GWAS of important crops of Amaranthaceae family with special reference to Chenopodium: A review
DOI:
https://doi.org/10.14719/pst.4170Keywords:
Candidate gene, Linkage disequilibrium, Quantitative Traits Loci, Single Nucleotide PolymorphismAbstract
Wide association of genomes deals with identifying naturally occurring genetic variance with targeted traits or genes. Putative candidate genes had the capability for improvement in quality and resistance to biotic and abiotic stress by exploiting linkage disequilibrium. Plants of the Amaranthaceae family like Spinach, Amaranthus, Chenopodium, and Sugarbeet are packed with essential nutritional components and are resistant to several biotic and abiotic stress. Several candidate genes are identified for the improvement of floral development, early flowering, late flowering, bolting formation, and resistance to several biotic and abiotic stresses . Through GWAS study, the genetic basis of several complex trait phenotypes can be deciphered for important agricultural crop plants. Exploiting these plants through GWAS will allowed knowing the putative candidate genes present in them which could be identified and used for further improvement of the crops.
Downloads
References
Venskutonis PR, Kraujalis P. Nutritional components of amaranth seeds and vegetables: a review on composition, properties and uses. Comprehen Rev in Food Sci and Food Safety. 2013 Jul;12(4):381?412. https://doi.org/10.1111/1541-4337.12021
Miranda-Ramos KC, Sanz-Ponce N, Haros CM. Evaluation of technological and nutritional quality of bread enriched with amaranth flour. Lebensmittel-Wissenschaft and Technol LWT. 2019 Nov 1;114:108418. https://doi.org/10.1016/j.lwt.2019.108418
Coelho LM, Silva PM, Martins JT, Pinheiro AC, Vicente AA. Emerging opportunities in exploring the nutritional/functional value of amaranth. Food and Function. 2018;9(11):5499?512. https://doi.org/10.1039/C8FO01422A
Sarker U, Hossain MN, Iqbal MA, Oba S. Bioactive components and radical scavenging activity in selected advance lines of salt-tolerant vegetable amaranth. Front in Nutri. 2020 Nov 30;7:587257. https://doi.org/10.3389/fnut.2020.587257
Lin XR, Yang D, Wei YF, Ding DC, Ou HP, Yang SD. Amaranth plants with various color phenotypes recruit different soil microorganisms in the rhizosphere. Plants. 2024 Aug 8;13(16):2200. https://doi.org/10.3390/plants13162200
Huerta-Ocampo JA, Briones-Cerecero EP, Mendoza-Hernandez G, De Leon-Rodriguez A, Barba de la Rosa AP. Proteomic analysis of amaranth (Amaranthus hypochondriacus L.) leaves under drought stress. Inter J Plant Sci. 2009 Oct;170(8):990?98. https://doi.org/10.1086/605119
Valcárcel-Yamani B, Lannes SD. Applications of quinoa (Chenopodium quinoa Willd.) and amaranth (Amaranthus spp.) and their influence in the nutritional value of cereal based foods. http://dx.doi.org/10.5923/j.fph.20120206.12
Lin YP, Wu TH, Chan YK, van Zonneveld M, Schafleitner R. De novo SNP calling reveals the candidate genes regulating days to flowering through interspecies GWAS of Amaranthus genus. bioRxiv. 2021 Oct 6;2021?10. https://doi.org/10.1101/2021.10.05.463269
Brachi B, Morris GP, Borevitz JO. Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol. 2011 Oct;12:1?8. https://doi.org/10.1186/gb-2011-12-10-232
Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, et al. An Arabidopsis example of association mapping in structured samples. PLoS Genetics. 2007 Jan;3(1):e4. https://doi.org/10.1371/journal.pgen.0030004
Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Sci. 2005 Apr 15;308(5720):385?89. https://doi.org/10.1126/science.1109557
Zhu C, Gore M, Buckler ES, Yu J. Status and prospects of association mapping in plants. The Plant Genome. 2008 Jul;1(1): https://doi.org/10.3835/plantgenome2008.02.0089
