Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. 4 (2024)

Saraca asoca (Roxb.) de Wilde, a sacred tree: Its nutritional value, elemental composition and anti-nutritional content

DOI
https://doi.org/10.14719/pst.3924
Submitted
16 May 2024
Published
21-10-2024 — Updated on 23-10-2024
Versions

Abstract

The sacred Saraca asoca (Roxb.) de Klilde tree holds significant medicinal value and is utilized in ayurvedic preparations to treat various health conditions. This research investigated the nutritional, elemental and anti-nutritional properties of S. asoca leaves and flowers. The nutritional qualities of the tree parts were examined using the muffle furnace and micro-Kjeldahl techniques. Titration techniques were used to assess the anti-nutritional content of plants, whereas EDX (Energy dispersive X-ray) was used to determine the mineral content. Phytochemical analysis revealed the presence of tannins, phenols and flavonoids, along with antioxidant properties that could neutralize free radicals generated by metabolic processes in the body. Nutritional analysis indicated that the floral parts of S. asoca had higher moisture, carbohydrate and crude fat content than the leaves. Conversely, the leaves had elevated ash levels, crude fiber and protein. Leaf samples showed higher concentrations of minerals like calcium, phosphorus, sodium, iodine, iron and manganese compared to the floral samples. In contrast, flower samples exhibited higher potassium, copper, silicon and zinc levels. These findings highlight the rich nutritional profile, abundant phytochemicals and essential minerals in both tree parts, with low anti-nutrient content. This information could be instrumental in developing phytopharmaceuticals and nutritious food products. Additionally, utilizing these tree parts could offer a cost-effective way to enhance nutrient intake and address nutritional deficiencies in humans and animals.

References

  1. Maja MM, Ayano SF. The impact of population growth on natural resources and farmers’ capacity to adapt to climate change in low-income countries. Earth Syst Environ. 2021;5(2):271-83. https://link.springer.com/10.1007/s41748-021-00209-6
  2. Katoch OR. Tackling child malnutrition and food security: Assessing progress, challenges and policies in achieving SDG 2 in India. Nutr Food Sci. 2024; https://www.emerald.com/insight/content/doi/10.1108/NFS-03-2023-0055/full/html
  3. Amorim ML, Soares J, Coimbra JSDR, Leite MDO, Albino LFT, Martins MA. Microalgae proteins: Production, separation, isolation, quantification and application in food and feed. Crit Rev Food Sci Nutr. 2021;61(12):1976-2002. https://www.tandfonline.com/doi/full/10.1080/10408398.2020.1768046
  4. Tysakowska P, Sobota A, Wirkijowska A. Medicinal mushrooms: Their bioactive components, nutritional value and application in functional food production—A review. Molecules. 2023;28(14):5393. https://www.mdpi.com/1420-3049/28/14/5393
  5. Socha MW, Flis W, Wartega M, Szambelan M, Pietrus M, Kazdepka-Zieminska A. Raspberry leaves and extracts-molecular mechanism of action and its effectiveness on human cervical ripening and the induction of labor. Nutrients. 2023;15(14):3206. https://www.mdpi.com/2072-6643/15/14/3206
  6. Lee J, Noh S, Lim S, Kim B. Plant extracts for type 2 diabetes: From traditional medicine to modern drug discovery. Antioxidants. 2021;10(1):81. https://www.mdpi.com/2076-3921/10/1/81
