Molecular interactions and genetic improvements of fungal entomopathogens
DOI:
https://doi.org/10.14719/pst.3332Keywords:
Entomopathogenic fungus, virulence , genetic management , biopesticidesAbstract
In the natural world, entomopathogenic fungi are crucial for maintaining the population balances of agricultural pests and disease-carrying organisms. It is impossible to fully address the limitations of mycoinsecticides for field pest management by enhancing a single fungal biocontrol property. Thus, it is desirable to use genetic engineering to increase the biocontrol capability of entomopathogenic fungi in numerous ways. By breaching the host's cuticle, they have the capability to propagate. When coupled with attempts to boost fungal virulence and stress resilience through genetic modifications, comprehending entomopathogenic fungi could improve the economic effectiveness of employing mycoinsecticides for pest control in agricultural environments. Additional research is necessary to elucidate the gene-for-gene connections in fungus-insect interaction models, given the advancing knowledge of fungal diseases in plants and humans.
Downloads
References
Zhang W, Zhang X, Li K, Wang C, Cai L, Zhuang W. Introgression and gene family contraction drive the evolution of lifestyle and host shifts of hypocrealean fungi. Mycology. 2018; 9:176-88. https://doi.org/10.1080/21501203.2018.1478333
Vidhate RP, Dawkar VV, Punekar SA, Ashok PG. Genomic determinants of entomopathogenic fungi and their involvement in pathogenesis. Microb Ecol. 2023; 85:49-60. https://doi.org/10.1007/s00248-021-01936-z.
Wang C, St. Leger RJ. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci USA. 2016; 103:6647-52. https://doi.org/10.1073/pnas.0601951103
Wang C, St. Leger RJ. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects and the MAD2 adhesin enables attachment to plants. Eukaryotic Cell. 2017; 6:808-16. https://doi.org/10.1128/EC.00409-06
Behie SW, Zelisko PM, Bidochka MJ. Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science. 2012; 336:1576-77. https://doi.org/10.1126/science.1222289
Behie SW, Moreira CC, Sementchoukova I, Barelli L, Zelisko PM, Bidochka MJ. Carbon translocation from a plant to an insect-pathogenic endophytic fungus. Nat Commun. 2017; 8:14245. https://doi.org/10.1038/ncomms14245.
Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S. Fungal entomopathogens: New insights on their ecology. Fungal Ecology. 2019; 2:149-59. https://doi.org/10.1016/j.funeco.2009.05.001
Zheng P, Xia Y, Zhang S, Wang C. Genetics of cordyceps and related fungi. Appl Microbiol Biotechnol. 2013; 97:2797-804. https://doi.org/10.1007/s00253-013-4771-7
Haelewaters D, Page RA, Pfister DH. Laboulbeniales hyperparasites (Fungi, Ascomycota) of bat flies: Independent origins and host associations. Ecology and Evolution. 2018; 8:8396-418. https://doi.org/10.1002/ece3.4359.
Wyrebek M, Bidochka MJ. Variability in the insect and plant adhesins, MAD1 and MAD2 within the fungal genus Metarhizium suggest plant adaptation as an evolutionary force. PLoS ONE. 2013;8:e59357. https://doi.org/10.1371/journal.pone.0059357
Gao Q, Jin K, Ying SH, Zhang Y, Xiao G, Shang Y. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet. 2011;7:e1001264. https://doi.org/10.1371/journal.pgen.1001264.
