A comparative analysis of phytochemical constituents and bioactivity of two wild medicinal herbs of the Amaranthaceae family
DOI:
https://doi.org/10.14719/pst.3093Keywords:
Alternanthera, antioxidant, antimicrobial, antibacterial, phytochemicalAbstract
Alternanthera sessilis and Alternanthera paronychioides are 2 common herbaceous plants in the North Eastern region of India. The 2 species are known traditionally for edibility and medicinal use. The objectives are to qualitatively screen phytochemicals and test for antioxidant activity and antimicrobial activity between the 2 species– Alternanthera sessilis and Alternanthera paronychioides. The samples for analysis were collected from aerial leaves and air-dried for phytochemical screening and biological activity tests. Antioxidant assays used are DPPH (2,2-diphenyl-1-1picrylhydrazyl), H2O2, and FRAP (ferric reducing antioxidant power) assay. For antimicrobial tests, 2 different strains of microbes were used to test the bioactivity of the plants. Phytochemical screening showed the presence of several antioxidant potential groups of phytochemicals like phenols, flavonoids, etc. Phytochemical constituents of Alternanthera sessilis showed more antioxidant potential than Alternanthera paronychioides in DPPH and H2O2 assays but Alternanthera paronychioides showed more potential than Alternanthera sessilis in FRAP assay. The phytochemicals also showed positive tests for antimicrobial activity against 2 bacterial strains, i.e., Escherichia coli (MTCC 443) and Staphylococcus aureus (MTCC 737). This study reveals the presence of phytonutrients which suggest the antioxidant and antibacterial activities exhibited by the 2 species of the family. Further exploration of phytochemicals in different aspects could lead to better-performing drugs for various ailments.
Downloads
References
Uniyal SK, Singh KN, Jamwal P, Lal B. Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. J Ethno Biol Ethno Med. 2006 Mar 20;2:14. https://doi.org/ 10.1186/1746-4269-2-14.
Huang Y, Xiao D, Burton-Freeman B, Edirisinghe Indika. Chemical changes of bioactive phytochemicals during thermal processing. Reference Module in Food Science. Elsevier. 2016. https://doi.org/10.1016/B978-0-08-100596-5.03055-9.
Harbone JB, Baxter H. Phytochemical dictionary. A Handbook of Bioactive Compounds from Plants. London. 1993. https://doi.org/10.1007/bf02862326.
Sapkota BK, Khadayat K, Sharma K, Raut BK, Aryal D, Thapa BB, Parajuli N. Phytochemical analysis and antioxidant and antidiabetic activities of extracts from Bergenia ciliata, Mimosa pudica and Phyllanthus emblica. Adv Pharmacol Pharm Sci. 2022;2022:4929824. https://doi.org/10.1155/2022/4929824.
Ryu J-H, Lee S-J, Kim M-J, Shin J-H, Kang S-K, Cho K-M et al. Antioxidant and anticancer activities Artemisia annua L. and determination of functional compounds. Journal of the Korean Society of Food Science and Nutrition. 2011;40:509-16. https://doi.org/10.3746/jkfn.2011.40.4.509
Ed Nignpense B, Chinkwo KA, Blanchard CL, Santhakumar AB. Polyphenols: Modulators of platelet function and platelet microparticle generation? Int J Mol Sci. 2019;21(1):146. https://doi.org/10.3390/ijms21010146.
Juríková T, Ml?ek J, Sochor J, Heged?sová A. Polyphenols and their mechanism of action in allergic immune response. Glob J Allergy. 2015;1(2):037-039. https://doi.org/10.17352/2455-8141.000008.
Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines (Basel). 2018;5(3):93. https://doi.org/10.3390/medicines5030093.
Thakur M, Karuna S, Renu K. Phytochemicals: Extraction process, safety assessment, toxicological evaluations and regulatory issues. In: Bhanu Prakash. Functional and Preservative Properties of Phytochemicals. Academic Press: Elsevier. 2020;341-61. https://doi.org/10.1016/B978-0-12-818593-3.00011-7.
AOAC. Association of Official Analytical Chemists, Gaithersburg, MD, USA. 2000;17:87.
Sankhalkar S, Vernekar V. Quantitative and qualitative analysis of phenolic and flavonoid content in Moringa oleifera Lam. and Ocimum tenuiflorum L. Pharmacognosy Res. 2016;8(1):16-21. https://doi.org/ 10.4103/0974-8490.171095.
Jelena SM. Total phenolic and flavonoid content, antioxidant and antimicrobial activity of extracts from Tordylium maximum. J Appl Pharm Sci. 2013;3(1):55-59. https://doi.org/10.7324/JAPS.2013.30110.
Brand-Williams W, Cuvelier ME, Berset CL. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology. 1995;28(1):25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Chaves N, Santiago A, Alías JC. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants. 2020;9(1):76. https://doi.org/10.3390/antiox9010076.
Al-Amiery AA, Al-Majedy YK, Kadhum AA, Mohamad AB. Hydrogen peroxide scavenging activity of novel coumarins synthesized using different approaches. PLoS One. 2015;10(7):e0132175. https://doi.org/ 10.1371/journal.pone.0132175.
Payne AC, Mazzer A, Clarkson GJ, Taylor G. Antioxidant assays - Consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves. Food Sci Nutr. 2013;1(6):439-44. https://doi.org/ 10.1002/fsn3.71. Epub 2013 Oct 16.
Sadiqul A, Roy S, Tayung K, Yasmin F. Assessment of antibacterial potential of different solvent extract of foliose lichens against human pathogenic bacteria. J Appl Pharm Sci. 2020. https://doi.org/10.7324/JAPS.2020.10108.
Sarkar A, Das AP. The traditional knowledge on edible wild leafy vegetables of Rabha tribe in Duars of North Bengal: A potential reinforcement to food security. Pleione. 2018;12(2):275. https://doi.org/10.26679/Pleione.12.2.2018.275-281.
Singla RK, Dhir V, Madaan R, Kumar D, Singh Bola S, Bansal M et al. The genus Alternanthera: Phytochemical and ethnopharmacological perspectives. Front Pharmacol. 2022;13:769111. https://doi.org/ 10.3389/fphar.2022.769111
Huang WY, Yi-Zhong C, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutr Cancer. 2009;62(1):1-20. https://doi.org/10.1080/01635580903191585.
Gonelimali FD, Lin J, Miao W, Xuan J, Charles F, Chen M, Hatab SR. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front Microbiol. 2018;9:1639. https://doi.org/10.3389/fmicb.2018.01639.
Downloads
Published
Versions
- 21-05-2024 (2)
- 11-05-2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 Jinti Moni Das, Namita Nath, Anindita Sharma, Kumananda Tayung
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).