Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. 3 (2024)

Antioxidant and cardioprotective properties of polyphenolic plant extract of Rhus glabra L.

DOI
https://doi.org/10.14719/pst.3442
Submitted
26 February 2024
Published
18-08-2024 — Updated on 18-08-2024
Versions

Abstract

This research looks at the heart-healthy and antioxidant effects of a polyphenol mixture made from Rhus glabra by using a lot of different types of experiments. First, the DPPH assay was used to test the antiradical activity. It showed strong free radical scavenging abilities, with an IC50 value of 18.4 ± 1.4 µL. Mitochondria isolated from rat liver were utilized to examine antioxidative effects on mitochondrial K+ATP ion channels and the mitochondrial permeability transition pore (mPTP). Lipid peroxidation (LPO) was measured via malondialdehyde (MDA) production, indicating that the preparation inhibited LPO and oxidative stress in mitochondrial membranes. Further, the study employed an adrenaline-induced ischemia model to evaluate cardioprotective effects. Treatment with the polyphenol preparation significantly reduced enzyme markers such as ALT, AST, CK, and LDH compared to the ischemic group, highlighting its potential in mitigating ischemic damage. Creatine kinase activity assays indicated improved cellular energy metabolism and biochemical profiling revealed enhancements in atherogenic, cardioprotective, and coronary risk indices. Statistical analyses confirmed the significance of these findings, demonstrating that Rhus glabra exhibits potent antioxidant activity, mitigates oxidative stress, and provides cardioprotective benefits. The study's results suggest that Rhus glabra holds substantial therapeutic potential for enhancing cardiovascular health and combating oxidative stress through its antioxidant properties and ability to improve mitochondrial function and protect against ischemic injury.

