Biosynthesis of the Amaryllidaceae alkaloids
DOI:
https://doi.org/10.14719/pst.2014.1.3.41Keywords:
amaryllidaceae alkaloid, plant secondary metabolism, galanthamine biosynthesis, natural products, systems biologyAbstract
Amaryllidaceae alkaloids (AAs) are a structurally diverse group of plant specialized metabolites with powerful biological activities. The medicinal properties of many AAs have been identified including the antitumor agent narciclasine and galanthamine, used for Alzheimer’s disease. Tracer studies have led to proposed pathways but AA biosynthesis remains molecularly uncharacterized. The use of systems biology-based approaches could lead to the unraveling of AA metabolic pathways. The elucidation of AA biosynthesis will provide necessary tools required to enhance AA production in plants as well as the development of microbial production platforms as an alternative to plants as a commercial source of valuable AAs.
Downloads
References
Barton, D. H. R., Kirby, G. W., Taylor, G. B., & Thomas, G. M. (1963). Phenol oxidation and biosynthesis. Part VI. The biogenesis of Amaryllidaceae alkaloids. Journal of the Chemical Society, 4545-4558. http://dx.doi.org/10.1039/jr9630004545
Barton, D.H.R., & Cohen, T. (1957). Some biogenetic aspects of phenol oxidation. Festschrift Prof. Dr. Arthur Stoll. Basel: Birkha¨user Verlag.
Bastida, J., Berkov, S., Torras, L., Pigni, N. B., de Andrade, J. P., Vanessa Martínez, V., ... Viladomat, F. (2011). Chemical and biological aspects of Amaryllidaceae alkaloids. In Recent Advances in Pharmaceutical Sciences. D. Munoz-Torrero (Ed). Trivandrum, India: Transworld Research Network.
Battersby, A. R., Fales, H. M., & Wildman, W. C. (1961). Biosynthesis in the Amaryllidaceae. Tyrosine and norbelladine as precursors of haemanthamine. Journal of the American Chemical Society, 83, 4098-4099. http://dx.doi.org/10.1021/ja01480a037
Berkov, S., Bastida, J., Viladomat, F., & Codina, C. (2011). Development and validation of a GC-MS method for rapid determination of galanthamine in Leucojum aestivum and Narcissus ssp.: a metabolomic approach. Talanta, 83(5), 1455-1465. http://dx.doi.org/10.1016/j.talanta.2010.11.029
Berkov, S., Martinez-Frances, V., Bastida, J., Codina, C., & Rios, S. (2014). Evolution of alkaloid biosynthesis in the genus Narcissus. Phytochemistry, 99, 95-106. http://dx.doi.org/10.1016/j.phytochem.2013.11.002
Chu, H. Y., Wegel, E., & Osbourn, A. (2011). From hormones to secondary metabolism: the emergence of metabolic gene clusters in plants. Plant Journal, 66(1), 66-79. http://dx.doi.org/10.1111/j.1365-313X.2011.04503.x
Desgagné-Penix, I., & Facchini, P. J. (2011). Benzylisoquinoline Alkaloid Biosynthesis. In H. Ashihara, A. Crozier,& A. Komamine (Ed.), Plant Metabolism and Biotechnolog (pp. 241–261). Chichester, UK: John Wiley & Sons.