  7. Rasekar V, Shahi S. Medical application of Ashok tree (Saraca asoca): A review. Int J Health Sci. 2022;8752-59. https://sciencescholar.us/journal/index.php/ijhs/article/view/7262
  8. Urumarudappa SKJ, Rosario S, GR, Sukrong S. A comprehensive review on Saraca asoca (Fabaceae) - Historical perspective, traditional uses, biological activities and conservation. J Ethnopharmacol. 2023;317:116861. https://linkinghub.elsevier.com/retrieve/pii/S0378874123007298
  9. Bhadauria S, Dixit A, Singh D. Estimation of air pollution tolerance and anticipated performance index of roadside plants along the national highway in a tropical urban city. Environ Monit Assess. 2022;194(11):808. https://link.springer.com/10.1007/s10661-022-10483-0
  10. Ahmad SR, Ghosh P. A systematic investigation on flavonoids, catechin, beta-sitosterol and lignin glycosides from Saraca asoca (ashoka) having anti-cancer and antioxidant properties with no side effect. J Indian Chem Soc. 2022;99(1):100293. https://linkinghub.elsevier.com/retrieve/pii/S0019452221002934
  11. Joshi RK. E , E - alpha -farnesene rich essential oil of Saraca asoca (Roxb.) Wilde flower. Nat Prod Res. 2016;30(8):979-81. http://www.tandfonline.com/doi/full/10.1080/14786419.2015.1076818
  12. Mukhopadhyay M, Shaw M, Nath D. Chemopreventive potential of major flavonoid compound of methanolic bark extract of Saraca asoca (Roxb.) in benzene -Induced toxicity of acute myeloid leukemia mice. Pharmacogn Mag. 2017;13(50):216. https://phcog.com/article/view/13/suppl-2/s216-s223
  13. Gahlaut A, Shirolkar A, Hooda V, Dabur R. Beta-sitosterol in different parts of Saraca asoca and herbal drug ashokarista: Quali-quantitative analysis by liquid chromatography-mass spectrometry. J Adv Pharm Technol Res. 2013;4(3):146. https://journals.lww.com/10.4103/2231-4040.116783
  14. Vignesh A, Selvakumar S, Vasanth K. Comparative LC-MS analysis of bioactive compounds, antioxidants and antibacterial activity from leaf and callus extracts of Saraca asoca. Phytomedicine Plus. 2022;2(1):100167. https://linkinghub.elsevier.com/retrieve/pii/S2667031321001494
  15. Singh P, Pandey VK, Sultan Z, Singh R, Dar AH. Classification, benefits and applications of various anti-nutritional factors present in edible crops. J Agric Food Res. 2023;14:100902. https://linkinghub.elsevier.com/retrieve/pii/S266615432300409X
  16. Semwal P, Painuli S, Begum JPS, Jamloki A, Rauf A, Olatunde A, et al. Exploring the nutritional and health benefits of pulses from the Indian Himalayan region: A glimpse into the region’s rich agricultural heritage. Food Chem. 2023;422:136259. https://linkinghub.elsevier.com/retrieve/pii/S0308814623008774
  17. Ayele DT, Akele ML, Melese AT. Analysis of total phenolic contents, flavonoids, antioxidant and antibacterial activities of Croton macrostachyus root extracts. BMC Chem. 2022;16(1):30. https://bmcchem.biomedcentral.com/articles/10.1186/s13065-022-00822-0
  18. Neupane P, Lamichhane J. Estimation of total phenolic content, total flavonoid content and antioxidant capacities of five medicinal plants from Nepal. Vegetos. 2020;33(2):360-66. https://link.springer.com/10.1007/s42535-020-00116-7
  19. Benzidia B, Barbouchi M, Hammouch H, Belahbib N, Zouarhi M, Erramli H, et al. Chemical composition and antioxidant activity of tannins extract from green rind of Aloe vera (L.) Burm. F. J King Saud Univ - Sci. 2019;31(4):1175-81. https://linkinghub.elsevier.com/retrieve/pii/S1018364718301332
