Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. 2 (2024)

Morphological and physiological properties of kratom (Mitragyna speciosa) leaves: Macronutrients, phytochemicals, antioxidants, and mitragynine content

DOI
https://doi.org/10.14719/pst.2991
Submitted
3 October 2023
Published
22-05-2024 — Updated on 25-05-2024
Versions

Abstract

Morpho-physiological characteristics of leaves are significantly associated with photosynthetic capacity and leaf growth. This study was designed to evaluate the relationship between leaf functional traits, nutrients, and their active compounds throughout the developmental stages of kratom leaves. Five growth stages were identified: S1 (7-15 days), S2 (15-30 days), S3 (30-45 days), S4 (45-60 days), and S5 (60-75 days). A comparison of leaf-group stages was conducted based on morpho-physiological traits, macronutrient content, phytochemical analysis, and antioxidant activity. The results revealed that leaf weight and leaf area increased from S1 to S5, with a slight decrease observed in S5. Stomatal density remained similar across all stages. In contrast, chlorophyll and carotenoid contents showed a steady increase up to the S5 stage. The maximum assimilation rate (Amax) and light-saturated photosynthetic rate (Pmax) were achieved at the S2 and S3 stages. Macronutrient levels (N, P, and K) were highest in the younger leaf-group stages (S1 to S2) and significantly different from the older leaf-group stages (S4 to S5). The highest amount of phenolics, flavonoids, and antioxidant activity were found in the middle leaf-group stage (S3). However, anthocyanin content tended to decrease with leaf-group stages. Moreover, the mitragynine content continuously decreased with leaf age, with the highest content found in the young (S1 to S2) and middle (S3) group stages of leaves. Therefore, the productive phytochemical contents in the fully expanded leaves should be considered, especially mitragynine content, which is mainly used in medicinal products.

