GWAS of important crops of Amaranthaceae family with special reference to Chenopodium: A review

Authors

DOI:

https://doi.org/10.14719/pst.4170

Keywords:

Candidate gene, Linkage disequilibrium, Quantitative Traits Loci, Single Nucleotide Polymorphism

Abstract

Wide association of genomes deals with identifying naturally occurring genetic variance with targeted traits or genes. Putative candidate genes had the capability for improvement in quality and resistance to biotic and abiotic stress by exploiting linkage disequilibrium. Plants of the Amaranthaceae family like Spinach, Amaranthus, Chenopodium, and Sugarbeet are packed with essential nutritional components and are resistant to several biotic and abiotic stress. Several candidate genes are identified for the improvement of floral development, early flowering, late flowering, bolting formation, and resistance to several biotic and abiotic stresses . Through GWAS study, the genetic basis of several complex trait phenotypes can be deciphered for important agricultural crop plants. Exploiting these plants through GWAS will allowed knowing the putative candidate genes present in them which could be identified and used for further improvement of the crops.

Downloads

Download data is not yet available.

References

Venskutonis PR, Kraujalis P. Nutritional components of amaranth seeds and vegetables: a review on composition, properties and uses. Comprehen Rev in Food Sci and Food Safety. 2013 Jul;12(4):381?412. https://doi.org/10.1111/1541-4337.12021

Miranda-Ramos KC, Sanz-Ponce N, Haros CM. Evaluation of technological and nutritional quality of bread enriched with amaranth flour. Lebensmittel-Wissenschaft and Technol LWT. 2019 Nov 1;114:108418. https://doi.org/10.1016/j.lwt.2019.108418

Coelho LM, Silva PM, Martins JT, Pinheiro AC, Vicente AA. Emerging opportunities in exploring the nutritional/functional value of amaranth. Food and Function. 2018;9(11):5499?512. https://doi.org/10.1039/C8FO01422A

Sarker U, Hossain MN, Iqbal MA, Oba S. Bioactive components and radical scavenging activity in selected advance lines of salt-tolerant vegetable amaranth. Front in Nutri. 2020 Nov 30;7:587257. https://doi.org/10.3389/fnut.2020.587257

Lin XR, Yang D, Wei YF, Ding DC, Ou HP, Yang SD. Amaranth plants with various color phenotypes recruit different soil microorganisms in the rhizosphere. Plants. 2024 Aug 8;13(16):2200. https://doi.org/10.3390/plants13162200

Huerta-Ocampo JA, Briones-Cerecero EP, Mendoza-Hernandez G, De Leon-Rodriguez A, Barba de la Rosa AP. Proteomic analysis of amaranth (Amaranthus hypochondriacus L.) leaves under drought stress. Inter J Plant Sci. 2009 Oct;170(8):990?98. https://doi.org/10.1086/605119

Valcárcel-Yamani B, Lannes SD. Applications of quinoa (Chenopodium quinoa Willd.) and amaranth (Amaranthus spp.) and their influence in the nutritional value of cereal based foods. http://dx.doi.org/10.5923/j.fph.20120206.12

Lin YP, Wu TH, Chan YK, van Zonneveld M, Schafleitner R. De novo SNP calling reveals the candidate genes regulating days to flowering through interspecies GWAS of Amaranthus genus. bioRxiv. 2021 Oct 6;2021?10. https://doi.org/10.1101/2021.10.05.463269

Brachi B, Morris GP, Borevitz JO. Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol. 2011 Oct;12:1?8. https://doi.org/10.1186/gb-2011-12-10-232

Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, et al. An Arabidopsis example of association mapping in structured samples. PLoS Genetics. 2007 Jan;3(1):e4. https://doi.org/10.1371/journal.pgen.0030004

Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Sci. 2005 Apr 15;308(5720):385?89. https://doi.org/10.1126/science.1109557

Zhu C, Gore M, Buckler ES, Yu J. Status and prospects of association mapping in plants. The Plant Genome. 2008 Jul;1(1): https://doi.org/10.3835/plantgenome2008.02.0089

He Y, Wu D, Wei D, Fu Y, Cui Y, Dong H, et al. GWAS, QTL mapping and gene expression analyses in Brassica napus reveal genetic control of branching morphogenesis. Scientific Reports. 2017 Nov 21;7(1):15971. https://doi.org/10.1038/s41598-017-15976-4

Crowell S, Korniliev P, Falcao A, Ismail A, Gregorio G, Mezey J, McCouch S. Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific QTL clusters. Nat Commun. 2016 Feb 4;7(1):10527. https://doi.org/10.1038/ncomms10527

