Antioxidant and cardioprotective properties of polyphenolic plant extract of Rhus glabra L.
DOI:
https://doi.org/10.14719/pst.3442Keywords:
Antioxidant, cardioprotective, DPPH assay, ischemia, lipid peroxidation, mitochondrial dysfunction, Rhus glabraAbstract
This research looks at the heart-healthy and antioxidant effects of a polyphenol mixture made from Rhus glabra by using a lot of different types of experiments. First, the DPPH assay was used to test the antiradical activity. It showed strong free radical scavenging abilities, with an IC50 value of 18.4 ± 1.4 µL. Mitochondria isolated from rat liver were utilized to examine antioxidative effects on mitochondrial K+ATP ion channels and the mitochondrial permeability transition pore (mPTP). Lipid peroxidation (LPO) was measured via malondialdehyde (MDA) production, indicating that the preparation inhibited LPO and oxidative stress in mitochondrial membranes. Further, the study employed an adrenaline-induced ischemia model to evaluate cardioprotective effects. Treatment with the polyphenol preparation significantly reduced enzyme markers such as ALT, AST, CK, and LDH compared to the ischemic group, highlighting its potential in mitigating ischemic damage. Creatine kinase activity assays indicated improved cellular energy metabolism and biochemical profiling revealed enhancements in atherogenic, cardioprotective, and coronary risk indices. Statistical analyses confirmed the significance of these findings, demonstrating that Rhus glabra exhibits potent antioxidant activity, mitigates oxidative stress, and provides cardioprotective benefits. The study's results suggest that Rhus glabra holds substantial therapeutic potential for enhancing cardiovascular health and combating oxidative stress through its antioxidant properties and ability to improve mitochondrial function and protect against ischemic injury.
Downloads
References
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv. 2015;33(8):1582-1614. https://doi.org/10.1016/j.biotechadv.2015.08.001
Chen Z, Liu Z, Peng Y, Leng L, Du L, Xu T, Wang D. Cardiovascular diseases and natural products. Curr Protein Pept Sci. 2019;20(10):962-963. https://doi.org/10.2174/138920372010190920124756
Aripov TF, Gayibov UG, Gayibova SN, Abdullaev AA, Abduazimova DSh, Berdiev NSh, Ziyavitdinov JF, Oshchepkova YuI, Salixov SH. Antiradikalnaya va antioksidantnaya aktivnost preparata rutan iz sumaha dubilnogo Rhus coriaria L. Jurnalist teoreticheskoy i klinicheskoy meditsiny. 2023;4:164-170.
Shakiryanova Z, Khegay R, Gayibov U, Saparbekova A, Konarbayeva Z, Latif A, Smirnova O. Isolation and study of a bioactive extract enriched with anthocyanin from red grape pomace (Cabernet Sauvignon). Agronomy Research. 2023;21(3):1293-1303. https://doi.org/10.15159/AR.23.070
Jain AK, Mehra NK, Swarnakar NK. Role of Antioxidants for the Treatment of Cardiovascular Diseases: Challenges and Opportunities. Curr Pharm Des. 2015;21(30):4441-4455. https://doi.org/10.2174/1381612821666150803151758
Pozilov MK, Gayibov U, Asrarov MI, Abdulladjanova NG, Ruziboev HS, Aripov TF. Physiological alterations of mitochondria under diabetes condition and its correction by polyphenol gossitan. J Microb Biotech Food Sci. 2022;12 https://doi.org/10.55251/jmbfs.2224
Turan B. Role of antioxidants in redox regulation of diabetic cardiovascular complications. Curr Pharm Biotechnol. 2010;11(8):819-836. https://doi.org/10.2174/138920110793262123
8. Knorre DG, Myzina SD. Biologik ximiya. 3-e izd. - M: Vysshaya shkola, 2000. – 479 s. https://www.studmed.ru/knorre-dg-myzina-sd-biologicheskaya-himiya_f0059fa1790.html
9. Fedorova YuS, Kulpin PV, Suslov NI, Melenteva YuV, Kosenko KK. Izuchenie cardioprotective properties of biological active substances of Hedysarum alpinum L. Vestnik Nauki I Obrazovaniya. 2018;16-1:52.
Costa AD, Garlid KD. MitoKATP activity in healthy and ischemic hearts. J Bioenerg Biomembr. 2009;41(2):123-126. https://doi.org/10.1007/s10863-009-9213-y
Pereira O Jr, Kowaltowski AJ. Mitochondrial K+ Transport: Modulation and Functional Consequences. Molecules. 2021;26(10):2935. https://doi.org/10.3390/molecules26102935
Rohilla A, Manav A, Rohilla S, Kushnoor A. Mitochondrial ATP-sensitive potassium channels and cardioprotection. Int J Drug Dev Res. 2012;4(2):92-98.
