Heavy metals and their general toxicity for plants
DOI:
https://doi.org/10.14719/pst.2018.5.1.355Keywords:
heavy metals, plants, toxicityAbstract
Heavy metals are important environmental pollutants, and their toxicity is a serious problem of great concern for environmental, ecological, nutritional and toxicological reasons. Metals can affected long list of physiological and biochemical processes in plants and their toxicity varies with plant species, particular metal, metal concentration and it chemical form. Throughout the world, researches have been conducted extensive investigations to determine the effects of toxic heavy metals on plants. The process is still going on and the need of intensification of the research programmes for better understanding of heavy metal toxicity is evident.
Downloads
References
2. Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett. 2010; 8:199-216. https://doi.org/10.1007/s10311-010-0297-8
3. Wong JWC. Heavy metal contents in vegetables and marketgarden soils in Hong Kong. Environ Technol. 1996; 17:407–14. https://doi.org/10.1080/09593331708616400
4. Gjorgieva D, Kadifkova-Panovska T, Ba?eva K, Stafilov T. Assessment of Heavy Metal Pollution in R. Macedonia Using a Plant Assay. Arch Environ Contam Toxicol. 2011; 60: 233-40. http://doi: 10.1007/s00244-010-9543-0
5. Awashthi SK. Prevention of Food Adulteration Act no 37 of 1954. Central and State Rules as Amended for 1999. Ashoka Law House, New Delhi. 2000.
6. WHO. WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues. WHO, 2007. http://apps.who.int/medicinedocs/documents/s14878e/s14878e.pdf
7. Peralta JR, Gardea-Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E, Parsons JG. Uptake and effects of five heavy metals on seed germination and plant growth in alfa alfa (Medicago sativa L.). Bull Environ Contam Toxicol. 2001; 66:727–34. https://doi.org/10.1007/s001280069
8. Cook CM, Sgardelis SP, Pantis JD, Lanaras T. Concentrations of Pb, Zn and Cu in Taraxacum spp. in relation to urban pollution. Bull Environ Contam Toxicol. 1994; 53:204-10. https://doi.org/10.1007/BF00192034
9. Reeves RD, Baker AJM. Metal-accumulating plants. In: Raskin I, Ensley BD, editors. Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York; 2000. p. 193–229.
10. Hagemeyer J. Ecophysiology of plant growth under heavy metal stress. In Prasad MNV, editor. Heavy metal stress in plants: From molecules to ecosystems. 2nd ed. Berlin: Springer; 2004. p.201-22.
11. Sharma P, Dubey RS. Lead toxicity in plants. Braz J Plant Physiol. 2005; 17:35–52. https://doi.org/10.1590/S1677-04202005000100004
12. An Y-J. Assessment of comparative toxicities of lead and copper using plant assay. Chemosphere 2006; 62:1359-65. https://doi.org/10.1016/j.chemosphere.2005.07.044
13. Calzoni GL, Antognoni F, Pari E, Fonti P, Gnes A, Speranza A. Active biomonitoring of heavy metal pollution using Rosa rugosa plants. Environ Poll. 2007; 149:239-45. https://doi.org/10.1016/j.envpol.2006.12.023
14. Barandovski L, Cekova M, Frontasyeva MV, Pavlov SS, Stafilov T, Steinnes E, Urumov V. Atmospheric deposition of trace element pollutants in Macedonia studied by the moss biomonitoring technique. Environ Monitor Assess. 2008; 138:107-18. https://doi.org/10.1007/s10661-007-9747-6
15. G?lery?z G, Arslan H, Çelik C, G?cer ?, Kendall M. Heavy metal content of plant species along Nil?fer stream in industrialized Bursa City, Turkey. Water Air Soil Pollut. 2008; 195: 275-84. https://doi.org/10.1007/s11270-008-9745-5
16. Warne MS, Heemsbergen D, Stevens D, McLaughlin M, Cozens G, Whatmuff M, Broos K, Barry G, Bell M, Nash D, Pritchard D, Penney N. Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environ Toxicol Chem. 2008; 27:786–92. https://doi.org/10.1897/07-294.1
17. Gjorgieva D, Kadifkova Panovska T, Ruskovska T, Ba?eva K, Stafilov T. Mineral nutrient imbalance, total antioxidants level and DNA damage in common bean (Phaseolus vulgaris L.) exposed to heavy metals. Physiol Mol Biol Plants. 2013B; 19: 499-507. https://doi.org/10.1007/s12298-013-0196-0
18. Versieren L, Evers S, AbdElgawag H, Asard H, Smolders E. Mixture toxicity of copper, cadmium, and zinc to barley seedlings is not explained by antioxidant and oxidative stress biomarkers. Environ Toxicol Chem. 2017; 36: 220-30. https://doi.org/10.1002/etc.3529
19. Gruenhage L, Jager IIJ. Effect of heavy metals on growth and heavy metals content of Allium porrum and Pisum sativum. Angew Bot. 1985; 59:11–28.
20. Kabata-Pendias A, Pendias H, editors. Trace elements in soils and plants. 2nd ed.Boca Raton, Florida, USA: CRC Press Inc; 1992.
