This is an outdated version published on 13-03-2024. Read the most recent version.
Forthcoming

The evaluation of total flavonoids, total phenolic content and biological activity of Iraqi Lipedium sativum L. crude extract obtained by optimized ultrasound assisted extraction conditions

Authors

DOI:

https://doi.org/10.14719/pst.2975

Keywords:

Lepidium sativum, garden cress, Ultrasound Assisted Extraction, single factor experiment, flavonoids, antioxidant activity

Abstract

Lepidium sativum L. also known as garden cress belong to the family Brassicaceae. The plant species composed of various phytochemicals as well as powerful nutraceutical potential and possess several bioactivities like, hepatoprotective, antioxidant, anticancer, antimicrobial, hypoglycemic, gastrointestinal and bone healing activities. This research paper presents an investigation into the total flavonoids (TFC), total phenolic content (TPC) and biological activity of Iraqi Lepidium sativum L. The study aimed to optimize ultrasound-assisted extraction conditions to obtain a crude extract with enhanced bioactive components. Three variables were examined including methanol concentration, extraction time and ultrasound frequency. The optimum yields of extract, TFC and TPC were (3.22 ± 0.049 g/10 g of dry plant), (17.03 ± 0.060 mg RE/g) and (10.96±0.020 mg GAE/g) respectively. The optimal extraction conditions contributed to these values of experiment 2 and 3 were 70% methanol, 10 min and 40 KHz and 70% methanol, 15 min and 40 KHz respectively. The lowest IC50 values of optimized methanolic extracts of Iraqi Lepidium sativum aerial parts against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals were 31.84 µg/mL for TFC and 35.85 µg/mL for TPC . For the first time, the study provided data about the phenolic and flavonoid contents of the Iraqi plant and optimized conditions for extraction by UAE technique using single factor experiment. The plant can be acknowledged as a potential nutraceutical or functional food rich in antioxidants to combat many diseases.

Downloads

Download data is not yet available.

References

Staub J, Buchert E. Exceptional herbs for your garden, Gibbs Smith, Layton, UT, USA; 2008.

Painuli S, Quispe C, Herrera-Bravo J , Semwal P, Martorell M , Almarhoon ZM et al. Review article: Nutraceutical profiling, bioactive composition and biological applications of Lepidium sativum L. Oxid Med Cell Longev. 2022; Article ID 2910411: 20 pages. https://doi.org/10.1155/2022/2910411

Ghante MH, Badole SL, Bodhankar SL. Nuts and seeds in health and disease prevention health benefits of garden cress (Lepidium sativum Linn.) seed extracts. Academic Press. 2011 [cited 2023 Dec 10]; Chapter 62: p 521-25. Available from: https://doi.org/10.1016/B978-0-12-375688-6.10062-3.

Al-Snafi AE. A review: Chemical constituents and p effects of Lepidium sativum. Int J Curr Pharm Res. 2019;11(6):1-10. https://doi.org/10.22159/ijcpr.2019v11i6.36338

Salehi B, Calina D, Docea AO. Curcumin's nanomedicine formulations for therapeutic application in neurological diseases. J Clinl Med. 2020;9(2):35. https://doi.org/10.3390/jcm9020430

Sharifi-Rad J, Quispe C, Butnariu M. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int. 2021;21(1):318-18. https://doi.org/10.1186/s12935-021-02025-4

Hadi MY, Hameed IH. A review: Uses of gas chromatography mass spectrometry (GC-MS) technique for analysis of bioactive chemical compounds of Lepidium sativum. RJPT. 2017;10(11):4039-42. https://doi.org/10.5958/0974-360X.2017.00732.6

Kiani R, Arzani A, Mirmohammady Maibody SAM. Polyphenols, flavonoids and antioxidant activity involved in salt tolerance in wheat, Aegilops cylindrica and their amphidiploids. Front Plant Sci. 2021;vol. 12, Article ID 646221. https://doi.org/10.3389/fpls.2021.646221.