Wang MH, Cordell HJ, Van Steen K. Statistical methods for genome-wide association studies. In: Seminars in Cancer Biology. Academic Press; 2019 Apr 1. 55: pp. 53?60. https://doi.org/10.1016/j.semcancer.2018.04.008

Armitage P. Tests for linear trends in proportions and frequencies. Biometrics. 1955 Sep 1;11(3):375?86. https://doi.org/10.2307/3001775

Searle SR, Casella G, McCulloch CE. Variance components. John Wiley and Sons; 2009 Sep 25. http://dx.doi.org/10.1002/9780470316856

Chen H, Wang C, Conomos MP, Stilp AM, Li Z, Sofer T, et al. Control for population structure and relatedness for binary traits in genetic association studies via logistic mixed models. Am J Hum Genet. 2016;98(4):653–66. https://doi.org/10.1016/j.ajhg.2016.02.012

Bonferroni C. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni Del R istituto Superiore Di Scienze Economiche e Commericiali Di Firenze. 1936;8:3?62. https://doi.org/10.4135/9781412961288.n455

Pharoah PD, Tsai YY, Ramus SJ, Phelan CM, Goode EL, Lawrenson K, et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genetics. 2013 Apr;45(4):362?70. https://doi.org/10.1038/ng.2564

Slatkin M. Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genetics. 2008 Jun;9(6):477?85. https://doi.org/10.1038/nrg2361

Raychaudhuri S. Mapping rare and common causal alleles for complex human diseases. Cell. 2011 Sep 30;147(1):57?69. https://doi.org/10.1016/j.cell.2011.09.011

Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genetics. 2018 Aug;19(8):491?504. https://doi.org/10.1038/s41576-018-0016-z

Uffelmann E, Huang QQ, Munung NS, De Vries J, Okada Y, Martin AR, et al. Genome-wide association studies. Nat Rev Methods Primers. 2021 Aug 26;1(1):59. https://doi.org/10.1038/s43586-021-00056-9

Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J of the Royal Stat Society Series B (Methodological). 1995; 57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

Slim L, Chatelain C, Azencott CA, Vert JP. Novel methods for epistasis detection in genome-wide association studies. PLoS One. 2020 Nov 30;15(11):e0242927. https://doi.org/10.1371/journal.pone.0242927

Wei WH, Hemani G, Haley CS. Detecting epistasis in human complex traits. Nat Rev Genet. 2014;15(11):722–33. https://doi.org/10.1038/nrg3747

Duncan LE, Keller MC. A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American J of Psychiatry. 2011 Oct;168(10):1041?49. https://doi.org/10.1176/appi.ajp.2011.11020191

Prabhu S, Pe'er I. Ultrafast genome-wide scan for SNP–SNP interactions in common complex disease. Genome Res. 2012 Nov 1;22(11):2230?40. https://doi.org/10.1101/gr.137885.112

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American J of Human Genetics. 2007 Sep 1;81(3):559?75. https://doi.org/10.1086/519795

Steen VK. Travelling the world of gene–gene interactions. Briefings in Bioinformatics. 2012 Jan 1;13(1):1?9. https://doi.org/10.1093/bib/bbr012

Zhang Y, Liu JS. Bayesian inference of epistatic interactions in case-control studies. Nat Genet. 2007;39(9):1167–73. https://doi.org/10.1038/ng2110

Schwarz DF, König IR, Ziegler A. On safari to random jungle: a fast implementation of random forests for high-dimensional data. Bioinformatics. 2010 Jul 15;26(14):1752?58. https://doi.org/10.1093/bioinformatics/btq257

Gusareva ES, Steen VK. Practical aspects of genome-wide association interaction analysis. Hum Genet. 2014;133(11):1343–58. https://doi.org/10.1007/s00439-014-1480-y

Ellis JR, Janick J. The chromosomes of Splnacia oleracea. American J Bot. 1960 Mar;47(3):210?14. https://doi.org/10.2307/2439251

Arumuganathan K, Earle ED. Nuclear DNA content of some important plant species. Plant Mol Biol Reporter. 1991 Aug;9:208?18. https://doi.org/10.1007/BF02672069

Khattak JZ, Torp AM, Andersen SB. A genetic linkage map of Spinacia oleracea and localization of a sex determination locus. Euphytica. 2006 Apr;148:311?18. https://doi.org/10.1007/s10681-005-9031-1

Koike ST, Matheron ME, Du Toit LJ. First report of leaf spot of spinach caused by Stemphylium botryosum in Arizona. Plant Dis. 2005 Dec;89(12):1359. https://doi.org/10.1094/PD-89-1359A

Braz CU, Taylor JF, Bresolin T, Espigolan R, Feitosa FL, Carvalheiro R, et al. Sliding window haplotype approaches overcome single SNP analysis limitations in identifying genes for meat tenderness in Nelore cattle. BMC Genetics. 2019 Dec;20:1?2. https://doi.org/10.1186/s12863-019-0713-4

