Plant Growth Promoting Rhizobacteria (PGPR) and Plutella xylostella (L.) (Lepidoptera: Plutellidae) interaction as a resistance inductor factor in Brassica oleracea var. capitata
DOI:
https://doi.org/10.14719/pst.2017.4.3.305Keywords:
diamondback moth, Kluyvera ascorbate, Kluyvera ascorbata, induction resistance, HPLC, sinigrinAbstract
Resistance of Plutella xylostella populations to chemical insecticides has made its management difficult, and the utilization of resistant cabbage cultivars has been shown to be a useful alternative. The objective of this study was to demonstrate the induction of cabbage plant resistance to P. xylostella using PGPR and injuries caused by the pest larvae as elicitors. Therefore, we evaluated the insects’ responses utilizing a specific bioassay. Furthermore, this assay was used for selecting a PGPR strain that affects the insect’s biology, and to examine molecular and biochemical responses of the plants influenced by the plant-microbe-insect interaction. Among the strains used in this study, Kluyvera ascorbata showed the most relevant results by influencing biological characteristics of the insect. Thus, the following tests demonstrated that the cited strain possesses a high influence on plant metabolism when it undergoes different types of stress such as injuries caused by the pest. These findings were determined from the different responses obtained by the chemical analyses of the tested plants and from the differentiation in the genetic sequences obtained from plants inoculated with or without PGPR that were injured by the pest. The PGPR K. ascorbata alters the metabolism of cabbage plants, which directs a specific plant defense against P. xylostella.
Downloads
References
Agrawal, A. 2000. Plant defense: signal in insect eggs. Tree, 9: 357. https://doi.org/10.1016/s0169-5347(00)01943-1
Agrios, G. N. 2005. Plant Pathol. Academic Press, San Diego, 922 pp.
Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
Betz, J. M., and W. D. Fox. 1994. High-performance liquid chromatographic determination of glucosinolates in Brassica vegetables. In: Food phytochemicals for cancer prevention I: fruits and vegetables. Huang, M.T., T. Osawa, C. T. Ho, R. T. Rosen (Eds.), Oxford University Press, Washington, p. 181-195.
Bodnaryk, R. P. 1997. Will low glucosinolate cultivars of the mustards Brassica juncea and Sinapis alba be vulnerable to insect pests? Can. J. Plant Sci., 77: 283-287. https://doi.org/10.4141/P96-113
Cattelan, A. J. 1999. Métodos qualitativos para determinação de características bioquímicas e fisiológicas associadas com bactérias promotoras de crescimento vegetal. EMBRAPA/CNPS, Londrina, Brazil, 36 pp.
Chester, K. S. 1933. The problem of acquired physiological immunity in plants (continued). Q. R. Biol., 8: 275–324. https://doi.org/10.1086/394440
Clarke, J. D., S. M. Volko, H. Ledford, F. M. Ausubel, and X. Dong. 2000. Roles of salicylic acid, jasmonic acid and ethylene en cpr-induced resistance in Arabdopsis. Plant Cell, 12: 2175-2190. https://doi.org/10.1105/tpc.12.11.2175
Dickson, M. H., A. M. Shelton, S. D. Eigenbrode, M. L. Vamosy, and M. Mora. 1990. Selection for resistance to diamondback moth (Plutella xylostella) in cabbage. Hortscience, 25: 1643-1646.
Durrant, W. E., and X. Dong. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol., 42: 185-209. https://doi.org/10.1146/annurev.phyto.42.040803.140421
Eigenbrode, S. D., A. M. Shelton, and M. H. Dickson. 1990. Two types of resistance to the diamondback moth (Lepidoptera: Plutellidae) in cabbage. Environ. Entomol., 19: 1086-1090. https://doi.org/10.1093/ee/19.4.1086
Gaümann, E. and O. Jaag. 1946. Über das Problem der Welkekrankheiten bei Pflanzen. Experientia, 2: 215-220. https://doi.org/10.1007/BF02172771
Germida, J. J., and J. R. Freitas. 1994. Growth promotion of cabbage, lettuce and onion by fluorescent pseudomonas under growth chamber conditions. Workshop on Plant Growth-Promoting Rhizobacteria. Adelaide. OEDC. p. 37-39.