He Y, Wu D, Wei D, Fu Y, Cui Y, Dong H, et al. GWAS, QTL mapping and gene expression analyses in Brassica napus reveal genetic control of branching morphogenesis. Scientific Reports. 2017 Nov 21;7(1):15971. https://doi.org/10.1038/s41598-017-15976-4
Crowell S, Korniliev P, Falcao A, Ismail A, Gregorio G, Mezey J, McCouch S. Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific QTL clusters. Nat Commun. 2016 Feb 4;7(1):10527. https://doi.org/10.1038/ncomms10527
Wang MH, Cordell HJ, Van Steen K. Statistical methods for genome-wide association studies. In: Seminars in Cancer Biology. Academic Press; 2019 Apr 1. 55: pp. 53?60. https://doi.org/10.1016/j.semcancer.2018.04.008
Armitage P. Tests for linear trends in proportions and frequencies. Biometrics. 1955 Sep 1;11(3):375?86. https://doi.org/10.2307/3001775
Searle SR, Casella G, McCulloch CE. Variance components. John Wiley and Sons; 2009 Sep 25. http://dx.doi.org/10.1002/9780470316856
Chen H, Wang C, Conomos MP, Stilp AM, Li Z, Sofer T, et al. Control for population structure and relatedness for binary traits in genetic association studies via logistic mixed models. Am J Hum Genet. 2016;98(4):653–66. https://doi.org/10.1016/j.ajhg.2016.02.012
Bonferroni C. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni Del R istituto Superiore Di Scienze Economiche e Commericiali Di Firenze. 1936;8:3?62. https://doi.org/10.4135/9781412961288.n455
Pharoah PD, Tsai YY, Ramus SJ, Phelan CM, Goode EL, Lawrenson K, et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genetics. 2013 Apr;45(4):362?70. https://doi.org/10.1038/ng.2564
Slatkin M. Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genetics. 2008 Jun;9(6):477?85. https://doi.org/10.1038/nrg2361
Raychaudhuri S. Mapping rare and common causal alleles for complex human diseases. Cell. 2011 Sep 30;147(1):57?69. https://doi.org/10.1016/j.cell.2011.09.011
Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genetics. 2018 Aug;19(8):491?504. https://doi.org/10.1038/s41576-018-0016-z
Uffelmann E, Huang QQ, Munung NS, De Vries J, Okada Y, Martin AR, et al. Genome-wide association studies. Nat Rev Methods Primers. 2021 Aug 26;1(1):59. https://doi.org/10.1038/s43586-021-00056-9
Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J of the Royal Stat Society Series B (Methodological). 1995; 57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Slim L, Chatelain C, Azencott CA, Vert JP. Novel methods for epistasis detection in genome-wide association studies. PLoS One. 2020 Nov 30;15(11):e0242927. https://doi.org/10.1371/journal.pone.0242927
Wei WH, Hemani G, Haley CS. Detecting epistasis in human complex traits. Nat Rev Genet. 2014;15(11):722–33. https://doi.org/10.1038/nrg3747
Duncan LE, Keller MC. A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American J of Psychiatry. 2011 Oct;168(10):1041?49. https://doi.org/10.1176/appi.ajp.2011.11020191
Prabhu S, Pe'er I. Ultrafast genome-wide scan for SNP–SNP interactions in common complex disease. Genome Res. 2012 Nov 1;22(11):2230?40. https://doi.org/10.1101/gr.137885.112
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American J of Human Genetics. 2007 Sep 1;81(3):559?75. https://doi.org/10.1086/519795
Steen VK. Travelling the world of gene–gene interactions. Briefings in Bioinformatics. 2012 Jan 1;13(1):1?9. https://doi.org/10.1093/bib/bbr012
Zhang Y, Liu JS. Bayesian inference of epistatic interactions in case-control studies. Nat Genet. 2007;39(9):1167–73. https://doi.org/10.1038/ng2110
Schwarz DF, König IR, Ziegler A. On safari to random jungle: a fast implementation of random forests for high-dimensional data. Bioinformatics. 2010 Jul 15;26(14):1752?58. https://doi.org/10.1093/bioinformatics/btq257
Gusareva ES, Steen VK. Practical aspects of genome-wide association interaction analysis. Hum Genet. 2014;133(11):1343–58. https://doi.org/10.1007/s00439-014-1480-y
