Biosynthesis of the Amaryllidaceae alkaloids

Authors

  • Aparna Singh Université du Québec à Trois-Rivières
  • Isabel Desgagné-Penix Université du Québec à Trois-Rivières

DOI:

https://doi.org/10.14719/pst.2014.1.3.41

Keywords:

amaryllidaceae alkaloid, plant secondary metabolism, galanthamine biosynthesis, natural products, systems biology

Abstract

Amaryllidaceae alkaloids (AAs) are a structurally diverse group of plant specialized metabolites with powerful biological activities. The medicinal properties of many AAs have been identified including the antitumor agent narciclasine and galanthamine, used for Alzheimer’s disease. Tracer studies have led to proposed pathways but AA biosynthesis remains molecularly uncharacterized. The use of systems biology-based approaches could lead to the unraveling of AA metabolic pathways. The elucidation of AA biosynthesis will provide necessary tools required to enhance AA production in plants as well as the development of microbial production platforms as an alternative to plants as a commercial source of valuable AAs.

Downloads

Download data is not yet available.

Author Biography

Isabel Desgagné-Penix, Université du Québec à Trois-Rivières

Biochemistry Professor
Department of Chemistry, Biochemistry and Physics

References

Barton, D. H. R., Kirby, G. W., Taylor, G. B., & Thomas, G. M. (1963). Phenol oxidation and biosynthesis. Part VI. The biogenesis of Amaryllidaceae alkaloids. Journal of the Chemical Society, 4545-4558. http://dx.doi.org/10.1039/jr9630004545

Barton, D.H.R., & Cohen, T. (1957). Some biogenetic aspects of phenol oxidation. Festschrift Prof. Dr. Arthur Stoll. Basel: Birkha¨user Verlag.

Bastida, J., Berkov, S., Torras, L., Pigni, N. B., de Andrade, J. P., Vanessa Martínez, V., ... Viladomat, F. (2011). Chemical and biological aspects of Amaryllidaceae alkaloids. In Recent Advances in Pharmaceutical Sciences. D. Munoz-Torrero (Ed). Trivandrum, India: Transworld Research Network.

Battersby, A. R., Fales, H. M., & Wildman, W. C. (1961). Biosynthesis in the Amaryllidaceae. Tyrosine and norbelladine as precursors of haemanthamine. Journal of the American Chemical Society, 83, 4098-4099. http://dx.doi.org/10.1021/ja01480a037

Berkov, S., Bastida, J., Viladomat, F., & Codina, C. (2011). Development and validation of a GC-MS method for rapid determination of galanthamine in Leucojum aestivum and Narcissus ssp.: a metabolomic approach. Talanta, 83(5), 1455-1465. http://dx.doi.org/10.1016/j.talanta.2010.11.029

Berkov, S., Martinez-Frances, V., Bastida, J., Codina, C., & Rios, S. (2014). Evolution of alkaloid biosynthesis in the genus Narcissus. Phytochemistry, 99, 95-106. http://dx.doi.org/10.1016/j.phytochem.2013.11.002

Chu, H. Y., Wegel, E., & Osbourn, A. (2011). From hormones to secondary metabolism: the emergence of metabolic gene clusters in plants. Plant Journal, 66(1), 66-79. http://dx.doi.org/10.1111/j.1365-313X.2011.04503.x

Desgagné-Penix, I., & Facchini, P. J. (2011). Benzylisoquinoline Alkaloid Biosynthesis. In H. Ashihara, A. Crozier,& A. Komamine (Ed.), Plant Metabolism and Biotechnolog (pp. 241–261). Chichester, UK: John Wiley & Sons.

Desgagne-Penix, I., & Facchini, P. J. (2012). Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy. Plant Journal, 72(2), 331-344. http://dx.doi.org/10.1111/j.1365-313X.2012.05084.x

Desgagne-Penix, I., Farrow, S. C., Cram, D., Nowak, J., & Facchini, P. J. (2012). Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy. Plant Molecular Biology, 79(3), 295-313. http://dx.doi.org/10.1007/s11103-012-9913-2

Desgagne-Penix, I., Khan, M. F., Schriemer, D. C., Cram, D., Nowak, J., & Facchini, P. J. (2010). Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures. BMC Plant Biology, 10, 252. http://dx.doi.org/10.1186/1471-2229-10-252

Dewick, P. M. (2009). Medicinal natural products: a biosynthetic apporach (3rd ed.). John Wiley and Sons Ltd. http://dx.doi.org/10.1002/9780470742761