Guo, H., and J. R. Ecker. 2004. The ethylene signaling pathway: new insights. Curr. Opin. Plant Biol., 7: 40-49. https://doi.org/10.1016/j.pbi.2003.11.011
Hallmann, J., A. Quadt-Hallmann, W. F. Mahafee, and J. W. Kloepper. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol., 43: 895-914. https://doi.org/10.1139/m97-131
Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol., 166: 557-580. https://doi.org/10.1016/S0022-2836(83)80284-8
Kandel, S., M. Morant, I. Benveniste, E. Blee, D. Werck-Reichhart, and F. Pinot. 2005. Cloning, functional expression, and characterization of CYP709C1, the first sub-terminal hydroxylase of long chain fatty acid in plants. Induction by chemicals and methyl jasmonate. J. Biol. Chem., 280: 35881–35889. https://doi.org/10.1074/jbc.M500918200
Kessler, A., and I. T. Baldwin. 2002. Pant responses to insect herbivory: The emerging molecular analysis. Annu. Rev. Plant Biol., 53: 299-328. https://doi.org/10.1146/annurev.arplant.53.100301.135207
Koornneef, A., and C. M. J. Pieterse. 2008. Cross-talk in defense signaling. Plant Physiol., 146: 839-844. https://doi.org/10.1104/pp.107.112029
Lazarovits, G., and J. Nowak. 1997. Rhizobacteria for improvement of plant growth and establishment. HortScience, 32: 188-192.
Lin, J., M. H. Dickson, and C. J. Eckenrode. 1984. Resistance of Brassica lines to the diamondback moth (Lepidoptera: Yponomeutidae) in the field, and inheritance of resistance. J. Econ. Entomol., 77: 293- 1296. https://doi.org/10.1093/jee/77.5.1293
Lin, J.; E. J. Eckenrode, and M. H. Dickson. 1983. Variation in Brassica oleracea resistance to diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol., 76: 1423-1427. https://doi.org/10.1093/jee/76.6.1423
Mariano, R. L. R, and R. S. Romeiro. 2000. Indução de resistência sistêmica mediada por rizobactérias promotoras de crescimento de plantas. Controle Biológico. Melo, I.S., and J. L. Azevedo (Eds.), EMBRAPA, Jaguariuna, Brazil. p. 305-324
Mariano, R. L. R., and J. W. Kloepper. 2000. Método alternativo de biocontrole: resistência sistêmica induzida por rizobactérias. Rev. An. Patol. Plantas, 8: 121-137.
McConn, M., R. A. Creelaman, E. Bell, F. E. Mullet, and J. Browse. 1997. Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci., 94: 5473-5477. https://doi.org/10.1073/pnas.94.10.5473
McDowell, J. M., and J. L. Dangl. 2000. Signal in the plant immune response. Trends Biochem. Sci., 25: 79-82. https://doi.org/10.1016/S0968-0004(99)01532-7
Medeiros, F. H. V., R. L. R. Mariano, and R. Barros. 2001. Potencial de bactérias no controle biológico da traça-das-crucíferas Plutella xylostella (L.) (Lepidoptera: Plutellidae) em repolho. Scientific Initiation Journey. Recife. UFRPE.
Müller, K. O., and H. Börger. 1940. Experimentelle Untersuchungen über die Phytophthora-resistenz den Kartoffel. Arbeiten aus der Biologischen Bundensanstalt für Land- und Fortswirtschaft, 23: 189-231.
Overmyer, K., H. Tuominen, R. Kettunen, C. Betz, C. Langebartels, H. Sandermann, and J. Kangasjarvi. 2000. Ozone-sensitive Arabidospsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell, 12: 1849-1862 https://doi.org/10.1105/tpc.12.10.1849
Romeiro, R. S. (2000). PGPR e indução de resistência sistêmica em plantas a patógenos. Summa Phytopathol., 26: 177-184.