Ellis JR, Janick J. The chromosomes of Splnacia oleracea. American J Bot. 1960 Mar;47(3):210?14. https://doi.org/10.2307/2439251
Arumuganathan K, Earle ED. Nuclear DNA content of some important plant species. Plant Mol Biol Reporter. 1991 Aug;9:208?18. https://doi.org/10.1007/BF02672069
Khattak JZ, Torp AM, Andersen SB. A genetic linkage map of Spinacia oleracea and localization of a sex determination locus. Euphytica. 2006 Apr;148:311?18. https://doi.org/10.1007/s10681-005-9031-1
Koike ST, Matheron ME, Du Toit LJ. First report of leaf spot of spinach caused by Stemphylium botryosum in Arizona. Plant Dis. 2005 Dec;89(12):1359. https://doi.org/10.1094/PD-89-1359A
Braz CU, Taylor JF, Bresolin T, Espigolan R, Feitosa FL, Carvalheiro R, et al. Sliding window haplotype approaches overcome single SNP analysis limitations in identifying genes for meat tenderness in Nelore cattle. BMC Genetics. 2019 Dec;20:1?2. https://doi.org/10.1186/s12863-019-0713-4
Wu W, Hao H, Liu Q, Han X, Wu Y, Cheng J, Lu D. Analysis of linkage and linkage disequilibrium for syntenic STRs on 12 chromosomes. Inter J Legal Med. 2014 Sep;128:735?39. https://doi.org/10.1007/s00414-014-1032-y
Clark AG. The role of haplotypes in candidate gene studies. Genetic Epidemiology: The Official Publication of the Inter Genetic Epidemiology Society. 2004 Dec;27(4):321?33. https://doi.org/10.1002/gepi.20025
Hamon SC, Kardia SL, Boerwinkle E, Liu K, Klos KL, Clark AG, Sing CF. Evidence for consistent intragenic and intergenic interactions between SNP effects in the APOA1/C3/A4/A5 gene cluster. Human Heredity. 2006 Jun 15;61(2):87?96. https://doi.org/10.1159/000093384
Awika HO, Bedre R, Yeom J, Marconi TG, Enciso J, Mandadi KK, et al. Developing growth?associated molecular markers via high?throughput phenotyping in Spinach. The Plant Genome. 2019 Nov;12(3):190027. https://doi.org/10.1159/000093384
Bao AK, Wang SM, Wu GQ, Xi JJ, Zhang JL, Wang CM. Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci. 2009 Feb 1;176(2):232?40. https://doi.org/10.1016/j.plantsci.2008.10.009
Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, et al. Up-regulation of a H+-pyrophosphatase (H+- PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci. U.S.A.; 2005. 102:18830–35. https://doi.org/10.1073/pnas.0509512102
Pasapula V, Shen G, Kuppu S, Paez?Valenia J, Mendoza M, Hou P, et al. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought and salt tolerance and increases fibre yield in the field conditions. Plant Biotech J. 2011;9:88–99. https://doi.org/10.1111/j.1467-7652.2010.00535.x
Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR. Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proceed Nat Acad of Sci. 2001 Sep 25;98(20):11444?49. https://doi.org/10.1073/pnas.191389398
Yang H, Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, et al. Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+- pyrophosphatase. Plant Biotech J. 2007;5:735–45. https://doi.org/10.1111/j.1467-7652.2007.00281.x
Schilling RK, Marschner P, Shavrukov Y, Berger B, Tester M, Roy SJ, Plett DC. Expression of the Arabidopsis vacuolar H+?pyrophosphatase gene (AVP 1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotech J. 2014 Apr;12(3):378?86. https://doi.org/10.1111/pbi.12145
Cai X, Sun X, Xu C, Sun H, Wang X, Ge C, et al. Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits. Nat Commun. 2021 Dec 13;12(1):7246. https://doi.org/10.1038/s41467-021-27432-z
Meng Q, Liu Z, Feng C, Zhang H, Xu Z, Wang X, et al. Quantitative trait locus mapping and identification of candidate genes controlling bolting in spinach (Spinacia oleracea L.). Front in Plant Sci. 2022 Mar 30;13:850810. https://doi.org/10.3389/fpls.2022.850810
Pal M. Amaranthus: evolution, genetic resources and utilization. Environews. Newsletter of ISEB, India. 1999;5.