Wu W, Hao H, Liu Q, Han X, Wu Y, Cheng J, Lu D. Analysis of linkage and linkage disequilibrium for syntenic STRs on 12 chromosomes. Inter J Legal Med. 2014 Sep;128:735?39. https://doi.org/10.1007/s00414-014-1032-y

Clark AG. The role of haplotypes in candidate gene studies. Genetic Epidemiology: The Official Publication of the Inter Genetic Epidemiology Society. 2004 Dec;27(4):321?33. https://doi.org/10.1002/gepi.20025

Hamon SC, Kardia SL, Boerwinkle E, Liu K, Klos KL, Clark AG, Sing CF. Evidence for consistent intragenic and intergenic interactions between SNP effects in the APOA1/C3/A4/A5 gene cluster. Human Heredity. 2006 Jun 15;61(2):87?96. https://doi.org/10.1159/000093384

Awika HO, Bedre R, Yeom J, Marconi TG, Enciso J, Mandadi KK, et al. Developing growth?associated molecular markers via high?throughput phenotyping in Spinach. The Plant Genome. 2019 Nov;12(3):190027. https://doi.org/10.1159/000093384

Bao AK, Wang SM, Wu GQ, Xi JJ, Zhang JL, Wang CM. Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci. 2009 Feb 1;176(2):232?40. https://doi.org/10.1016/j.plantsci.2008.10.009

Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, et al. Up-regulation of a H+-pyrophosphatase (H+- PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci. U.S.A.; 2005. 102:18830–35. https://doi.org/10.1073/pnas.0509512102

Pasapula V, Shen G, Kuppu S, Paez?Valenia J, Mendoza M, Hou P, et al. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought and salt tolerance and increases fibre yield in the field conditions. Plant Biotech J. 2011;9:88–99. https://doi.org/10.1111/j.1467-7652.2010.00535.x

Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR. Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proceed Nat Acad of Sci. 2001 Sep 25;98(20):11444?49. https://doi.org/10.1073/pnas.191389398

Yang H, Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, et al. Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+- pyrophosphatase. Plant Biotech J. 2007;5:735–45. https://doi.org/10.1111/j.1467-7652.2007.00281.x

Schilling RK, Marschner P, Shavrukov Y, Berger B, Tester M, Roy SJ, Plett DC. Expression of the Arabidopsis vacuolar H+?pyrophosphatase gene (AVP 1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotech J. 2014 Apr;12(3):378?86. https://doi.org/10.1111/pbi.12145

Cai X, Sun X, Xu C, Sun H, Wang X, Ge C, et al. Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits. Nat Commun. 2021 Dec 13;12(1):7246. https://doi.org/10.1038/s41467-021-27432-z

Meng Q, Liu Z, Feng C, Zhang H, Xu Z, Wang X, et al. Quantitative trait locus mapping and identification of candidate genes controlling bolting in spinach (Spinacia oleracea L.). Front in Plant Sci. 2022 Mar 30;13:850810. https://doi.org/10.3389/fpls.2022.850810

Pal M. Amaranthus: evolution, genetic resources and utilization. Environews. Newsletter of ISEB, India. 1999;5.

Huerta-Ocampo AJ, Rosa PBA. Amaranth: a pseudo-cereal with nutraceutical properties. Curr Nutri and Food Sci. 2011 Feb 1;7(1):1?9. http://dx.doi.org/10.2174/157340111794941076

Jamalluddin N, Massawe FJ, Mayes S, Ho WK, Symonds RC. Genetic diversity analysis and marker-trait associations in Amaranthus species. Plos One. 2022 May 12;17(5):e0267752. http://dx.doi.org/10.2174/157340111794941076

Yoine M, Ohto MA, Onai K, Mita S, Nakamura K. The lba1 mutation of UPF1 RNA helicase involved in nonsense?mediated mRNA decay causes pleiotropic phenotypic changes and altered sugar signalling in Arabidopsis. The Plant J. 2006 Jul;47(1):49?62. https://doi.org/10.1111/j.1365-313x.2006.02771.x

Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ. Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. https://doi.org/10.1242/dev.02866

Butel N, Le Masson I, Bouteiller N, Vaucheret H, Elmayan T. sgs1: a neomorphic nac52 allele impairing post?transcriptional gene silencing through SGS3 downregulation. The Plant J. 2017 May;90(3):505?19. https://doi.org/10.1111/tpj.13508

Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, et al. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell. 1997 May 30;89(5):737?45. https://doi.org/10.1016/S0092-8674(00)80256-1