Ryals, J. A., U. H. Neuenschwander, M. G. Willits, A. Molina, H. Y. Steiner, and M. D. Hunt. 1996. Systemic acquired resistance. Plant Cell, 8: 1809-1819. https://doi.org/10.1105/tpc.8.10.1809
Sambrook, J., and D. W. Russel. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York. 2100 pp.
Smigocki, A. C., and D. Wilson. 2004. Pest and disease resistance enhanced by heterologous suppression of a Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2. Biotechnol. Lett., 26: 1809–1814. https://doi.org/10.1007/s10529-004-4615-8
Sneath, P. H. A., and R. R. Sokal. 1973. Numerical taxonomy. W. H. Freeman, San Francisco. 573 pp.
Sticher, L., B. Mauch-Mani, and J. P. Metraux. 1997. Systemic acquired resistance. Annu. Rev. Phytopathol., 35: 235–270. https://doi.org/10.1146/annurev.phyto.35.1.235
Sturz, A. V., and J. Nowak. 2000. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl. Soil Ecol., 15: 183-190. https://doi.org/10.1016/S0929-1393(00)00094-9
Taiz, L., and E. Zeiger. 2004. Fisiologia Vegetal. Artmed, Porto Alegre, Brazil. 719 pp.
Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
Thorsteinson, A. J. 1958. The chemotactic influence of plant constituents on feeding by phytophagous insects. Entomol. Exp. Appl., 1: 23-27. https://doi.org/10.1111/j.1570-7458.1958.tb00005.x
Thuler, R. T., R. Barros, R. L. R. Mariano, and J. D. Vendramim. 2006 Efeito de bactérias promotoras do crescimento de plantas (BPCP) no desenvolvimento de Plutella xylostella (L.) (Lepidoptera: Plutellidae) em couve. Científica, 2: 217-222.
Thuler, R. T., S. A. De Bortoli, and C. B. Hoffmann-Campo. 2007. Classificação de cultivares de brássicas com relação à resistência à traça-das-crucíferas e à presença de glucosinolatos. Pesqui. Agropecu. Bras., 42: 467-474. https://doi.org/10.1590/S0100-204X2007000400003
Tomczyk, A. 1999. The use of plant growth-promoting rhizobacteria (PGPR) to decrease the susceptibility of cucumber to spider mites. IOBC Bul., 22: 251-254.
Ton, J., J. A. Van Pelt, L. C. Van Loon, and C. M. Pieterse. 2002. Differential effectiveness of salicylate and jamonate/ethylene-dependent induced resistance in Arabidopsis. Molec. Plant Microbe In., 15: 27-34. https://doi.org/10.1094/MPMI.2002.15.1.27
Turner, J. T., and P. A. Backman. 1991. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis., 75: 347-353. https://doi.org/10.1094/PD-75-0347
Ulmer, B., C. Gillott, D. Woods, and M. Erlandson. 2002. Diamondback moth, Plutella xylostella (L.), feeding and oviposition preferences on glossy and waxy Brassica rapa (L.) lines. Crop Prot., 21: 327-331. https://doi.org/10.1016/S0261-2194(02)00014-5
Vallad, G. E., and R. M. Goodman. 2004. Systemic Acquired Resistance and Induced Systemic Resistance in Conventional Agriculture. Crop Sci., 44: 1920–1934. https://doi.org/10.2135/cropsci2004.1920
Van Loon, L. C., P. A. H. M. Bakker, and C. M. J. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol., 36: 453-483. https://doi.org/10.1146/annurev.phyto.36.1.453
Van Wees, S. C., M. Luijendijk, I. Smoorenburg, L. C. Van Loon, and C. M. Pieterse. 1999. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant molec. Boil., 41: 537-549. https://doi.org/10.1023/A:1006319216982
Walling, L. L. 2000. The myriad plant responses. J. Plant Growth Reg., 19: 195-216.
Zehnder, G., J. Kloepper, C. Yao, G. Wey. 1997. Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth promoting rhizobacteria. J. Econ Entomol., 90: 381-396. https://doi.org/10.1093/jee/90.2.391
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).