References

  1. Cinosi E, Martinotti G, Simonato P, Singh D, Demetrovics Z, Roman-Urrestarazu A et al. Following “the roots” of kratom (Mitragyna speciosa): The evolution of an enhancer from a traditional use to increase work and productivity in Southeast Asia to a recreational psychoactive drug in western countries. BioMed Res Int. 2015;1-11. https://doi: 10.1155/2015/968786
  2. Grundmann O. Patterns of kratom use and health impact in the US–results from an online survey. Drug Alcohol Depend. 2017;176:63-70. https://doi:10.1016/j.drugalcdep. 2017.03.007
  3. Halpenny GM. Mitragyna speciosa: Balancing potential medical benefits and abuse. ACS Med Chem Lett. 2017;8:897-99. https://doi:10.1021/acsmedchemlett.7b00298
  4. Ramachandram DS, Damodaran T, Zainal H, Murugaiyah V, Ramanathan S. Pharmacokinetics and pharmacodynamics of mitragynine, the principle alkaloid of Mitragyna speciosa: Present knowledge and future directions in perspective of pain. J Basic Clin Physiol Pharmacol. 2019;31:20190138. https://doi:10.1515/jbcpp-2019-0138
  5. Orio L, Alexandru L, Cravotto G, Mantegna S, Barge A. UAE, MAE, SFE-CO2 and classical methods for the extraction of Mitragyna speciosa leaves. Ultrason Sonochem. 2012;19:591-95. https://doi: 10.1016/j.ultsonch.2011.10.001
  6. Veltri C, Grundmann O. Current perspectives on the impact of kratom use. Substance Abuse and Rehabilitation. 2019;10:23-31. https://doi: 10.2147/SAR.S164261
  7. Parthasarathy S, Ramanathan S, Murugaiyah V, Hamdan MR, Said MIM, Lai CS et al. A simple HPLC-DAD method for the detection and quantification of psychotropic mitragynine in Mitragyna speciosa (ketum) and its products for the application in forensic investigation. J Forensic Sci. 2013;226:183-87. https:// doi.org/ 10.1016/ j.forsciint.2013.01.014
  8. Zhang M, Sharma A, Leo´n F, Avery B, Kjelgren R, McCurdy CR et al. Plant growth and phytoactive alkaloid synthesis in kratom [Mitragyna speciosa (Korth)] in response to varying radiance. PLoS One. 2022;17:e0259326. https:// doi.org/ 10.1371/ journal.pone.0259326
  9. Amrianto, Ishak SSO, Putra N, Salsabila S, Al Muqarrabun LMR. Mitragynine: A review of its extraction, identification and purification methods. Biosci Biotechnol Biochem. 2021;3:165-71. https://doi.org/10.5614/crbb.2021.3.1/TMPNSA4H
  10. Ramanathan S, León F, Chear NJY, Yusof SR, Murugaiyah V, McMahon LR et al. Kratom (Mitragyna speciosa Korth.): A description on the ethnobotany, alkaloid chemistry and neuropharmacology. Stud Nat Prod Chem. 2021;69:195-225. https://doi: 101016/B978-0-12-819487-400003-3
  11. Nicotra AB, Leigh A, Boyce CK, Jones CS, Niklas KJ, Royer DL et al. The evolution and functional significance of leaf shape in the angiosperms. Funct Plant Biol. 2011;38:535-52. https://doi: 101071/FP11057
  12. Zhang L, Du J, Ge X, Cao D, Hu J. Leaf size development differences and comparative transcriptome analyses of two poplar genotypes. Genes. 2021;12:1775. https:// doi.org/ 10.3390/ genes12111775
  13. Maxiselly Y, Anusornwanit P, Rugkong A, Chiarawipa R, Chanjula P. Morpho-physiological traits phytochemical composition and antioxidant activity of canephora coffee leaves at various stages. Int J Plant Biol. 2022;13:106-14. https://doi.org/10.3390/ijpb13020011
  14. Chiarawipa R, Rueangkhanab M, Han ZH. Leaf age-related acclimation in the photosynthetic capacity and fractional investments of leaf nitrogen in grapevines of different ages. Science and Technology Asia. 2021;26:99-113. https://doi:10.14456/scitechasia.2021.50
  15. Jiao Y, Niklas KJ, Wang L, Yu K, Li Y, Shi P. Influence of leaf age on the scaling relationships of lamina mass vs area. Front Plant Sci. 2022;8:860206. https://doi: 103389/fpls2022860206
  16. Pathoumthong P, Zhang Z, Roy SJ, Habti AE. Rapid non-destructive method to phenotype stomatal traits. Plant Methods 2023;19:36. https://doi.org/10.1186/s13007-023-01016-y
  17. Netto AT, Campostrini E, de Oliveira JG, Bressan-Smith R. Photosynthetic pigments, nitrogen chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci Hortic. 2005;104:199-209. https://doi.org/10.1016/j.scienta.2004.08.01
  18. Sáez-Plaza P, Navas MJ, Wybraniec S, Michalowski T, Asuero AG. An overview of the kjeldahl method of nitrogen determination. Part II. Sample preparation, working scale, instrumental finish and quality control. Crit Rev Anal Chem. 2013;43:224-72. https:// doi: 10.1080/10408347.2012.751787
  19. Panda SK. Assay guided comparison for enzymatic and non-enzymatic antioxidant activities with special reference to medicinal plants. In: El-Missiry, MA editor. Antioxidant Enzyme. Egypt: Mansoura University. 2012; p. 381-400. https://dx.doi.org/10.5772/50782
  20. McDonald S, Prenzler PD, Antolovich M, Robards K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001;73:73-84. https://doi.org/10.1016/S0308-8146(00)00288-0
  21. Sultana B, Anwar F, Ashraf M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules. 2009;14:2167-80. https://doi:10.3390/molecules14062167
  22. Francis FJ. Food colorants: Anthocyanins. Crit Rev Food Sc Nutr. 1989;28:273-314. https://doi.org/10.1080/10408398909527503
