This is an outdated version published on 27-08-2024. Read the most recent version.
Forthcoming

Molecular interactions and genetic improvements of fungal entomopathogens

Authors

DOI:

https://doi.org/10.14719/pst.3332

Keywords:

Entomopathogenic fungus, virulence , genetic management , biopesticides

Abstract

In the natural world, entomopathogenic fungi are crucial for maintaining the population balances of agricultural pests and disease-carrying organisms. It is impossible to fully address the limitations of mycoinsecticides for field pest management by enhancing a single fungal biocontrol property. Thus, it is desirable to use genetic engineering to increase the biocontrol capability of entomopathogenic fungi in numerous ways. By breaching the host's cuticle, they have the capability to propagate. When coupled with attempts to boost fungal virulence and stress resilience through genetic modifications, comprehending entomopathogenic fungi could improve the economic effectiveness of employing mycoinsecticides for pest control in agricultural environments. Additional research is necessary to elucidate the gene-for-gene connections in fungus-insect interaction models, given the advancing knowledge of fungal diseases in plants and humans.

Downloads

Download data is not yet available.

References

Zhang W, Zhang X, Li K, Wang C, Cai L, Zhuang W. Introgression and gene family contraction drive the evolution of lifestyle and host shifts of hypocrealean fungi. Mycology. 2018; 9:176-88. https://doi.org/10.1080/21501203.2018.1478333

Vidhate RP, Dawkar VV, Punekar SA, Ashok PG. Genomic determinants of entomopathogenic fungi and their involvement in pathogenesis. Microb Ecol. 2023; 85:49-60. https://doi.org/10.1007/s00248-021-01936-z.

Wang C, St. Leger RJ. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci USA. 2016; 103:6647-52. https://doi.org/10.1073/pnas.0601951103

Wang C, St. Leger RJ. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects and the MAD2 adhesin enables attachment to plants. Eukaryotic Cell. 2017; 6:808-16. https://doi.org/10.1128/EC.00409-06

Behie SW, Zelisko PM, Bidochka MJ. Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science. 2012; 336:1576-77. https://doi.org/10.1126/science.1222289

Behie SW, Moreira CC, Sementchoukova I, Barelli L, Zelisko PM, Bidochka MJ. Carbon translocation from a plant to an insect-pathogenic endophytic fungus. Nat Commun. 2017; 8:14245. https://doi.org/10.1038/ncomms14245.

Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S. Fungal entomopathogens: New insights on their ecology. Fungal Ecology. 2019; 2:149-59. https://doi.org/10.1016/j.funeco.2009.05.001

Zheng P, Xia Y, Zhang S, Wang C. Genetics of cordyceps and related fungi. Appl Microbiol Biotechnol. 2013; 97:2797-804. https://doi.org/10.1007/s00253-013-4771-7

Haelewaters D, Page RA, Pfister DH. Laboulbeniales hyperparasites (Fungi, Ascomycota) of bat flies: Independent origins and host associations. Ecology and Evolution. 2018; 8:8396-418. https://doi.org/10.1002/ece3.4359.

Wyrebek M, Bidochka MJ. Variability in the insect and plant adhesins, MAD1 and MAD2 within the fungal genus Metarhizium suggest plant adaptation as an evolutionary force. PLoS ONE. 2013;8:e59357. https://doi.org/10.1371/journal.pone.0059357

Gao Q, Jin K, Ying SH, Zhang Y, Xiao G, Shang Y. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet. 2011;7:e1001264. https://doi.org/10.1371/journal.pgen.1001264.