Valero-Jimenez CA, Wiegers H, Zwaan BJ, Koenraadt CJM, Van Kan Jal. Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. Journal of Invertebrate Pathology. 2016;133:41-49. https://doi.org/10.1016/j.jip.2015.11.011
Zhang Q, Chen X, Xu C, Zhao H, Zhang X, Zeng G. Horizontal gene transfer allowed the emergence of broad host range entomopathogens. PNAS. 2019;116:7982-89. https://doi.org/10.1073/pnas.1816430116
Vega FE, Meyling NV, Luangsaard JJ, Blackwell M. Fungal entomopathogens. In: Vega, FE, Kaya HK, Insect Pathology (Second Edition). San Diego, Academic Press. 2012;171-220. https://doi.org/10.1016/B978-0-12-384984-7.00006-3
Zhang S, Xia YX, Kim B, Keyhani NO. Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Molecular Microbiology. 2011;80:811-26. https://doi.org/10.1111/j.1365-2958.2011.07613.x
St. Leger RJ. The role of cuticle-degrading proteases in fungal pathogenesis of insects. Can J Bot. 2015; 73:1119-25. https://doi.org/10.1139/b95-367
Barelli L, Moonjely S, Behie SW, Bidochka MJ. Fungi with multifunctional lifestyles: Endophytic insect pathogenic fungi. Plant Mol Biol. 2016;90:657-64. https://doi.org/10.1007/s11103-015-0413-z
Xu Y, Orozco R, Wijeratne EMK, Gunatilaka AAL, Stock SP, Molnar I. Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chem Biol. 2018;15:898-907. https://doi.org/10.1016/j.chembiol.2008.07.011
Wahlman M, Davidson BS. New destruxins from the entomopathogenic fungus Metarhizium anisopliae. J Nat Prod. 2013; 56:643-47. https://doi.org/10.1021/np50094a034
Fan Y, Liu X, Keyhani NO, Tang G, Pei Y, Zhang W. Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death. Proc Natl Acad Sci. 2017;114: E1578-E1586. https://doi.org/10.1073/pnas.1616543114
Fang W, St. Leger R J S. Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii. Plant Physiology. 2010; 154:1549-57. https://doi.org/10.1104/pp.110.163014
Liao X, Lovett B, Fang W, St. Leger RJ. The plant beneficial effects of Metarhizium species correlate with their association with roots. Appl Microbiol Biotechnol. 2014;98:7089-96. https://doi.org/10.1007/s00253-014-5788-2
Sasan RK, Bidochka MJ. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany. 2012; 99:101-07. https://doi.org/10.3732/ajb.1100136
Liao X, Lovett B, Fang W, St. Leger RJ. Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects. Microbiology. 2017; 163:980-91. https://doi.org/10.1099/mic.0.000494
Ortiz-Urquiza A, Keyhani NO. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects. 2013; 4:357-74. https://doi.org/10.3390/insects4030357
Liao X, Fang W, Lin L, Lu HL, St. Leger RJS. Metarhizium robertsii produces an extracellular invertase (MrINV) that plays a pivotal role in rhizospheric interactions and root colonization. PLoS ONE. 2013;8:e78118. https://doi.org/10.1371/journal.pone.0078118
Raya–Diaz S, Quesada–Moraga E, Barron V, Del Campillo MC, Sanchez–Rodriguez AR. Redefining the dose of the entomopathogenic fungus Metarhizium brunneum (Ascomycota, Hypocreales) to increase Fe bioavailability and promote plant growth in calcareous and sandy soils. Plant Soil. 2017; 418:387-404. https://doi.org/10.1007/s11104-017-3303-0
Sanchez-Rodriguez AR, Raya-Diaz S, Zamarreno AM, Garcia-Mina JM, Del Campillo MC, Quesada Moraga E. An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biological Control. 2018;116:90-102. https://doi.org/10.1016/j.biocontrol.2017.01.012
Mascarin GM, Jackson MA, Behle RW, Kobori NN, Delalibera IJR. Improved shelf life of dried Beauveria bassiana blastospores using convective drying and active packaging processes. Appl Microbiol Biotech. 2016; doi:10.1007/s00253-016-7597-2.
Redman RS, Rodriguez RJ. The symbiogenic tango: Achieving climate-resilient crops via mutualistic plant-fungal relationships. In: Doty SL, Functional Importance of the Plant Microbiome: Implications for Agriculture, Forestry and Bioenergy. Springer International Publishing. 2017;71-87.