Desgagne-Penix, I., & Facchini, P. J. (2012). Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy. Plant Journal, 72(2), 331-344. http://dx.doi.org/10.1111/j.1365-313X.2012.05084.x
Desgagne-Penix, I., Farrow, S. C., Cram, D., Nowak, J., & Facchini, P. J. (2012). Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy. Plant Molecular Biology, 79(3), 295-313. http://dx.doi.org/10.1007/s11103-012-9913-2
Desgagne-Penix, I., Khan, M. F., Schriemer, D. C., Cram, D., Nowak, J., & Facchini, P. J. (2010). Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures. BMC Plant Biology, 10, 252. http://dx.doi.org/10.1186/1471-2229-10-252
Dewick, P. M. (2009). Medicinal natural products: a biosynthetic apporach (3rd ed.). John Wiley and Sons Ltd. http://dx.doi.org/10.1002/9780470742761
Diaz Chavez, M. L., Rolf, M., Gesell, A., & Kutchan, T. M. (2011). Characterization of two methylenedioxy bridge-forming cytochrome P450-dependent enzymes of alkaloid formation in the Mexican prickly poppy Argemone mexicana. Archives of Biochemestry and Biophysics, 507(1), 186-193. http://dx.doi.org/10.1016/j.abb.2010.11.016
Eichhorn, J., Takada, T., Kita, Y., & Zenk, M. H. (1998). Biosynthesis of the amaryllidaceae alkaloid Galanthamine. Phytochemistry, 49(4), 1037-1047. http://dx.doi.org/10.1016/S0031-9422(97)01024-8
Facchini, P. J. (2001). ALKALOID BIOSYNTHESIS IN PLANTS: Biochemistry, Cell Biology, Molecular Regulation, and Metabolic Engineering Applications. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 29-66. http://dx.doi.org/10.1146/annurev.arplant.52.1.29
Facchini, P. J., Huber-Allanach, K. L., & Tari, L. W. (2000). Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry, 54(2), 121-138. http://dx.doi.org/10.1016/S0031-9422(00)00050-9
Gesell, A., Rolf, M., Ziegler, J., Diaz Chavez, M. L., Huang, F. C., & Kutchan, T. M. (2009). CYP719B1 is salutaridine synthase, the C-C phenol-coupling enzyme of morphine biosynthesis in opium poppy. Journal of Biological Chemistry, 284(36), 24432-24442. http://dx.doi.org/10.1074/jbc.M109.033373
Ghosal, S., Shanthy, A., & Singh, S. K. (1988). Isocraugsodine, an n-arylidenephenethylamine from Crinum asiaticum and its e-z isomerism. Phytochemistry, 27(6), 1849-1852. http://dx.doi.org/10.1016/0031-9422(88)80457-6
Grisebach, H. (1973). Comparative biosynthetic pathways in higher plants. Pure and Applied Chemistry, 34(3-4), 487-513. http://dx.doi.org/10.1351/pac197334030487
Hagel, J. M., & Facchini, P. J. (2013). Benzylisoquinoline Alkaloid Metabolism: A Century of Discovery and a Brave New World. Plant and Cell Physiology, 54(5), 647-672. http://dx.doi.org/10.1093/pcp/pct020
Heinrich, M., & Lee Teoh, H. (2004). Galanthamine from snowdrop--the development of a modern drug against Alzheimer's disease from local Caucasian knowledge. Journal of Ethnopharmacology, 92(2-3), 147-162. http://dx.doi.org/10.1016/j.jep.2004.02.012
Ikezawa, N., Iwasa, K., & Sato, F. (2008). Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C-C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells. Journal of Biological Chemistry, 283(14), 8810-8821. http://dx.doi.org/10.1074/jbc.M705082200
Jin, Z. (2013). Amaryllidaceae and Sceletium alkaloids. Natural Product Reports, 30(6), 849-868. http://dx.doi.org/10.1039/c3np70005d
Kornienko, A., & Evidente, A. (2008). Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chemical Reviews, 108(6), 1982-2014. http://dx.doi.org/10.1021/cr078198u
Lee, E. J., & Facchini, P. (2010). Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family. Plant Cell, 22(10), 3489-3503. http://dx.doi.org/10.1105/tpc.110.077958
Liscombe, D. K., Louie, G. V., & Noel, J. P. (2012). Architectures, mechanisms and molecular evolution of natural product methyltransferases. Natural Product Reports, 29(10), 1238-1250. http://dx.doi.org/10.1039/c2np20029e