  20. Tebeka Simur T. Phytochemical investigation and antioxidant activity of leaf extract of Withania somnifera from Konso, South Ethiopia. Orient J Chem. 2018;34(4):1824-31. http://www.orientjchem.org/vol34no4/phytochemical-investigation-and-antioxidant-activity-of-leaf-extract-of-withania-somnifera-from-konso-south-ethiopia/
  21. Aslam J, Imran Shahzad M, Muhammad Ali H, Ramzan M, Ahmad F ud D, Tahir Aleem M, et al. A multidirectional phytochemical profiling, antimicrobial, antioxidant and toxicity studies of Neurada procumbens L.: A desert medicinal plant. J King Saud Univ - Sci. 2023;35(8):102862. https://linkinghub.elsevier.com/retrieve/pii/S1018364723003245
  22. He H, Kirilak Y. Application of SEM and EDX in studying biomineralization in plant tissues. In: Kuo J, editor. Electron Microscopy. Totowa, NJ: Humana Press; 2014. p. 663-75. (Methods in Molecular Biology; vol. 1117). https://link.springer.com/10.1007/978-1-62703-776-1_29
  23. Razzak A, Roy KR, Sadia U, Zzaman W. Effect of thermal processing on physicochemical and antioxidant properties of raw and cooked Moringa oleifera Lam. pods. Bozkurt H, editor. Int J Food Sci. 2022;2022:1-5. https://www.hindawi.com/journals/ijfs/2022/1502857/
  24. Datta S, Sinha BK, Bhattacharjee S, Seal T. Nutritional composition, mineral content, antioxidant activity and quantitative estimation of water soluble vitamins and phenolics by RP-HPLC in some lesser used wild edible plants. Heliyon. 2019;5(3):e01431. https://linkinghub.elsevier.com/retrieve/pii/S2405844018357165
  25. Radha, Kumar M, Puri S, Pundir A, Bangar SP, Changan S, et al. Evaluation of nutritional, phytochemical and mineral composition of selected medicinal plants for therapeutic uses from cold desert of Western Himalaya. Plants. 2021;10(7):1429. https://www.mdpi.com/2223-7747/10/7/1429
  26. Gao Y, Cheng TT, Zhang CX, Yan Y, Zhang L, Liu QZ, et al. Analysis of leaf forage value and screening of different populations of Pteroceltis tatarinowii, a rare and endemic species in China. Front Plant Sci. 2023;14:1164451. https://www.frontiersin.org/articles/10.3389/fpls.2023.1164451/full
  27. Priyanka Dash S, Dixit S, Sahoo S. Phytochemical and biochemical characterizations from leaf extracts from Azadirachta indica: An important medicinal plant. Biochem Anal Biochem. 2017;06(02). https://www.omicsonline.org/open-access/phytochemical-and-biochemical-characterizations-from-leaf-extracts-fromazadirachta-indica-an-important-medicinal-plant-2161-1009-1000323.php?aid=90323
  28. Thakur A, Singh S, Dulta K, Singh N, Ali B, Hafeez A, et al. Nutritional evaluation, phytochemical makeup, antibacterial and antioxidant properties of wild plants utilized as food by the Gaddis-a tribal tribe in the Western Himalayas. Front Agron. 2022;4:1010309. https://www.frontiersin.org/articles/10.3389/fagro.2022.1010309/full
  29. Kim CW, An CH, Lee HS, Yi JS, Cheong EJ, Lim SH, et al. Proximate and mineral components of Viscum album var. coloratum grown on eight different host tree species. J For Res. 2019;30(4):1245-53. http://link.springer.com/10.1007/s11676-018-0730-6
  30. Unuofin JO, Otunola GA, Afolayan AJ. Nutritional evaluation of Kedrostis africana (L.) Cogn: An edible wild plant of South Africa. Asian Pac J Trop Biomed. 2017;7(5):443-49. http://linkinghub.elsevier.com/retrieve/pii/S2221169116308322
  31. Adamu E, Asfaw Z, Demissew S, Baye K. Antioxidant activity and anti-nutritional factors of selected wild edible plants collected from Northeastern Ethiopia. Foods. 2022;11(15):2291. https://www.mdpi.com/2304-8158/11/15/2291