Diaz Chavez, M. L., Rolf, M., Gesell, A., & Kutchan, T. M. (2011). Characterization of two methylenedioxy bridge-forming cytochrome P450-dependent enzymes of alkaloid formation in the Mexican prickly poppy Argemone mexicana. Archives of Biochemestry and Biophysics, 507(1), 186-193. http://dx.doi.org/10.1016/j.abb.2010.11.016

Eichhorn, J., Takada, T., Kita, Y., & Zenk, M. H. (1998). Biosynthesis of the amaryllidaceae alkaloid Galanthamine. Phytochemistry, 49(4), 1037-1047. http://dx.doi.org/10.1016/S0031-9422(97)01024-8

Facchini, P. J. (2001). ALKALOID BIOSYNTHESIS IN PLANTS: Biochemistry, Cell Biology, Molecular Regulation, and Metabolic Engineering Applications. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 29-66. http://dx.doi.org/10.1146/annurev.arplant.52.1.29

Facchini, P. J., Huber-Allanach, K. L., & Tari, L. W. (2000). Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry, 54(2), 121-138. http://dx.doi.org/10.1016/S0031-9422(00)00050-9

Gesell, A., Rolf, M., Ziegler, J., Diaz Chavez, M. L., Huang, F. C., & Kutchan, T. M. (2009). CYP719B1 is salutaridine synthase, the C-C phenol-coupling enzyme of morphine biosynthesis in opium poppy. Journal of Biological Chemistry, 284(36), 24432-24442. http://dx.doi.org/10.1074/jbc.M109.033373

Ghosal, S., Shanthy, A., & Singh, S. K. (1988). Isocraugsodine, an n-arylidenephenethylamine from Crinum asiaticum and its e-z isomerism. Phytochemistry, 27(6), 1849-1852. http://dx.doi.org/10.1016/0031-9422(88)80457-6

Grisebach, H. (1973). Comparative biosynthetic pathways in higher plants. Pure and Applied Chemistry, 34(3-4), 487-513. http://dx.doi.org/10.1351/pac197334030487

Hagel, J. M., & Facchini, P. J. (2013). Benzylisoquinoline Alkaloid Metabolism: A Century of Discovery and a Brave New World. Plant and Cell Physiology, 54(5), 647-672. http://dx.doi.org/10.1093/pcp/pct020

Heinrich, M., & Lee Teoh, H. (2004). Galanthamine from snowdrop--the development of a modern drug against Alzheimer's disease from local Caucasian knowledge. Journal of Ethnopharmacology, 92(2-3), 147-162. http://dx.doi.org/10.1016/j.jep.2004.02.012

Ikezawa, N., Iwasa, K., & Sato, F. (2008). Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C-C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells. Journal of Biological Chemistry, 283(14), 8810-8821. http://dx.doi.org/10.1074/jbc.M705082200

Jin, Z. (2013). Amaryllidaceae and Sceletium alkaloids. Natural Product Reports, 30(6), 849-868. http://dx.doi.org/10.1039/c3np70005d

Kornienko, A., & Evidente, A. (2008). Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chemical Reviews, 108(6), 1982-2014. http://dx.doi.org/10.1021/cr078198u

Lee, E. J., & Facchini, P. (2010). Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family. Plant Cell, 22(10), 3489-3503. http://dx.doi.org/10.1105/tpc.110.077958

Liscombe, D. K., Louie, G. V., & Noel, J. P. (2012). Architectures, mechanisms and molecular evolution of natural product methyltransferases. Natural Product Reports, 29(10), 1238-1250. http://dx.doi.org/10.1039/c2np20029e

Liscombe, D. K., Ziegler, J., Schmidt, J., Ammer, C., & Facchini, P. J. (2009). Targeted metabolite and transcript profiling for elucidating enzyme function: isolation of novel N-methyltransferases from three benzylisoquinoline alkaloid-producing species. Plant Journal, 60(4), 729-743. http://dx.doi.org/10.1111/j.1365-313X.2009.03980.x

Luk, L. Y., Bunn, S., Liscombe, D. K., Facchini, P. J., & Tanner, M. E. (2007). Mechanistic studies on norcoclaurine synthase of benzylisoquinoline alkaloid biosynthesis: an enzymatic Pictet-Spengler reaction. Biochemistry, 46(35), 10153-10161. http://dx.doi.org/10.1021/bi700752n