Liscombe, D. K., Ziegler, J., Schmidt, J., Ammer, C., & Facchini, P. J. (2009). Targeted metabolite and transcript profiling for elucidating enzyme function: isolation of novel N-methyltransferases from three benzylisoquinoline alkaloid-producing species. Plant Journal, 60(4), 729-743. http://dx.doi.org/10.1111/j.1365-313X.2009.03980.x
Luk, L. Y., Bunn, S., Liscombe, D. K., Facchini, P. J., & Tanner, M. E. (2007). Mechanistic studies on norcoclaurine synthase of benzylisoquinoline alkaloid biosynthesis: an enzymatic Pictet-Spengler reaction. Biochemistry, 46(35), 10153-10161. http://dx.doi.org/10.1021/bi700752n
Minami, H., Dubouzet, E., Iwasa, K., & Sato, F. (2007). Functional analysis of norcoclaurine synthase in Coptis japonica. Journal of Biological Chemistry, 282(9), 6274-6282. http://dx.doi.org/10.1074/jbc.M608933200
Mizutani, M., & Sato, F. (2011). Unusual P450 reactions in plant secondary metabolism. Archives of Biochemestry and Biophysics, 507(1), 194-203. http://dx.doi.org/10.1016/j.abb.2010.09.026
Moll, S., Anke, S., Kahmann, U., Hansch, R., Hartmann, T., & Ober, D. (2002). Cell-specific expression of homospermidine synthase, the entry enzyme of the pyrrolizidine alkaloid pathway in Senecio vernalis, in comparison with its ancestor, deoxyhypusine synthase. Plant Physiology, 130(1), 47-57. http://dx.doi.org/10.1104/pp.004259
Nair, J. J., & van Staden, J. (2013). Pharmacological and toxicological insights to the South African Amaryllidaceae. Food Chemistry and Toxicology, 62C, 262-275. http://dx.doi.org/10.1016/j.fct.2013.08.042
Nelson, D., & Werck-Reichhart, D. (2011). A P450-centric view of plant evolution. Plant Journal, 66(1), 194-211. http://dx.doi.org/10.1111/j.1365-313X.2011.04529.x
Samanani, N., Liscombe, D. K., & Facchini, P. J. (2004). Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. Plant Journal, 40(2), 302-313. http://dx.doi.org/10.1111/j.1365-313X.2004.02210.x
Schilmiller, A. L., Pichersky, E., & Last, R. L. (2012). Taming the hydra of specialized metabolism: how systems biology and comparative approaches are revolutionizing plant biochemistry. Current Opinions in Plant Biology, 15(3), 338-344. http://dx.doi.org/10.1016/j.pbi.2011.12.005
Stockigt, J., Barleben, L., Panjikar, S., & Loris, E. A. (2008). 3D-Structure and function of strictosidine synthase--the key enzyme of monoterpenoid indole alkaloid biosynthesis. Plant Physiology and Biochemistry, 46(3), 340-355. http://dx.doi.org/10.1016/j.plaphy.2007.12.011
Takos, A. M., & Rook, F. (2013). Towards a molecular understanding of the biosynthesis of amaryllidaceae alkaloids in support of their expanding medical use. International Journal of Molecular Science, 14(6), 11713-11741. http://dx.doi.org/10.3390/ijms140611713
Wang, R., Xu, S., Jiang, Y., Jiang, J., Li, X., Liang, L., ... Xia, B. (2013). De novo sequence assembly and characterization of Lycoris aurea transcriptome using GS FLX titanium platform of 454 pyrosequencing. PLoS One, 8(4), e60449. http://dx.doi.org/10.1371/journal.pone.0060449
Xiao, M., Zhang, Y., Chen, X., Lee, E.-J., Barber, C. J. S., Chakrabarty, R., ... Sensen, C. W. (2013). Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. Journal of Biotechnology, 166(3), 122-134. http://dx.doi.org/10.1016/j.jbiotec.2013.04.004
Ziegler, J., & Facchini, P. J. (2008). Alkaloid biosynthesis: metabolism and trafficking. Annual Review of Plant Biology, 59, 735-769. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092730
Ziegler, J., Diaz-Chavez, M. L., Kramell, R., Ammer, C., & Kutchan, T. M. (2005). Comparative macroarray analysis of morphine containing Papaver somniferum and eight morphine free Papaver species identifies an O-methyltransferase involved in benzylisoquinoline biosynthesis. Planta, 222(3), 458-471. http://dx.doi.org/10.1007/s00425-005-1550-4
Ziegler, J., Voigtlander, S., Schmidt, J., Kramell, R., Miersch, O., Ammer, C., ... Kutchan, T. M. (2006). Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis. Plant Journal, 48(2), 177-192. http://dx.doi.org/10.1111/j.1365-313X.2006.02860.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).