  23. Araújo RPD, Almeida AFD, Barroso JP, Oliveira RAD, Gomes FP, Ahnert D et al. Molecular and morphophysiological responses cocoa leaves with different concentrations of anthocyanin to variations in light levels. Sci Hortic. 2017;224:188-97. https:// doi.org/ 10.1016/ j.scienta.2017.06.008
  24. Yang Z, Zhai W. Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innov Food Sci Emerg Technol. 2010;11:169-76. https://doi.org/10.1016/j.ifset.2009.08.012
  25. Kikura-Hanajiri R, Kawamura M, Maruyama T, Kitajima M, Takayama H, Goda Y. Simultaneous analysis of mitragynine, 7-hydroxymitragynine and other alkaloids in the psychotropic plant “kratom” (Mitragyna speciosa) by LC-ESI-MS. Forensic Toxicol. 2009;27:67-74. https://doi.org/10.1007/s11419-009-0070-5
  26. Janchawee B, Keawpradub N, Chittrakarn S, Prasettho S, Wararatananurak P, Sawangjareon K. A high-performance liquid chromatographic method for determination of mitragynine in serum and its application to a pharmacokinetic study in rats. Biomed Chromatogr. 2007;21:176-83. https://doi.org/10.1002/bmc.731
  27. Huang W, Ratkowsky DA, Hui C, Wang P, Su J, Shi P. Leaf fresh weight versus dry weight: Which is better for describing the scaling relationship between leaf biomass and leaf area for broad-leaved plants? Forests. 2019;10:256. https://doi.org/103390/f10030256
  28. Woo HR, Kim HJ, Lim PO, Nam HG. Leaf senescence: Systems and dynamics aspects. Annu Rev Plant Biol. 2019;70:347-76. https://doi.org/10.1146/annurev-arplant-050718-095859
  29. Jang S, Kim GW, Han K, Kim YM, Jo J, Lee SY et al. Investigation of genetic factors regulating chlorophyll and carotenoid biosynthesis in red pepper fruit. Front Plant Sci. 2022;13:922963. https://doi: 103389/fpls2022922963
  30. Idris A, Linatoc AC, Bakar MFBA. Effect of light intensity on the gas exchange characteristics of Melothria pendula. IOP Conf Ser: Earth Environ Sci. 2019;269:012021. https://doi:10.1088/1755-1315/269/1/012021
  31. Chiarawipa R, Wang Y, Zhang XZ, Han ZH, Rueangkhanab M. Modeling light acclimation of photosynthetic response in different ages of vine leaves. Acta Hortic. 2012;956:255-60. https;//doi:1017660/ActaHortic201295628
  32. Lobo FA, de Barros MP, Dalmagro HJ, Dalmolin ÂC, Pereira WE, Souza ÉC et al. Fitting net photosynthetic light-response curves with Microsoft Excel-a critical look at the models. Photosynthetica. 2013;51:445-56. https://doi.org/10.1007/ s11099-013-0045-y
  33. Oguchi R, Hikosaka K, Hirose T. Does the photosynthetic light-acclimation need change in leaf anatomy? Plant Cell Environ. 2003;26:505-12. https://doi.org/10.1046/j.1365-3040.2003.00981.x
  34. Marschner P. Mineral nutrition of higher plants. 3rd ed. Amsterdam: Elsevier Ltd; 2012.
  35. Crous KY, Wujeska-Klause A, Jiang M, Medlyn BE, Ellsworth DS. Nitrogen and phosphorus retranslocation of leaves and stem wood in a mature Eucalyptus forest exposed to 5 years of elevated CO2. Front Plant Sci. 2019;10:664. https://doi.org/10.3389/fpls.2019.00664
  36. Himelblaua E, Amasino RM. Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol. 2001;158:1317-23. https://doi.org/10.1078/0176-1617-00608
  37. Tanoi K, Kobayashi N. Leaf senescence by magnesium deficiency. Plants. 2015;4:756-72. https://doi.org/10.3390%2Fplants4040756
  38. Ibrahim MH, Jaafar HZE, Karimi E, Ghasemzadeh A. Primary, secondary metabolites, photosynthetic capacity and antioxidant activity of the Malaysian herb kacip fatimah (Labisia pumila Benth) exposed to potassium fertilization under greenhouse conditions. Int J Mol Sci. 2012;13:15321-42. https://doi: 10.3390/ijms131115321
  39. Guo F, Guo Y, Wang P, Wang Y, Ni D. Transcriptional profiling of catechins biosynthesis genes during tea plant leaf development. Planta. 2017;246:1139-52. https://doi. 10.1007/s00425-017-2760-2
  40. Lin YM, Lin JW, Xiang P, Lin P, Ding ZH, Sternberg LSL. Tannins and nitrogen dinamycs in mangrove leaves at different age and decay stage (Jiulong River Estuary, China). Hydrobiologia. 2007;583:285-95. https://doi.10.1007/s10750-006-0568-3
  41. Juvany M, Müller M, Munné-Bosch S. Photo-oxidative stress in emerging and senescing leaves: A mirror image? J Exp Bot. 2013;64:3087-98. https:// doi.10.1093/ jxb/ ert174
  42. Zhang M, Sharma A, León F, Avery B, Kjelgren R, McCurdy CR et al. Effects of nutrient fertility on growth and alkaloidal content in Mitragyna speciosa (Kratom). Front Plant Sci. 2020;11:597696. https://doi.10.3389/fpls.2020.597696
  43. Boffa L, Ghè C, Barge A, Muccioli G, Cravotto G. Alkaloid profiles and activity in different Mitragyna Speciosa strains. Nat Prod Comm. 2018;13:1111-16. https://doi.org/ 10.1177/1934578X1801300904
  44. Leksungnoen N, Andriyas T, Ngernsaengsaruay C, Uthairatsamee S, Racharak P, Sonjaroon W et al. Variations in mitragynine content in the naturally growing Kratom (Mitragyna speciosa) population of Thailand. Front Plant Sci. 2022;13:1028547. https://doi: 10.3389/fpls.2022.1028547
  45. Veeramohan R, Zamani AI, Azizan KA, Goh H, Aizat WH, Razak MFA et al. Comparative metabolomics analysis reveals alkaloid repertoires in young and mature Mitragyna speciosa (Korth.) Havil. leaves. PLoS ONE. 2023;18:e0283147. https://doi.org/10.1371/journal.pone.0283147

Downloads

Download data is not yet available.