  32. Sharma T, Gamit R, Acharya R, Shukla V. Quantitative estimation of total tannin, alkaloid, phenolic and flavonoid content of the root, leaf and whole plant of Byttneria herbacea Roxb. AYU Int Q J Res Ayurveda. 2021;42(3):143. https://journals.lww.com/10.4103/ayu.AYU_25_19
  33. Bartwal A, Mall R, Lohani P, Guru SK, Arora S. Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J Plant Growth Regul. 2013;32(1):216-32. http://link.springer.com/10.1007/s00344-012-9272-x
  34. Mittal A, Kadyan P, Gahlaut A, Dabur R. Nontargeted identification of the phenolic and other compounds of Saraca asoca by high performance liquid chromatography-positive electrospray ionization and quadrupole time-of-flight mass spectrometry. ISRN Pharm. 2013;2013:1-10. https://www.hindawi.com/journals/isrn/2013/293935/
  35. Miron A, Aprotosoaie AC, Trifan A, Xiao J. Flavonoids as modulators of metabolic enzymes and drug transporters. Ann N Y Acad Sci. 2017;1398(1):152-67. https://nyaspubs.onlinelibrary.wiley.com/doi/10.1111/nyas.13384
  36. Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A. Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: A review. Environ Chem Lett. 2021;19(2):1715-35. https://link.springer.com/10.1007/s10311-020-01126-2
  37. Romanowska-Duda Z, Piotrowski K, Stepinski D, Poptonska K. A promising ash supplementation strategy in the cultivation of Spirodela polyrrhiza plants. Cells. 2023;12(2):289. https://www.mdpi.com/2073-4409/12/2/289
  38. Tanes C, Bittinger K, Gao Y, Friedman ES, Nessel L, Roy Paladhi U, et al. Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. Cell Host Microbe. 2021;29(3):394-407.e5. https://linkinghub.elsevier.com/retrieve/pii/S1931312820306740
  39. Tsigalou C, Konstantinidis T, Paraschaki A, Stavropoulou E, Voidarou C, Bezirtzoglou E. Mediterranean diet as a tool to combat inflammation and chronic diseases. An overview. Biomedicines. 2020;8(7):201. https://www.mdpi.com/2227-9059/8/7/201
  40. Cao SY, Zhao CN, Xu XY, Tang GY, Corke H, Gan RY, et al. Dietary plants, gut microbiota and obesity: Effects and mechanisms. Trends Food Sci Technol. 2019;92:194-204. https://linkinghub.elsevier.com/retrieve/pii/S0924224419300226
  41. Griffiths MR, Strobel BW, Hama JR, Cedergreen N. Toxicity and risk of plant-produced alkaloids to Daphnia magna. Environ Sci Eur. 2021;33(1):10. https://enveurope.springeropen.com/articles/10.1186/s12302-020-00452-0
  42. Jimoh MO, Afolayan AJ, Lewu FB. Nutrients and antinutrient constituents of Amaranthus caudatus L. cultivated on different soils. Saudi J Biol Sci. 2020;27(12):3570-80. https://linkinghub.elsevier.com/retrieve/pii/S1319562X20303314
  43. Huynh NK, Nguyen DHM, Nguyen HVH. Effects of processing on oxalate contents in plant foods: A review. J Food Compos Anal. 2022;112:104685. https://linkinghub.elsevier.com/retrieve/pii/S0889157522003039
  44. Asensio G, Martín-del-Campo M, Ramírez RA, Rojo L, Vázquez-Lasa B. New Insights into the in vitro antioxidant routes and osteogenic properties of Sr/Zn phytate compounds. Pharmaceutics. 2023;15(2):339. https://www.mdpi.com/1999-4923/15/2/339
  45. Adomaitis M, Skujiene G. Lethal doses of saponins from Quillaja saponaria for invasive slug Arion vulgaris and non-target organism Enchytraeus albidus (Olygochaeta: Enchytraeidae). Insects. 2020;11(11):738. https://www.mdpi.com/2075-4450/11/11/738