Mutasa-Göttgens ES, Joshi A, Holmes HF, Hedden P, Göttgens B. A new RNASeq-based reference transcriptome for sugar beet and its application in transcriptome-scale analysis of vernalization and gibberellin responses. BMC Genomics. 2012 Dec;13:1?8. https://doi.org/10.1186/1471-2164-13-99

Lv X, Jin Y, Wang Y. De novo transcriptome assembly and identification of salt-responsive genes in sugar beet M14. Comput Biol and Chem. 2018 Aug 1;75:1?0. https://doi.org/10.1016/j.compbiolchem.2018.04.014

Geng G, Lv C, Stevanato P, Li R, Liu H, Yu L, Wang Y. Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet. Inter J Mol Sci. 2019 Nov 25;20(23):5910. https://doi.org/10.3390/ijms20235910

Zou C, Liu D, Wu P, Wang Y, Gai Z, Liu L, et al. Transcriptome analysis of sugar beet (Beta vulgaris L.) in response to alkaline stress. Plant Mol Bio. 2020 Apr;102:645?57. https://doi.org/10.1007/s11103-020-00971-7

Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, et al. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nat. 2014 Jan 23;505(7484):546?49. https://doi.org/10.1038/nature12817

Hatlestad GJ, Sunnadeniya RM, Akhavan NA, Gonzalez A, Goldman IL, McGrath JM, Lloyd AM. The beet R locus encodes a new cytochrome P450 required for red betalain production. Nat Genetics. 2012 Jul;44(7):816?20. https://doi.org/10.1038/ng.2297

Bean A, Sunnadeniya R, Akhavan N, Campbell A, Brown M, Lloyd A. Gain?of?function mutations in beet DODA 2 identify key residues for betalain pigment evolution. New Phytologist. 2018 Jul;219(1):287?96. https://doi.org/10.1111/nph.15159.

Miao J, Xu N, Cheng C, Zou L, Chen J, Wang Y, et al. Fabrication of polysaccharide-based high internal phase emulsion gels: Enhancement of curcumin stability and bioaccessibility. Food Hydrocolloids. 2021 Aug 1;117:106679. https://doi.org/10.1016/j.foodhyd.2021.106679

Wilson HD. Quinua and relatives (Chenopodium sect. Chenopodium subsect. Celluloid). Economic Bot. 1990 Jul;44(Suppl 3):92?110. https://doi.org/10.1007/BF02860478

Repo-Carrasco R, Espinoza C, Jacobsen SE. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev Inter. 2003 Jan 5;19(1-2):179?89. http://dx.doi.org/10.1081/FRI-120018884

Mizuno N, Toyoshima M, Fujita M, Fukuda S, Kobayashi Y, Ueno M, et al. The genotype-dependent phenotypic landscape of quinoa in salt tolerance and key growth traits. DNA Res. 2020 Aug;27(4):dsaa022. https://doi.org/10.1093/dnares/dsaa022

Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJ, et al. The genome of Chenopodium quinoa. Nat. 2017 Feb 16;542(7641):307?12. https://doi.org/10.1038/nature21370

Schmöckel SM, Lightfoot DJ, Razali R, Tester M, Jarvis DE. Identification of putative transmembrane proteins involved in salinity tolerance in Chenopodium quinoa by integrating physiological data, RNAseq and SNP analyses. Front Plant Sci. 2017 Jun 21;8:1023. https://doi.org/10.3389/fpls.2017.01023

Wang Q, Guo Y, Huang T, Zhang X, Zhang P, Xie H, et al. Transcriptome and metabolome analyses revealed the response mechanism of quinoa seedlings to different phosphorus stresses. Inter J Mol Sci. 2022 Apr 24;23(9):4704. https://doi.org/10.3390/ijms23094704

Colque-Little C, Abondano MC, Lund OS, Amby DB, Piepho HP, Andreasen C, et al. Genetic variation for tolerance to the downy mildew pathogen Peronospora variabilis in genetic resources of quinoa (Chenopodium quinoa). BMC Plant Biol. 2021 Dec;21:1?9. https://doi.org/10.1186/s12870-020-02804-7

Devanathan S, Erban A, Perez-Torres Jr R, Kopka J, Makaroff CA. Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth. PLoS One. 2014 Apr 23;9(4):e95971. https://doi.org/10.1371/journal.pone.0095971

Zhang YM, Jia Z, Dunwell JM. The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Front Plant Sci. 2019 Feb 11;10:100. https://doi.org/10.3389/fpls.2019.00100

Published

02-03-2025 — Updated on 18-03-2025

Versions

How to Cite

1.
Devi YL, Thongam B, Devi RJ. GWAS of important crops of Amaranthaceae family with special reference to Chenopodium: A review. Plant Sci. Today [Internet]. 2025 Mar. 18 [cited 2025 Mar. 30];12(1). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/4170

Issue

Section

Review Articles