References

  1. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv. 2015;33(8):1582-1614. https://doi.org/10.1016/j.biotechadv.2015.08.001
  2. Chen Z, Liu Z, Peng Y, Leng L, Du L, Xu T, Wang D. Cardiovascular diseases and natural products. Curr Protein Pept Sci. 2019;20(10):962-963. https://doi.org/10.2174/138920372010190920124756
  3. Aripov TF, Gayibov UG, Gayibova SN, Abdullaev AA, Abduazimova DSh, Berdiev NSh, Ziyavitdinov JF, Oshchepkova YuI, Salixov SH. Antiradikalnaya va antioksidantnaya aktivnost preparata rutan iz sumaha dubilnogo Rhus coriaria L. Jurnalist teoreticheskoy i klinicheskoy meditsiny. 2023;4:164-170.
  4. Shakiryanova Z, Khegay R, Gayibov U, Saparbekova A, Konarbayeva Z, Latif A, Smirnova O. Isolation and study of a bioactive extract enriched with anthocyanin from red grape pomace (Cabernet Sauvignon). Agronomy Research. 2023;21(3):1293-1303. https://doi.org/10.15159/AR.23.070
  5. Jain AK, Mehra NK, Swarnakar NK. Role of Antioxidants for the Treatment of Cardiovascular Diseases: Challenges and Opportunities. Curr Pharm Des. 2015;21(30):4441-4455. https://doi.org/10.2174/1381612821666150803151758
  6. Pozilov MK, Gayibov U, Asrarov MI, Abdulladjanova NG, Ruziboev HS, Aripov TF. Physiological alterations of mitochondria under diabetes condition and its correction by polyphenol gossitan. J Microb Biotech Food Sci. 2022;12 https://doi.org/10.55251/jmbfs.2224
  7. Turan B. Role of antioxidants in redox regulation of diabetic cardiovascular complications. Curr Pharm Biotechnol. 2010;11(8):819-836. https://doi.org/10.2174/138920110793262123
  8. 8. Knorre DG, Myzina SD. Biologik ximiya. 3-e izd. - M: Vysshaya shkola, 2000. – 479 s. https://www.studmed.ru/knorre-dg-myzina-sd-biologicheskaya-himiya_f0059fa1790.html
  9. 9. Fedorova YuS, Kulpin PV, Suslov NI, Melenteva YuV, Kosenko KK. Izuchenie cardioprotective properties of biological active substances of Hedysarum alpinum L. Vestnik Nauki I Obrazovaniya. 2018;16-1:52.
  10. Costa AD, Garlid KD. MitoKATP activity in healthy and ischemic hearts. J Bioenerg Biomembr. 2009;41(2):123-126. https://doi.org/10.1007/s10863-009-9213-y
  11. Pereira O Jr, Kowaltowski AJ. Mitochondrial K+ Transport: Modulation and Functional Consequences. Molecules. 2021;26(10):2935. https://doi.org/10.3390/molecules26102935
  12. Rohilla A, Manav A, Rohilla S, Kushnoor A. Mitochondrial ATP-sensitive potassium channels and cardioprotection. Int J Drug Dev Res. 2012;4(2):92-98.
  13. McCully JD, Levitsky S. Mitochondrial ATP-sensitive potassium channels in surgical cardioprotection. Arch Biochem Biophys. 2003;420(2):237-245. https://doi.org/10.1016/j.abb.2003.06.003
  14. Yokozawa T, Chen CP, Dong E, Tanaka T, Nonaka GI, Nishioka I. Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2-picrylhydrazyl radical. Biochem Pharmacol. 1998;56:213-222. https://doi.org/10.1016/S0006-2952(98)00128-2
  15. Schneider WC, Hageboom GH, Pallade GE. Cytochemical studies of mammalian tissues; isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate material. J Biol Chem. 1948;172(2):619-635. https://doi.org/10.1016/S0021-9258(19)52749-1
  16. Peterson GL. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977;83(2):346-356. https://doi.org/10.1016/0003-2697(77)90043-4
  17. Heath RL, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189-198. https://doi.org/10.1016/0003-9861(68)90654-1
  18. 18. Boldyrev AA. Introduction to biomembranology. Moscow: University, 1990. p. 77-78.
  19. Vadziuk OB, Kosterin SA. Diazoxide-induced mitochondrial swelling in the rat myometrium as a consequence of the activation of the mitochondrial ATP-sensitive (K+)-channel. Ukr Biokhim Zh. 2008;80(5):45-51.
  20. Chen J, Dan L, Tu X, Sun Y, Deng M, Chen X, Hesketh T, Li R, Wang X, Li X. Metabolic dysfunction-associated fatty liver disease and liver function markers are associated with Crohn’s disease but not Ulcerative Colitis: a prospective cohort study. Hepatol Int. 2023;17:202-214. https://doi.org/10.1007/s12072-022-10424-6
  21. Lucarelli P, Scacchi R, Corbo RM, Benincasa A, Palmarino R. Human placental alkaline phosphatase electrophoretic alleles: quantitative studies. Am J Hum Genet. 1982;34(2):331-336.
  22. Ma X, Zhang X, Yang Y, Jiang L, Huang Z. Relationship Between Atherogenic Index of Plasma and Serum Uric Acid in Patients With Untreated Essential Hypertension in China: A Cross-Sectional Study. Angiology. 2022. https://doi.org/10.1177/00033197221141666
  23. Vladimirov YuA, Azizova OA, Deev AI, Kozlov AV. Free radicals in living systems. It is scientific and technical. Series Biophysics. Moscow. 1991. T.29.
  24. Vinogradov VM, Smirnov AV. Antihypoksanty - vital shag na puti razrabotki pharmacologii energeticheskogo obmena. Antihypoksanty i actoprotektori: itogi i perspektivy. 1994;1:23.
  25. Chesnokova NP, Ponukalina EV, Bizenkova MN, Afanaseva GA. Vozmojnosti effektivnogo ispolzovaniya antioxidantsov i antihypoxantsov v eksperimentalnoi i klinicheskoi meditsine. Uspekhi sovremennogo estestvoznaniya. 2006;8:18-25.
  26. Skulachev VP. A decrease in the intracellular concentration of oxygen in the person's respiratory system cell function. Biochemistry. 1994;59:1910-1912.
  27. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Herman B. The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury. Mol Cell Biochem. 1997;174(1-2):159-165. https://doi.org/10.1023/A:1006827601337
  28. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999;341:233-249. https://doi.org/10.1042/bj3410233
  29. Novikov VE, Levchenkova OS. Novye napravleniya poiska lekarstvennyx sredstv s antihypoksicheskoy activittyu i misheni dlya ix deystviya. Experimental and clinical pharmacology. 2013;76(5):37-47.
  30. Oldenburg O, Cohen MV, Yellon DM, Downey JM. Mitochondrial KATP channels: role in cardioprotection. Cardiovasc Res. 2002;55(3):429-437. https://doi:10.1016/S0008-6363(02)00460-6
  31. Mironova GD, Kachaeva EV, Krylova IB. Functioning of the mitochondrial ATF-dependent potassium channel at different physiological and pathological conditions. Westn RAMN. 2007;2:44-50.
  32. Facundo HT, de Paula JG, Kowaltowski AJ. Mitochondrial ATP-sensitive K+ channels prevent oxidative stress, permeability transition and cell death. J Bioenerg Biomembr. 2005;37(2):75-82. https://doi:10.1007/s10863-005-4130-1
  33. Facundo HT, Fornazari M, Kowaltowski AJ. Tissue protection mediated by mitochondrial K+ channels. Biochim Biophys Acta. 2006;1762(2):202-212. https://doi:10.1016/j.bbadis.2005.06.003
  34. Costa ADT, Garlid KD. Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT. Am J Physiol Heart Circ Physiol. 2008;295(3). https://doi:10.1152/ajpheart.01189.2007
  35. Murata M, Akao M, O'Rourke B, Marban E. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res. 2001;89(10):891-898. https://doi:10.1161/hh2201.100205
  36. Korge P, Honda HM, Weiss JN. Protection of cardiac mitochondria by diazoxide and protein kinase C: Implications for ischemic preconditioning. Proc Natl Acad Sci USA. 2002;99(5):3312-3317. https://doi:10.1073/pnas.052713199
  37. Costa ADT, Quinlan CL, Andruchiv A, et al. The direct physiological effects of mitoKATP opening on heart mitochondria. Am J Physiol Heart Circ Physiol. 2006;290(1). https://doi:10.1152/ajpheart.00794.2005

Downloads

Download data is not yet available.