McCully JD, Levitsky S. Mitochondrial ATP-sensitive potassium channels in surgical cardioprotection. Arch Biochem Biophys. 2003;420(2):237-245. https://doi.org/10.1016/j.abb.2003.06.003
Yokozawa T, Chen CP, Dong E, Tanaka T, Nonaka GI, Nishioka I. Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2-picrylhydrazyl radical. Biochem Pharmacol. 1998;56:213-222. https://doi.org/10.1016/S0006-2952(98)00128-2
Schneider WC, Hageboom GH, Pallade GE. Cytochemical studies of mammalian tissues; isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate material. J Biol Chem. 1948;172(2):619-635. https://doi.org/10.1016/S0021-9258(19)52749-1
Peterson GL. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977;83(2):346-356. https://doi.org/10.1016/0003-2697(77)90043-4
Heath RL, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189-198. https://doi.org/10.1016/0003-9861(68)90654-1
18. Boldyrev AA. Introduction to biomembranology. Moscow: University, 1990. p. 77-78.
Vadziuk OB, Kosterin SA. Diazoxide-induced mitochondrial swelling in the rat myometrium as a consequence of the activation of the mitochondrial ATP-sensitive (K+)-channel. Ukr Biokhim Zh. 2008;80(5):45-51.
Chen J, Dan L, Tu X, Sun Y, Deng M, Chen X, Hesketh T, Li R, Wang X, Li X. Metabolic dysfunction-associated fatty liver disease and liver function markers are associated with Crohn’s disease but not Ulcerative Colitis: a prospective cohort study. Hepatol Int. 2023;17:202-214. https://doi.org/10.1007/s12072-022-10424-6
Lucarelli P, Scacchi R, Corbo RM, Benincasa A, Palmarino R. Human placental alkaline phosphatase electrophoretic alleles: quantitative studies. Am J Hum Genet. 1982;34(2):331-336.
Ma X, Zhang X, Yang Y, Jiang L, Huang Z. Relationship Between Atherogenic Index of Plasma and Serum Uric Acid in Patients With Untreated Essential Hypertension in China: A Cross-Sectional Study. Angiology. 2022. https://doi.org/10.1177/00033197221141666
Vladimirov YuA, Azizova OA, Deev AI, Kozlov AV. Free radicals in living systems. It is scientific and technical. Series Biophysics. Moscow. 1991. T.29.
Vinogradov VM, Smirnov AV. Antihypoksanty - vital shag na puti razrabotki pharmacologii energeticheskogo obmena. Antihypoksanty i actoprotektori: itogi i perspektivy. 1994;1:23.
Chesnokova NP, Ponukalina EV, Bizenkova MN, Afanaseva GA. Vozmojnosti effektivnogo ispolzovaniya antioxidantsov i antihypoxantsov v eksperimentalnoi i klinicheskoi meditsine. Uspekhi sovremennogo estestvoznaniya. 2006;8:18-25.
Skulachev VP. A decrease in the intracellular concentration of oxygen in the person's respiratory system cell function. Biochemistry. 1994;59:1910-1912.
Lemasters JJ, Nieminen AL, Qian T, Trost LC, Herman B. The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury. Mol Cell Biochem. 1997;174(1-2):159-165. https://doi.org/10.1023/A:1006827601337
Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999;341:233-249. https://doi.org/10.1042/bj3410233
Novikov VE, Levchenkova OS. Novye napravleniya poiska lekarstvennyx sredstv s antihypoksicheskoy activittyu i misheni dlya ix deystviya. Experimental and clinical pharmacology. 2013;76(5):37-47.
Oldenburg O, Cohen MV, Yellon DM, Downey JM. Mitochondrial KATP channels: role in cardioprotection. Cardiovasc Res. 2002;55(3):429-437. https://doi:10.1016/S0008-6363(02)00460-6
Mironova GD, Kachaeva EV, Krylova IB. Functioning of the mitochondrial ATF-dependent potassium channel at different physiological and pathological conditions. Westn RAMN. 2007;2:44-50.
Facundo HT, de Paula JG, Kowaltowski AJ. Mitochondrial ATP-sensitive K+ channels prevent oxidative stress, permeability transition and cell death. J Bioenerg Biomembr. 2005;37(2):75-82. https://doi:10.1007/s10863-005-4130-1
Facundo HT, Fornazari M, Kowaltowski AJ. Tissue protection mediated by mitochondrial K+ channels. Biochim Biophys Acta. 2006;1762(2):202-212. https://doi:10.1016/j.bbadis.2005.06.003
Costa ADT, Garlid KD. Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT. Am J Physiol Heart Circ Physiol. 2008;295(3). https://doi:10.1152/ajpheart.01189.2007
Murata M, Akao M, O'Rourke B, Marban E. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res. 2001;89(10):891-898. https://doi:10.1161/hh2201.100205
Korge P, Honda HM, Weiss JN. Protection of cardiac mitochondria by diazoxide and protein kinase C: Implications for ischemic preconditioning. Proc Natl Acad Sci USA. 2002;99(5):3312-3317. https://doi:10.1073/pnas.052713199
Costa ADT, Quinlan CL, Andruchiv A, et al. The direct physiological effects of mitoKATP opening on heart mitochondria. Am J Physiol Heart Circ Physiol. 2006;290(1). https://doi:10.1152/ajpheart.00794.2005
Downloads
Published
Versions
- 18-08-2024 (2)
- 18-08-2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 Ulugbek Gapparjanovich Gayibov, Sabina Narimanovna Gayibova, Hayiotbek Murodilbek ugli Karimjonov , Azizbek Akbarali ugli Abdullaev , Dildora Sharifjanovna Abduazimova , Rakhmatilla Nurillaevich Rakhimov , Haydarali Sobirjonovich Ruziboev, Madina Akramjanovna Xolmirzayeva, Anvarjon Erkinjonovich Zaynabiddinov, Takhir Fatixovich Aripov
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).