Huerta-Ocampo AJ, Rosa PBA. Amaranth: a pseudo-cereal with nutraceutical properties. Curr Nutri and Food Sci. 2011 Feb 1;7(1):1?9. http://dx.doi.org/10.2174/157340111794941076
Jamalluddin N, Massawe FJ, Mayes S, Ho WK, Symonds RC. Genetic diversity analysis and marker-trait associations in Amaranthus species. Plos One. 2022 May 12;17(5):e0267752. http://dx.doi.org/10.2174/157340111794941076
Yoine M, Ohto MA, Onai K, Mita S, Nakamura K. The lba1 mutation of UPF1 RNA helicase involved in nonsense?mediated mRNA decay causes pleiotropic phenotypic changes and altered sugar signalling in Arabidopsis. The Plant J. 2006 Jul;47(1):49?62. https://doi.org/10.1111/j.1365-313x.2006.02771.x
Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ. Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. https://doi.org/10.1242/dev.02866
Butel N, Le Masson I, Bouteiller N, Vaucheret H, Elmayan T. sgs1: a neomorphic nac52 allele impairing post?transcriptional gene silencing through SGS3 downregulation. The Plant J. 2017 May;90(3):505?19. https://doi.org/10.1111/tpj.13508
Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, et al. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell. 1997 May 30;89(5):737?45. https://doi.org/10.1016/S0092-8674(00)80256-1
Mutasa-Göttgens ES, Joshi A, Holmes HF, Hedden P, Göttgens B. A new RNASeq-based reference transcriptome for sugar beet and its application in transcriptome-scale analysis of vernalization and gibberellin responses. BMC Genomics. 2012 Dec;13:1?8. https://doi.org/10.1186/1471-2164-13-99
Lv X, Jin Y, Wang Y. De novo transcriptome assembly and identification of salt-responsive genes in sugar beet M14. Comput Biol and Chem. 2018 Aug 1;75:1?0. https://doi.org/10.1016/j.compbiolchem.2018.04.014
Geng G, Lv C, Stevanato P, Li R, Liu H, Yu L, Wang Y. Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet. Inter J Mol Sci. 2019 Nov 25;20(23):5910. https://doi.org/10.3390/ijms20235910
Zou C, Liu D, Wu P, Wang Y, Gai Z, Liu L, et al. Transcriptome analysis of sugar beet (Beta vulgaris L.) in response to alkaline stress. Plant Mol Bio. 2020 Apr;102:645?57. https://doi.org/10.1007/s11103-020-00971-7
Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, et al. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nat. 2014 Jan 23;505(7484):546?49. https://doi.org/10.1038/nature12817
Hatlestad GJ, Sunnadeniya RM, Akhavan NA, Gonzalez A, Goldman IL, McGrath JM, Lloyd AM. The beet R locus encodes a new cytochrome P450 required for red betalain production. Nat Genetics. 2012 Jul;44(7):816?20. https://doi.org/10.1038/ng.2297
Bean A, Sunnadeniya R, Akhavan N, Campbell A, Brown M, Lloyd A. Gain?of?function mutations in beet DODA 2 identify key residues for betalain pigment evolution. New Phytologist. 2018 Jul;219(1):287?96. https://doi.org/10.1111/nph.15159.
Miao J, Xu N, Cheng C, Zou L, Chen J, Wang Y, et al. Fabrication of polysaccharide-based high internal phase emulsion gels: Enhancement of curcumin stability and bioaccessibility. Food Hydrocolloids. 2021 Aug 1;117:106679. https://doi.org/10.1016/j.foodhyd.2021.106679
Wilson HD. Quinua and relatives (Chenopodium sect. Chenopodium subsect. Celluloid). Economic Bot. 1990 Jul;44(Suppl 3):92?110. https://doi.org/10.1007/BF02860478
Repo-Carrasco R, Espinoza C, Jacobsen SE. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev Inter. 2003 Jan 5;19(1-2):179?89. http://dx.doi.org/10.1081/FRI-120018884
Mizuno N, Toyoshima M, Fujita M, Fukuda S, Kobayashi Y, Ueno M, et al. The genotype-dependent phenotypic landscape of quinoa in salt tolerance and key growth traits. DNA Res. 2020 Aug;27(4):dsaa022. https://doi.org/10.1093/dnares/dsaa022
Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJ, et al. The genome of Chenopodium quinoa. Nat. 2017 Feb 16;542(7641):307?12. https://doi.org/10.1038/nature21370
Schmöckel SM, Lightfoot DJ, Razali R, Tester M, Jarvis DE. Identification of putative transmembrane proteins involved in salinity tolerance in Chenopodium quinoa by integrating physiological data, RNAseq and SNP analyses. Front Plant Sci. 2017 Jun 21;8:1023. https://doi.org/10.3389/fpls.2017.01023
Wang Q, Guo Y, Huang T, Zhang X, Zhang P, Xie H, et al. Transcriptome and metabolome analyses revealed the response mechanism of quinoa seedlings to different phosphorus stresses. Inter J Mol Sci. 2022 Apr 24;23(9):4704. https://doi.org/10.3390/ijms23094704
Colque-Little C, Abondano MC, Lund OS, Amby DB, Piepho HP, Andreasen C, et al. Genetic variation for tolerance to the downy mildew pathogen Peronospora variabilis in genetic resources of quinoa (Chenopodium quinoa). BMC Plant Biol. 2021 Dec;21:1?9. https://doi.org/10.1186/s12870-020-02804-7
Devanathan S, Erban A, Perez-Torres Jr R, Kopka J, Makaroff CA. Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth. PLoS One. 2014 Apr 23;9(4):e95971. https://doi.org/10.1371/journal.pone.0095971
Zhang YM, Jia Z, Dunwell JM. The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Front Plant Sci. 2019 Feb 11;10:100. https://doi.org/10.3389/fpls.2019.00100

Downloads
Published
Versions
- 18-03-2025 (2)
- 02-03-2025 (1)
How to Cite
Issue
Section
License
Copyright (c) 2025 Y L Devi, B Thongam, R J Devi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).