Valero-Jimenez CA, Wiegers H, Zwaan BJ, Koenraadt CJM, Van Kan Jal. Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. Journal of Invertebrate Pathology. 2016;133:41-49. https://doi.org/10.1016/j.jip.2015.11.011

Zhang Q, Chen X, Xu C, Zhao H, Zhang X, Zeng G. Horizontal gene transfer allowed the emergence of broad host range entomopathogens. PNAS. 2019;116:7982-89. https://doi.org/10.1073/pnas.1816430116

Vega FE, Meyling NV, Luangsaard JJ, Blackwell M. Fungal entomopathogens. In: Vega, FE, Kaya HK, Insect Pathology (Second Edition). San Diego, Academic Press. 2012;171-220. https://doi.org/10.1016/B978-0-12-384984-7.00006-3

Zhang S, Xia YX, Kim B, Keyhani NO. Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Molecular Microbiology. 2011;80:811-26. https://doi.org/10.1111/j.1365-2958.2011.07613.x

St. Leger RJ. The role of cuticle-degrading proteases in fungal pathogenesis of insects. Can J Bot. 2015; 73:1119-25. https://doi.org/10.1139/b95-367

Barelli L, Moonjely S, Behie SW, Bidochka MJ. Fungi with multifunctional lifestyles: Endophytic insect pathogenic fungi. Plant Mol Biol. 2016;90:657-64. https://doi.org/10.1007/s11103-015-0413-z

Xu Y, Orozco R, Wijeratne EMK, Gunatilaka AAL, Stock SP, Molnar I. Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chem Biol. 2018;15:898-907. https://doi.org/10.1016/j.chembiol.2008.07.011

Wahlman M, Davidson BS. New destruxins from the entomopathogenic fungus Metarhizium anisopliae. J Nat Prod. 2013; 56:643-47. https://doi.org/10.1021/np50094a034

Fan Y, Liu X, Keyhani NO, Tang G, Pei Y, Zhang W. Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death. Proc Natl Acad Sci. 2017;114: E1578-E1586. https://doi.org/10.1073/pnas.1616543114

Fang W, St. Leger R J S. Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii. Plant Physiology. 2010; 154:1549-57. https://doi.org/10.1104/pp.110.163014

Liao X, Lovett B, Fang W, St. Leger RJ. The plant beneficial effects of Metarhizium species correlate with their association with roots. Appl Microbiol Biotechnol. 2014;98:7089-96. https://doi.org/10.1007/s00253-014-5788-2

Sasan RK, Bidochka MJ. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany. 2012; 99:101-07. https://doi.org/10.3732/ajb.1100136

Liao X, Lovett B, Fang W, St. Leger RJ. Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects. Microbiology. 2017; 163:980-91. https://doi.org/10.1099/mic.0.000494

Ortiz-Urquiza A, Keyhani NO. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects. 2013; 4:357-74. https://doi.org/10.3390/insects4030357

Liao X, Fang W, Lin L, Lu HL, St. Leger RJS. Metarhizium robertsii produces an extracellular invertase (MrINV) that plays a pivotal role in rhizospheric interactions and root colonization. PLoS ONE. 2013;8:e78118. https://doi.org/10.1371/journal.pone.0078118

Raya–Diaz S, Quesada–Moraga E, Barron V, Del Campillo MC, Sanchez–Rodriguez AR. Redefining the dose of the entomopathogenic fungus Metarhizium brunneum (Ascomycota, Hypocreales) to increase Fe bioavailability and promote plant growth in calcareous and sandy soils. Plant Soil. 2017; 418:387-404. https://doi.org/10.1007/s11104-017-3303-0

Sanchez-Rodriguez AR, Raya-Diaz S, Zamarreno AM, Garcia-Mina JM, Del Campillo MC, Quesada Moraga E. An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biological Control. 2018;116:90-102. https://doi.org/10.1016/j.biocontrol.2017.01.012

Mascarin GM, Jackson MA, Behle RW, Kobori NN, Delalibera IJR. Improved shelf life of dried Beauveria bassiana blastospores using convective drying and active packaging processes. Appl Microbiol Biotech. 2016; doi:10.1007/s00253-016-7597-2.

Redman RS, Rodriguez RJ. The symbiogenic tango: Achieving climate-resilient crops via mutualistic plant-fungal relationships. In: Doty SL, Functional Importance of the Plant Microbiome: Implications for Agriculture, Forestry and Bioenergy. Springer International Publishing. 2017;71-87.