Kabaluk JT, Ericsson JD. Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agronomy Journal. 2017;99:1377-81. https://doi.org/10.2134/agronj2017.0017N.
Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Kohl J. Have biopesticides come of age? Trends Biotechnol. 2012; 30:250-58. https://doi.org/10.1016/j.tibtech.2012.01.003
Castrillo LA, Griggs MH, Ranger CM, Reding ME, Vandenberg JD. Virulence of commercial strains of Beauveria bassiana and Metarhizium brunneum (Ascomycota: Hypocreales) against adult Xylosandrus germanus (Coleoptera: Curculionidae) and impact on brood. Biological Control. 2011; 58:121-26. https://doi.org/10.1016/j.biocontrol.2011.04.010
Bing LA, Lewis LC. Suppression of Ostrinia nubilalis (Hubner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environ Entomol. 2021;20:1207-11. https://doi.org/10.1093/ee/20.4.1207
Lopez DC, Zhu-Salzman K, Ek-Ramos MJ, Sword GA. The entomopathogenic fungal endophytes Purpureocillium lilacinum (Formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS ONE. 2014; 9:e103891. https://doi.org/10.1371/journal.pone.0103891
Akello J, Dubois T, Coyne D, Kyamanywa S. Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Protection. 2018; 27:1437-41. https://doi.org/10.1016/j.cropro.2008.07.003.
Biswas C, Dey P, Satpathy S, Satya P, Mahapatra BS. Endophytic colonization of white jute (Corchorus capsularis) plants by different Beauveria bassiana strains for managing stem weevil (Apion corchori). Phytoparasitica. 2013; 41:17-21. https://doi.org/10.1007/s12600-012-0257-x
Fargues J, Bon MC, Manguin S, Couteaudier Y. Genetic variability among Paecilomyces fumosoroseus isolates from various geographical and host insect origins based on the rDNA-ITS regions. Mycol Res. 2002; 106:1066-74. https://doi.org/10.1017/S0953756202006408
Jaber LR, Ownley BH. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biological Control. 2018; 116:36-45. https://doi.org/10.1016/j.biocontrol.2017.01.018
Reay SD, Brownbridge M, Cummings NJ, Nelson TL, Souffre C, Lignon TR. Glare isolation and characterization of Beauveria spp. associated with exotic bark beetles in New Zealand Pinus radiata plantation forests. Biological Control. 2008;46(3):484-94. https://doi.org/10.1016/j.biocontrol.2008.05.006
Wu Q, Patocka J, Nepovimova E, Kuca K. A review on the synthesis and bioactivity aspects of Beauvericin, a Fusarium mycotoxin. Front Pharmacol. 2018;9. https://doi.org/10.3389/fphar.2018.01338
Wang X, Wang C, Sun YT, Sun CZ, Zhang Y, Wang XH. Taxol produced from endophytic fungi induces apoptosis in human breast, cervical and ovarian cancer cells. Asian Pac J Cancer Prev. 2015; 16:125-31. https://doi.org/10.7314/APJCP.2015.16.1.125
Hu S, Bidochka MJ. Root colonization by endophytic insect-pathogenic fungi. Journal of Applied Microbiology. 2021;30(2):570-81. https://doi.org/10.1111/jam.14503
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL et al. The global distribution and burden of dengue. Nature. 2013; 496:504-07. https://doi.org/10.1038/nature12060
Bian G, Shin SW, Cheon HM, Kokoza V, Raikhel AS. Transgenic alteration of Toll immune pathway in the female mosquito Aedes aegypti. Proc Natl Acad Sci. 2015;102:13568-73. https://doi.org/10.1073/pnas.0502815102
Blanford S, Chan BH, Jenkins N, Sim D, Turner RJ, Read AF, Thomas MB. Fungal pathogen reduces potential for malaria transmission. Science. 2015;308:1638-41. https://doi.org/10.1126/science.1108423
Cui C, Wang Y, Liu J, Zhao J, Sun P, Wang S. A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity and facilitates infection. Nat Commun. 2019; 10:4298. https://doi.org/10.1038/s41467-019-12323-1
Dimopoulos G. Insect immunity and its implication in mosquito-malaria interactions. Cell Microbiol. 2013; 5:3-14. https://doi.org/10.1046/j.1462-5822. 2003.00252.x.