21. Schulze E-D, Beck E, Muller-Hohenstein K. Plant Ecology. Berlin-Heidelberg: Springer; 2005.
22. Das P, Samantaray S, Rout GR. Studies on cadmium toxicity inplants: a review. Environ Pollut.1997; 98:29–36.
23. Mohanpuria P, Rana NK, Yadav SK. Cadmium induce doxidative stress influence on glutathione metabolic genes of Camella sinensis (L.) O. Kuntze. Environ Toxicol. 2007; 22:368–74. https://doi.org/10.1002/tox.20273
24. Pandey N, Sharma CP. Effect of heavy metals Co2+, Ni2+, and Cd2+ on growth and metabolism of cabbage. Plant Sci. 2002; 163:753–58. https://doi.org/10.1016/S0168-9452(02)00210-8
25. Guo J, Dai X, Xu W, Ma M. Over expressing GSHI and As PCSI simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 2008;72:1020–26. https://doi.org/10.1016/j.chemosphere.2008.04.018
26. Miller JE, Hassete JJ, Koppe DE. Interaction of lead and cadmium of electron energy transfer reaction in corn mitochondria. Physiol Plant.1973; 28:166–71. https://doi.org/10.1111/j.1399-3054.1973.tb01170.x
27. Morzck EJr, Funicclli NA. Effect of lead and on germination of Spartina alterniflora loisel seeds at various salinities. Environ Exp Bot.1982; 22:23–32. https://doi.org/10.1016/0098-8472(82)90005-3
28. Van Assche F, Clijsters H. Effects of metals on enzyme activity in plants. Plant Cell Environ.1990; 13:195–206. https://doi.org/10.1111/j.1365-3040.1990.tb01304.x
29. Kumar G, Singh RP, Sushila. Nitrate assimilation and biomass production in Seasamum indicum (L.) seedlings in a lead enriched environment. Wat Air Soil Poll.1993; 66:163–71. https://doi.org/10.1007/BF00477067
30. Kupper H, Kupper F, Spiller M. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot. 1996; 47:259-66. https://doi.org/10.1093/jxb/47.2.259
31. Chen Q, Zhang X, Liu Y, Wei J, Shen W, Shen Z, Cui J. Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul. 2017; 81:253-64. https://doi.org/10.1007/s10725-016-0202-y
32. Patra M, Bhowmik N, Bandopadhyay B, Sharma A. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot. 2004; 52:199-223. https://doi.org/10.1016/j.envexpbot.2004.02.009
33. Reddy AM, Kumar SG, Jyotsnakumari G, Thimmanayak S, SudhakarC. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 2005; 60:97-104. https://doi.org/10.1016/j.chemosphere.2004.11.092
34. Meharg AA, Macnair MR. Suppression of the high affinity phosphate uptake system; a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot. 1992; 43:519–24. https://doi.org/10.1093/jxb/43.4.519
35. Garg N, Singla P. Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett. 2011; 9: 303–21. https://doi.org/10.1007/s10311-011-0313-7
36. Miteva E. Accumulation and effect of arsenic on tomatoes. Commun Soil Sci Plant Anal. 2002; 33:1917–26. https://doi.org/10.1081/CSS-120004832
37. Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN. Localizing the biochemical transformations of arsenate in a hyper accumulating fern. Environ Sci Technol. 2006; 40: 5010–14. https://doi.org/10.1021/es052559a
38. Zhao FJ, Ma JF, Meharg AA, McGrath SP. Arsenic uptake and metabolism in plants. New Phytol. 2009; 181: 777–94. https://doi.org/10.1111/j.1469-8137.2008.02716.x
39. Finnegan PM, Chen W. Arsenic toxicity: the effects on plant metabolism. Frontiers in Physiology/Plant Physiology. 2012; vol. 3: article 182. https://doi.org/10.3389 /fphys.2012.00182
40. Cline DJ, Thorpe C, Schneider JP. Effects of As(III) binding on alpha-helical structure. J Am Chem Soc. 2003; 125:2923-29. https://doi.org/10.1021/ja0282644
41. Ramadan D, Cline DJ, Bai S, Thorpe C, Schneider JP. Effects of As(III) binding on ?-hairpin structure. J Am ChemSoc. 2007; 129:2981–88. https://doi.org/10.1021/ja067068k
42. Cakmak I, Marshner H. Effect of zinc nutritional status on superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. In: Barrow NJ, editor. Plant nutrition-from genetic engineering field practice. Netherlanad: Kluwer; 1993. p. 133–37.
43. Fontes RLS, Cox FR. Zinc toxicity in soybean grown at high iron concentration in nutrient solution. J Plant Nutri.1998; 21:1723–30. https://doi.org/10.1080/01904169809365517
44. Prasad KVSK, Pardha Saradhi P, Sharmila P. Concerted action of antioxidant enzyme and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot. 1999; 42:1–10. https://doi.org/10.1016/S0098-8472(99)00013-1
45. Busher AS, Schenk MK. Toxicity level for phytoavailable zinc in compost peat substrates. Sci Hortic, Amsterdam. 2000; 83:339-52. https://doi.org/10.1016/S0304-4238(99)00086-2
46. Ebbs SD, Kochian LV. Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual. 1997; 26:776–81. https://doi.org/10.2134/jeq1997. 00472425002600030026x
47. Dietz KJ, Baier M, Kramer U. Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Heavy metal stress in plants. Springer, Berlin, Heidelberg. 1999.
48. Michalak A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud. 2006; 15: 523-30.
49. Singh R, Gautam N, Mishra A, Gupta R. Heavy metals and living systems: an overview. Indian J Pharmacol. 2011; 43: 246-53. https://doi.org/10.4103/0253-7613.81505
50. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014; 7: 60-72. https://doi.org/10.2478/intox-2014-0009
51. Gjorgieva D, KadifkovaPanovska T, Ruskovska T, Ba?eva K, Stafilov T. Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica. BioMed Research International (subject Toxicology) 2013a; Volume 2013: Article ID 276417. https://doi.org/10.1155/2013/276417
52. Pérez Alvarez S, Sida-Arrerola JP, Chávez ES, Ardisana EFH. Expression analysis and biochemical characterization of beans plants biofortificated with zinc. Saudi J Biol Sci. 2017; 24:1322-26. https://doi.org/10.1016/j.sjbs.2016.12.014
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).