Al-Saad OA, Al-Saadi SAM. Chemical composition and antioxidants of Lepidium sativum and L. aucheri. UTJ Sci. 2021;8:39-47. https://doi.org/10.32792/utq/utjsci/vol8/1/7

Lourenço SA, Moldão-Martins M, Alves VD. Antioxidants of natural plant origins: From sources to food industry applications. Molecules. 2019;24(22):4132. https://doi.org/10.3390/molecules24224132

Shahidi F, Janitha P, Wanasundara P. Phenolic antioxidants. Crit Rev Food Sci Nutr. 1992;(32):67-103. https://doi.org/10.1080/10408399209527581

Jerman T, Trebše P, Vodopivec BM. Ultrasound-assisted solid liquid extraction (USLE) of olive fruit (Olea europaea) phenolic compounds. Food Chem. 2010;123:175-82. https://doi.org/10.1016/j.foodchem.2010.04.006

Ratananikom K, Premprayoon K. Ultrasonic-assisted extraction of phenolic compounds, flavonoids and antioxidants from dill (Anethum graveolens L.). Scientifica. 2022;(1):1-6. https://doi.org/10.1155/2022/3848261.

Hosni S, Abd Gani SS, Orsat V, Hassan M, Abdullah S. Ultrasound-assisted extraction of antioxidants from Melastoma malabathricum Linn.: Modeling and optimization using box-behnken design. Molecules. 2023;28:487. https://doi.org/10.3390/molecules28020487

Verzelloni E, Tagliazucchi D, Conte A. Relationship between the antioxidant properties and the phenolic and flavonoid content in traditional balsamic vinegar. Food Chem. 2007;105(2):564-71. https://doi.org/10.1016/j.foodchem.2007.04.014

Al-Ogaili NA, Al-Jaboury IS, Mohammed Hasan ZY. Qualitative and quantitative determination of total phenols in Achillea tenuifolia Lam. Results Chem. 2023;5:1-8. https://doi.org/10.1016/j.rechem.2023.100931

Kumarasamy Y, Byres M, Cox PJ, Jasapars M, Nahar L, Sarker SD. Screening seeds of some Scottish plants for free-radical scavenging activity. Phytother Res. 2007;21:615-21. https://doi.org/10.1002/ptr.2129

Sultan N, Katib R. Evaluation of total phenolic content, total flavonoids content and free radical scavenging activity of Lepidium sativum L. seeds and leaves planted in Syria. Bull Pharm Sci Assiut University. 2021;44(2):377-85. https://doi.org/10.21608/bfsa.2021.207156

Jelvehgar N, Miri SM, Mostafavi K, Mohammadi A. Phenolic compounds and antioxidant activity in seven populations of Lepidium sativum L. leaves. J Med Herb. 2023;14(1):37-44. doi:10.30495/MEDHERB.2023.70236

Selek S, Koyuncu I, Caglar HG. The evaluation of antioxidant and anticancer effects of Lepidium sativum subsp spinescens L. methanol extract on cancer cells. Mol Cell Biol. 2018;64:72-80. https://doi.org/10.14715/cmb/2018.64.3.12

Jelvehgar N, Mehdi MS, Mostafavi K, Mohammadi A. Inter-and intra-specific genetic relationships of Lepidium L. using SSR, ISSR and SCoT molecular markers. Iranian Journal of Plant and Biotechnology [Internet]. 2022 [cited Dec 10 2023];17(3):1-12. Available from: https://sid.ir/paper/1032450/en

Wang J, Sun B, Cao Y, Tian Y, Li X. Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chemistry. 2008;106(2):804-10. https://doi.org/10.1016/j.foodchem.2007.06.062

Tom?sik A, Pavlic B, Vladic J, Ramic M, Brindza J, Vidovic S. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrasonics Sonochemistry. 2016;29:502-11. https://doi.org/10.1016/j.ultsonch.2015.11.005

Oroian M, Ursachi F, Dranca F. Influence of ultrasonic amplitude, temperature, time and solvent concentration on bioactive compounds extraction from propolis. Ultrason Sonochem. 2020;Article ID 105021:64. https://doi.org/10.1016/j.ultsonch.2020.105021

González-Centeno MR, Knoerzer K, Sabarez H, Simal S, Rosselló C, Femenia A. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) - A response surface approach. Ultrason Sonochem. 2014;21(6):2176-84. https://doi.org/10.1016/j.ultsonch.2014.01.021

Ghafoor K, Choi YH, Jeon JY, Jo IH. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants and anthocyanins from grape (Vitis vinifera) seeds. J Agric Food Chem. 2009;57(11):4988-94. https://doi.org/10.1021/jf9001439