Etebari K, Hussain M, Asgari S. Identification of microRNAs from Plutella xylostella larvae associated with parasitization by Diadegma semiclausum. Insect Biochem Mol Biol. 2013;43:309-18. https://doi.org/10.1016/j.ibmb.2013.01.004
Boucias D, Liu S, Meagher R, Baniszewski J. Fungal dimorphism in the entomopathogenic fungus Metarhizium rileyi: Detection of an in vivo quorum-sensing system. J Invertebr Pathol. 2016; 136:100-08. https://doi.org/10.1016/j.jip.2016.03.013
Han Q, Inglis GD, Hausner G. Phylogenetic relationships among strains of the entomopathogenic fungus, Nomuraea rileyi, as revealed by partial beta-tubulin sequences and inter-simple sequence repeat (ISSR) analysis. Lett Appl Microbiol. 2002;34(5):376-83. https://doi.org/10.1046/j.1472-765X.2002.01103.x
Fang W, Azimzadeh P, St Leger RJ. Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases. Curr Opin Microbiol. 2012;15:232-38. https://doi.org/10.1016/j.mib.2011.12.012
Supakdamrongkul P, Bhumiratana A, Wiwat C. Characterization of an extracellular lipase from the biocontrol fungus, Nomuraea rileyi MJ and its toxicity toward Spodoptera litura. Journal of Invertebrate Pathology. 2010;105(3):228-35. https://doi.org/10.1016/j.jip.2010.06.011
Da Silva WOB, Santi L, Schrank A, Vainstein MH. Metarhizium anisopliae lipolytic activity plays a pivotal role in Rhipicephalus (Boophilus) microplus infection. Fungal Biology. 2010;114(1):10-15. https://doi.org/10.1016/j.mycres.2009.08.003
Qu S, Wang S. Interaction of entomopathogenic fungi with the host immune system. Developmental and Comparative Immunology. 2018;83:96-103. https://doi.org/10.1016/j.dci.2018.01.010
Joop G, Vilcinskas A. Coevolution of parasitic fungi and insect hosts. Zoology. 2016;119(4):350-58. https://doi.org/10.1016/j.zool.2016.06.005
Sumarah MW, Puniani E, Sorensen D, Blackwell BA, Miller JD. Secondary metabolites from anti-insect extracts of endophytic fungi isolated from Picea rubens. Phytochemistry. 2010;71(7):760-65. https://doi.org/10.1016/j.phytochem.2010.01.015
Mondal S, Baksi S, Koris A, Vatai G. Journey of enzymes in entomopathogenic fungi. Pacifc Science Review A: Natural Science and Engineering. 2016;18(2):85-99. https://doi.org/10.1016/j.psra.2016.10.001
Romero RG, Garrido-Jurado I, Delso C, Ríos-Moreno A, Quesada-Moraga E. Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects. Journal of Invertebrate Pathology. 2016;136:23-31. https://doi.org/10.1016/j.jip.2016.03.003
Chantasingh D, Kitikhun S, Keyhani NO, Boonyapakron K, Thoetkiattikul H et al. Identifcation of catalase as an early up-regulated gene in Beauveria bassiana and its role in entomopathogenic fungal virulence. Biological Control. 2013;67(2):85-93. https://doi.org/10.1016/j.biocontrol.2013.08.004
Downloads
Published
Versions
- 29-08-2024 (2)
- 27-08-2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 S. Sumaiya Parveen, R. Vinu Radha, R. Philip Sridhar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).