Kabaluk JT, Ericsson JD. Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agronomy Journal. 2017;99:1377-81. https://doi.org/10.2134/agronj2017.0017N.

Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Kohl J. Have biopesticides come of age? Trends Biotechnol. 2012; 30:250-58. https://doi.org/10.1016/j.tibtech.2012.01.003

Castrillo LA, Griggs MH, Ranger CM, Reding ME, Vandenberg JD. Virulence of commercial strains of Beauveria bassiana and Metarhizium brunneum (Ascomycota: Hypocreales) against adult Xylosandrus germanus (Coleoptera: Curculionidae) and impact on brood. Biological Control. 2011; 58:121-26. https://doi.org/10.1016/j.biocontrol.2011.04.010

Bing LA, Lewis LC. Suppression of Ostrinia nubilalis (Hubner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environ Entomol. 2021;20:1207-11. https://doi.org/10.1093/ee/20.4.1207

Lopez DC, Zhu-Salzman K, Ek-Ramos MJ, Sword GA. The entomopathogenic fungal endophytes Purpureocillium lilacinum (Formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS ONE. 2014; 9:e103891. https://doi.org/10.1371/journal.pone.0103891

Akello J, Dubois T, Coyne D, Kyamanywa S. Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Protection. 2018; 27:1437-41. https://doi.org/10.1016/j.cropro.2008.07.003.

Biswas C, Dey P, Satpathy S, Satya P, Mahapatra BS. Endophytic colonization of white jute (Corchorus capsularis) plants by different Beauveria bassiana strains for managing stem weevil (Apion corchori). Phytoparasitica. 2013; 41:17-21. https://doi.org/10.1007/s12600-012-0257-x

Fargues J, Bon MC, Manguin S, Couteaudier Y. Genetic variability among Paecilomyces fumosoroseus isolates from various geographical and host insect origins based on the rDNA-ITS regions. Mycol Res. 2002; 106:1066-74. https://doi.org/10.1017/S0953756202006408

Jaber LR, Ownley BH. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biological Control. 2018; 116:36-45. https://doi.org/10.1016/j.biocontrol.2017.01.018

Reay SD, Brownbridge M, Cummings NJ, Nelson TL, Souffre C, Lignon TR. Glare isolation and characterization of Beauveria spp. associated with exotic bark beetles in New Zealand Pinus radiata plantation forests. Biological Control. 2008;46(3):484-94. https://doi.org/10.1016/j.biocontrol.2008.05.006

Wu Q, Patocka J, Nepovimova E, Kuca K. A review on the synthesis and bioactivity aspects of Beauvericin, a Fusarium mycotoxin. Front Pharmacol. 2018;9. https://doi.org/10.3389/fphar.2018.01338

Wang X, Wang C, Sun YT, Sun CZ, Zhang Y, Wang XH. Taxol produced from endophytic fungi induces apoptosis in human breast, cervical and ovarian cancer cells. Asian Pac J Cancer Prev. 2015; 16:125-31. https://doi.org/10.7314/APJCP.2015.16.1.125

Hu S, Bidochka MJ. Root colonization by endophytic insect-pathogenic fungi. Journal of Applied Microbiology. 2021;30(2):570-81. https://doi.org/10.1111/jam.14503

Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL et al. The global distribution and burden of dengue. Nature. 2013; 496:504-07. https://doi.org/10.1038/nature12060

Bian G, Shin SW, Cheon HM, Kokoza V, Raikhel AS. Transgenic alteration of Toll immune pathway in the female mosquito Aedes aegypti. Proc Natl Acad Sci. 2015;102:13568-73. https://doi.org/10.1073/pnas.0502815102

Blanford S, Chan BH, Jenkins N, Sim D, Turner RJ, Read AF, Thomas MB. Fungal pathogen reduces potential for malaria transmission. Science. 2015;308:1638-41. https://doi.org/10.1126/science.1108423

Cui C, Wang Y, Liu J, Zhao J, Sun P, Wang S. A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity and facilitates infection. Nat Commun. 2019; 10:4298. https://doi.org/10.1038/s41467-019-12323-1

Dimopoulos G. Insect immunity and its implication in mosquito-malaria interactions. Cell Microbiol. 2013; 5:3-14. https://doi.org/10.1046/j.1462-5822. 2003.00252.x.