Minami, H., Dubouzet, E., Iwasa, K., & Sato, F. (2007). Functional analysis of norcoclaurine synthase in Coptis japonica. Journal of Biological Chemistry, 282(9), 6274-6282. http://dx.doi.org/10.1074/jbc.M608933200

Mizutani, M., & Sato, F. (2011). Unusual P450 reactions in plant secondary metabolism. Archives of Biochemestry and Biophysics, 507(1), 194-203. http://dx.doi.org/10.1016/j.abb.2010.09.026

Moll, S., Anke, S., Kahmann, U., Hansch, R., Hartmann, T., & Ober, D. (2002). Cell-specific expression of homospermidine synthase, the entry enzyme of the pyrrolizidine alkaloid pathway in Senecio vernalis, in comparison with its ancestor, deoxyhypusine synthase. Plant Physiology, 130(1), 47-57. http://dx.doi.org/10.1104/pp.004259

Nair, J. J., & van Staden, J. (2013). Pharmacological and toxicological insights to the South African Amaryllidaceae. Food Chemistry and Toxicology, 62C, 262-275. http://dx.doi.org/10.1016/j.fct.2013.08.042

Nelson, D., & Werck-Reichhart, D. (2011). A P450-centric view of plant evolution. Plant Journal, 66(1), 194-211. http://dx.doi.org/10.1111/j.1365-313X.2011.04529.x

Samanani, N., Liscombe, D. K., & Facchini, P. J. (2004). Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. Plant Journal, 40(2), 302-313. http://dx.doi.org/10.1111/j.1365-313X.2004.02210.x

Schilmiller, A. L., Pichersky, E., & Last, R. L. (2012). Taming the hydra of specialized metabolism: how systems biology and comparative approaches are revolutionizing plant biochemistry. Current Opinions in Plant Biology, 15(3), 338-344. http://dx.doi.org/10.1016/j.pbi.2011.12.005

Stockigt, J., Barleben, L., Panjikar, S., & Loris, E. A. (2008). 3D-Structure and function of strictosidine synthase--the key enzyme of monoterpenoid indole alkaloid biosynthesis. Plant Physiology and Biochemistry, 46(3), 340-355. http://dx.doi.org/10.1016/j.plaphy.2007.12.011

Takos, A. M., & Rook, F. (2013). Towards a molecular understanding of the biosynthesis of amaryllidaceae alkaloids in support of their expanding medical use. International Journal of Molecular Science, 14(6), 11713-11741. http://dx.doi.org/10.3390/ijms140611713

Wang, R., Xu, S., Jiang, Y., Jiang, J., Li, X., Liang, L., ... Xia, B. (2013). De novo sequence assembly and characterization of Lycoris aurea transcriptome using GS FLX titanium platform of 454 pyrosequencing. PLoS One, 8(4), e60449. http://dx.doi.org/10.1371/journal.pone.0060449

Xiao, M., Zhang, Y., Chen, X., Lee, E.-J., Barber, C. J. S., Chakrabarty, R., ... Sensen, C. W. (2013). Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. Journal of Biotechnology, 166(3), 122-134. http://dx.doi.org/10.1016/j.jbiotec.2013.04.004

Ziegler, J., & Facchini, P. J. (2008). Alkaloid biosynthesis: metabolism and trafficking. Annual Review of Plant Biology, 59, 735-769. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092730

Ziegler, J., Diaz-Chavez, M. L., Kramell, R., Ammer, C., & Kutchan, T. M. (2005). Comparative macroarray analysis of morphine containing Papaver somniferum and eight morphine free Papaver species identifies an O-methyltransferase involved in benzylisoquinoline biosynthesis. Planta, 222(3), 458-471. http://dx.doi.org/10.1007/s00425-005-1550-4

Ziegler, J., Voigtlander, S., Schmidt, J., Kramell, R., Miersch, O., Ammer, C., ... Kutchan, T. M. (2006). Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis. Plant Journal, 48(2), 177-192. http://dx.doi.org/10.1111/j.1365-313X.2006.02860.x

Downloads

Published

10-07-2014

How to Cite

1.
Singh A, Desgagné-Penix I. Biosynthesis of the Amaryllidaceae alkaloids. Plant Sci. Today [Internet]. 2014 Jul. 10 [cited 2024 Nov. 4];1(3):114-20. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/41

Issue

Section

Mini Reviews

Most read articles by the same author(s)