Escriche I, Juan-Borrás M. Standardizing the analysis of phenolic profile in propolis, Food Res Int. 2018;106:834-41. https://doi.org/10.1016/j.foodres.2018.01.055

Oroian F, Dranca M, Ursachi F. Comparative evaluation of maceration, microwave and ultrasonic-assisted extraction of phenolic compounds from propolis. J Food Sci Technol. 2020;57:70-78. https://doi.org/10.1007/s13197-019-04031-x

Alm-Eldeen AA, Basyony MA, Elfiky NK, Ghalwash MM. Effect of the Egyptian propolis on the hepatic antioxidant defense and pro-apoptotic p53 and anti-apoptotic bcl2 expressions in aflatoxin B1 treated male mice. Biomed Pharmacother. 2017;87:247-55. https://doi.org/10.1016/j.biopha.2016.12.084

Sampietro DA, Sampietro Vattuone MM, Vattuone MA. Immunomodulatory activity of Apis mellifera propolis from the North of Argentina. LWT Food Sci Technol. 2016;70:9-15. https://doi.org/10.1016/j.lwt.2016.02.028

Corona-Jiménez E, Martínez-Navarrete N, Ruiz-Espinosa H, Carranza-Concha J. Ultrasound-assisted extraction of phenolics compounds from chia (Salvia hispanica L.) seeds and their antioxidant activity. Agrociencia. 2016;50(4).

Anahí J, Enríquez B, Reyes-Ventura E, Socorro J, Rodríguez V, Moreno-Vilet L. Effect of ultrasound-assisted extraction parameters on total polyphenols and its antioxidant activity from mango residues (Mangifera indica L. var. Manililla). Separations. 2021;8:94. https://doi.org/10.3390/separations8070094

Pavli? B, Kaplan M, Bera O, Oktem Olgun E, Canli O, Milosavljevi? N et al. Microwave-assisted extraction of peppermint polyphenols - Artificial neural networks approach. Food Bioprod Process. 2019;118:258-69. https://doi.org/10.1016/j.fbp.2019.09.016

Liao J, Xue H, Li J, Peng L. Effects of ultrasound frequency and process variables of modified ultrasound-assisted extraction on the extraction of anthocyanin from strawberry fruit. Food Sci Technol (Campinas). 2022;42(4). https://doi.org/10.1590/fst.20922

Rajha HN, Boussetta N, Louka N, Maroun RG, Vorobiev E. A comparative study of physical pretreatments for the extraction of polyphenols and proteins from vine shoots. Food Res Int. 2014;65:462-68. https://doi.org/10.1016/j.foodres.2014.04.024

Dranca F, Oroian M. Kinetic improvement of bioactive compounds extraction from red grape (Vitis vinifera Moldova) pomace by ultrasonic treatment. Foods. 2019;8(8):353. https://doi.org/10.3390/foods8080353

Dranca F, Oroian M. Total monomeric anthocyanin, total phenolic content and antioxidant activity of extracts from eggplant (Solanum melongena L.) peel using ultrasonic treatments. J Food Process Eng. [Intrnet] 2017 [cited 2023 Dec 11];40(1). https://doi.org/10.1111/jfpe.12312

Ahamad R, Mujeeb M, Anwar F, Ahmad A. Phytochemical analysis and evaluation of antioxidant activity of methanolic extract of Lepidium sativum L. seeds. Der Pharm Lett. [Internet] 2015 [cited 2023 Dec 11];7(7):427-34. http://scholarsresearchlibrary.com/archive.html

Csepregi K, Neugart S, Schreiner M, Hideg É. Comparative evaluation of total antioxidant capacities of plant polyphenols. Molecules. 2016;21(2):208. https://doi.org/10.3390/molecules21020208

El-Haggar M, El-Hosseiny L, Ghazy NM, El-Fiky FK, El-Hawiet A. Phytochemical investigation, antimicrobial and cytotoxic activities of suspension cultures of Lepidium sativum L. S Afr J Bot. 2021;138:500-05. https://doi.org/10.1016/j.sajb.2020.12.024

Published

13-03-2024

Versions

How to Cite

1.
Al-Ogaili N. The evaluation of total flavonoids, total phenolic content and biological activity of Iraqi Lipedium sativum L. crude extract obtained by optimized ultrasound assisted extraction conditions. Plant Sci. Today [Internet]. 2024 Mar. 13 [cited 2024 Nov. 8];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/2975

Issue

Section

Research Articles