Etebari K, Hussain M, Asgari S. Identification of microRNAs from Plutella xylostella larvae associated with parasitization by Diadegma semiclausum. Insect Biochem Mol Biol. 2013;43:309-18. https://doi.org/10.1016/j.ibmb.2013.01.004

Boucias D, Liu S, Meagher R, Baniszewski J. Fungal dimorphism in the entomopathogenic fungus Metarhizium rileyi: Detection of an in vivo quorum-sensing system. J Invertebr Pathol. 2016; 136:100-08. https://doi.org/10.1016/j.jip.2016.03.013

Han Q, Inglis GD, Hausner G. Phylogenetic relationships among strains of the entomopathogenic fungus, Nomuraea rileyi, as revealed by partial beta-tubulin sequences and inter-simple sequence repeat (ISSR) analysis. Lett Appl Microbiol. 2002;34(5):376-83. https://doi.org/10.1046/j.1472-765X.2002.01103.x

Fang W, Azimzadeh P, St Leger RJ. Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases. Curr Opin Microbiol. 2012;15:232-38. https://doi.org/10.1016/j.mib.2011.12.012

Supakdamrongkul P, Bhumiratana A, Wiwat C. Characterization of an extracellular lipase from the biocontrol fungus, Nomuraea rileyi MJ and its toxicity toward Spodoptera litura. Journal of Invertebrate Pathology. 2010;105(3):228-35. https://doi.org/10.1016/j.jip.2010.06.011

Da Silva WOB, Santi L, Schrank A, Vainstein MH. Metarhizium anisopliae lipolytic activity plays a pivotal role in Rhipicephalus (Boophilus) microplus infection. Fungal Biology. 2010;114(1):10-15. https://doi.org/10.1016/j.mycres.2009.08.003

Qu S, Wang S. Interaction of entomopathogenic fungi with the host immune system. Developmental and Comparative Immunology. 2018;83:96-103. https://doi.org/10.1016/j.dci.2018.01.010

Joop G, Vilcinskas A. Coevolution of parasitic fungi and insect hosts. Zoology. 2016;119(4):350-58. https://doi.org/10.1016/j.zool.2016.06.005

Sumarah MW, Puniani E, Sorensen D, Blackwell BA, Miller JD. Secondary metabolites from anti-insect extracts of endophytic fungi isolated from Picea rubens. Phytochemistry. 2010;71(7):760-65. https://doi.org/10.1016/j.phytochem.2010.01.015

Mondal S, Baksi S, Koris A, Vatai G. Journey of enzymes in entomopathogenic fungi. Pacifc Science Review A: Natural Science and Engineering. 2016;18(2):85-99. https://doi.org/10.1016/j.psra.2016.10.001

Romero RG, Garrido-Jurado I, Delso C, Ríos-Moreno A, Quesada-Moraga E. Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects. Journal of Invertebrate Pathology. 2016;136:23-31. https://doi.org/10.1016/j.jip.2016.03.003

Chantasingh D, Kitikhun S, Keyhani NO, Boonyapakron K, Thoetkiattikul H et al. Identifcation of catalase as an early up-regulated gene in Beauveria bassiana and its role in entomopathogenic fungal virulence. Biological Control. 2013;67(2):85-93. https://doi.org/10.1016/j.biocontrol.2013.08.004

Published

27-08-2024

Versions

How to Cite

1.
Sumaiya Parveen S, Vinu Radha R, Philip Sridhar R. Molecular interactions and genetic improvements of fungal entomopathogens. Plant Sci. Today [Internet]. 2024 Aug. 27 [cited 2024 Nov. 23];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/3332

Issue

Section

Review Articles