  46. Kamyab E, Kellermann MY, Kunzmann A, Schupp PJ. Chemical biodiversity and bioactivities of saponins in Echinodermata with an emphasis on sea cucumbers (Holothuroidea). In: Jungblut S, Liebich V, Bode-Dalby M, editors. Youmares 9 - The Oceans: Our Research, Our Future. Cham: Springer International Publishing; 2020. p. 121-57. http://link.springer.com/10.1007/978-3-030-20389-4_7
  47. Burlingame B, Mouillé B, Charrondière R. Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J Food Compos Anal. 2009;22(6):494-502. https://linkinghub.elsevier.com/retrieve/pii/S0889157509001756
  48. Samtiya M, Aluko RE, Dhewa T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod Process Nutr. 2020;2(1):6. https://fppn.biomedcentral.com/articles/10.1186/s43014-020-0020-5
  49. Lambers H, Oliveira RS. Mineral nutrition. In: Plant Physiological Ecology. Cham: Springer International Publishing; 2019. p. 301-84. http://link.springer.com/10.1007/978-3-030-29639-1_9
  50. Zampese E, Surmeier DJ. Calcium, bioenergetics and parkinson’s disease. Cells. 2020;9(9):2045. https://www.mdpi.com/2073-4409/9/9/2045
  51. Hamblin MR, Abrahamse H. Oxygen-independent antimicrobial photoinactivation: Type III photochemical mechanism? Antibiotics. 2020;9(2):53. https://www.mdpi.com/2079-6382/9/2/53
  52. Caretto S, Linsalata V, Colella G, Mita G, Lattanzio V. Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int J Mol Sci. 2015;16(11):26378-94. https://www.mdpi.com/1422-0067/16/11/25967
  53. Johnson R, Vishwakarma K, Hossen MdS, Kumar V, Shackira AM, Puthur JT, et al. Potassium in plants: Growth regulation, signaling and environmental stress tolerance. Plant Physiol Biochem. 2022;172:56-69. https://linkinghub.elsevier.com/retrieve/pii/S0981942822000018
  54. Hamam AM, Coskun D, Britto DT, Plett D, Kronzucker HJ. Plasma-membrane electrical responses to salt and osmotic gradients contradict radiotracer kinetics, and reveal Na+-transport dynamics in rice (Oryza sativa L.). Planta. 2019;249(4):1037-51. http://link.springer.com/10.1007/s00425-018-3059-7
  55. Bhat JA, Shivaraj SM, Singh P, Navadagi DB, Tripathi DK, Dash PK, et al. Role of silicon in mitigation of heavy metal stresses in crop plants. Plants. 2019;8(3):71. https://www.mdpi.com/2223-7747/8/3/71
  56. Kiferle C, Martinelli M, Salzano AM, Gonzali S, Beltrami S, Salvadori PA, et al. Evidences for a nutritional role of iodine in plants. Front Plant Sci. 2021;12:616868. https://www.frontiersin.org/articles/10.3389/fpls.2021.616868/full
  57. Martins AC, Krum BN, Queirós L, Tinkov AA, Skalny AV, Bowman AB, et al. Manganese in the diet: Bioaccessibility, adequate intake and neurotoxicological effects. J Agric Food Chem. 2020;68(46):12893-903. https://pubs.acs.org/doi/10.1021/acs.jafc.0c00641
  58. Mezzaroba L, Alfieri DF, Colado Simão AN, Vissoci Reiche EM. The role of zinc, copper, manganese and iron in neurodegenerative diseases. NeuroToxicology. 2019;74:230-41.
  59. https://linkinghub.elsevier.com/retrieve/pii/S0161813X19300750
  60. Haschka D, Hoffmann A, Weiss G. Iron in immune cell function and host defense. Semin CellDev Biol. 2021;115:27-36. https://linkinghub.elsevier.com/retrieve/pii/S1084952120301993
  61. Serna J, Bergwitz C. Importance of dietary phosphorus for bone metabolism and healthy aging. Nutrients. 2020;12(10):3001. https://www.mdpi.com/2072-6643/12/10/3001
  62. Chasapis CT, Ntoupa PSA, Spiliopoulou CA, Stefanidou ME. Recent aspects of the effects of zinc on human health. Arch Toxicol. 2020;94(5):1443-60. https://link.springer.com/10.1007/s00204-020-02702-9

Downloads

Download data is not yet available.