2001;28(6):679-88. https://doi.org/10.1046/j.1365-313x.2001.01187.x

Published

15-07-2024 — Updated on 17-07-2024

Versions

How to Cite

1.
Trinh HT, Hoang DH, Tran TT. Influence of metal and metal oxide nanoparticles on growth and total phenolic content accumulation of Anoectochilus roxburghii cultured in vitro. Plant Sci. Today [Internet]. 2024 Jul. 17 [cited 2024 Nov. 23];11(3). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/2943

Issue

Section

Research Articles