This is an outdated version published on 23-07-2024. Read the most recent version.
Forthcoming

Sustainable integration of rubber plantations within agroforestry systems in China: current research and future directions

Authors

DOI:

https://doi.org/10.14719/pst.4180

Keywords:

Agroforestry systems, diversification, rubber plantations, sustainable climate change, under-forest economy

Abstract

The integration of rubber plantations with agroforestry systems, or the under-forest economy, represents a pivotal shift towards sustainable agriculture in China. This paper reviews the latest research on agroforestry practices and innovations within China's rubber plantation under-forest economy, with a focus on the balance between economic productivity and environmental sustainability. We explore the adoption of diverse agroforestry models that incorporate rubber trees with other valuable plant species, aiming to enhance ecosystem services, biodiversity, and farmers' livelihoods. The review highlights significant advancements in sustainable management practices, including species selection, planting designs, and soil and water conservation techniques that contribute to the resilience of these systems against environmental stresses. Economic analyses underscore the potential for rubber agroforestry systems to improve income diversification and stability for rural communities while also navigating market challenges. Environmental assessments reveal the positive impacts of these practices on carbon sequestration, biodiversity preservation, and soil health, positioning rubber agroforestry as a beneficial strategy for mitigating climate change effects. However, the review also identifies challenges, including the need for supportive policy frameworks, access to knowledge and technology for smallholders, and further research on long-term sustainability outcomes. Future directions for research are proposed, emphasizing the integration of ecological, economic, and social dimensions to fully realize the potential of the rubber under-forest economy in China.

Downloads

Download data is not yet available.

References

Li H, Aide TM, Ma Y, Liu W, Cao M. Demand for rubber is causing the loss of high diversity rain forest in SW China. Biodivers Conserv. 2007. https://doi.org/10.1007/978-1-4020-6444-9_11

Oktora SI, Firdani AM. Natural rubber economics between China and Southeast Asia: The impact of China's economic slowdown. The Journal of Asian Finance, Economics and Business. 2019; 6(2):55-62. https://doi.org/10.13106/jafeb.2019.vol6.no2.55.

Soares FA, Steinbüchel A. Natural rubber degradation products: Fine chemicals and reuse of rubber waste. European Polymer Journal. 2022; 165:111001. https://doi.org/10.1016/j.eurpolymj.2022.111001.

Jin S, Min S, Huang J, Waibel H. Falling price induced diversification strategies and rural inequality: Evidence of smallholder rubber farmers. World Development. 2021; 146:105604. https://doi.org/10.1016/j.worlddev.2021.105604.

Chen Y, Han X, Lv S, Song B, Zhang X, Li H. The influencing factors of pro-environmental behaviors of farmer households participating in understory economy: evidence from China. Sustainability. 2023. https://doi.org/10.3390/su15010688.

Hou FM, Wu J, Li HX, Yang YL, Luo XJ, Shen Y. Analysis on the development of Chinese under-forest economy and its effect on the increase of farmers' income. J Dis Mathemat Sci Cryptograp. 2017. https://doi.org/10.1080/09720529.2017.1392432.

Swarna Priya R. Assessing the Physiological Parameters of Filler Crops Intercropped under Rubber Plantation. Int J Plant Soil Sci. 2022. https://doi.org/10.9734/ijpss/2022/v34i1030927.

Zhu Y, Xu J, Li Q, Mortimer PE. Investigation of rubber seed yield in Xishuangbanna and estimation of rubber seed oil-based biodiesel potential in Southeast Asia. Energy. 2014; 69:837-42. https://doi.org/10.1016/j.energy.2014.03.079. https://linkinghub.elsevier.com/retrieve/pii/S0360544214003430.

Khaswarina S, Sucherly, Kaltum U, Ariawaty RRN. The Efficiency of Smallholder Rubber Plantations and the Factors That Influence It: A Case Study in Indonesia. Int J Des Nat Ecodynamics. 2023;18(2):261-7. https://doi.org/10.18280/ijdne.180203.

Musikavong C, Gheewala SH. Ecological footprint assessment towards eco-efficient oil palm and rubber plantations in Thailand. J Clean Prod. 2017; 140:581-9. https://doi.org/10.1016/j.jclepro.2016.07.159.

Phoungthong K, Sinutok S, Suttinun O, Palamae S, Mungkalasiri J, Suksatit P, et al. Sustainability indicators for rubber plantations in Thailand: Environmental integrity dimension. IOP Conf Ser Mater Sci Eng. 2021;1163(1):012017. https://doi.org/10.1088/1757-899X/1163/1/012017.

Chen H, Yi Z-F, Schmidt-Vogt D, Ahrends A, Beckschäfer P, Kleinn C, et al. Pushing the Limits: The Pattern and Dynamics of Rubber Monoculture Expansion in Xishuangbanna, SW China. Chen HYH, editor. PLoS One. 2016; 11(2):e0150062. https://doi.org/10.1371/journal.pone.0150062.

Azizan FA, Kiloes AM, Astuti IS, Abdul Aziz A. Application of Optical Remote Sensing in Rubber Plantations: A Systematic Review. Remote Sens. 2021; 13(3):429. https://doi.org/10.3390/rs13030429.

Abdel-Haleem H, Luo Z, Ray D. Genetic Improvement of Guayule (Parthenium argentatum A. Gray): An Alternative Rubber Crop. In: Advances in Plant Breeding Strategies: Industrial and Food Crops [Internet]. Cham: Springer International Publishing; 2019. p. 151-78. https://doi.org/10.1007/978-3-030-23265-8_6.

Nakano Y, Mitsuda N, Ide K, Mori T, Mira FR, Rosmalawati S, et al. Transcriptome analysis of Pará rubber tree (H. brasiliensis) seedlings under ethylene stimulation. BMC Plant Biol. 2021. https://doi.org/10.1186/s12870-021-03196-y

Arias M, van Dijk PJ. What Is Natural Rubber and Why Are We Searching for New Sources? Front Young Minds. 2019. https://doi.org/10.3389/frym.2019.00100.

Huang IY, James K, Thamthanakoon N, Pinitjitsamut P, Rattanamanee N, Pinitjitsamut M, et al. Economic outcomes of rubber-based agroforestry systems: a systematic review and narrative synthesis. Agrofor Syst. 2023;97(3):335-54. https://doi.org/10.1007/s10457-022-00734-x.

Warren-Thomas E, Nelson L, Juthong W, Bumrungsri S, Brattström O, Stroesser L, et al. Rubber agroforestry in Thailand provides some biodiversity benefits without reducing yields. Louzada J, editor. J Appl Ecol. 2020;57(1):17-30. https://doi.org/10.1111/1365-2664.13530.

Cheng H, Tang C, Huang H. The Reyan 7-33-97 Rubber Tree Genome: Insight into Its Structure, Composition and Application. In 2020. p. 13-40. https://doi.org/10.1007/978-3-030-42258-5_2

Jinping X. ??2023??????????. Chinese 2023 Cent Doc. 2022;1(1):2023.

Zeng Xianhai. Improving planting pattern for intercropping in the whole production span of rubber tree. African J Biotechnol. 2012;11(34). https://doi.org/10.5897/AJB11.3811.

Nazarreta R, Hartke TR, Hidayat P, Scheu S, Buchori D, Drescher J. Rainforest conversion to smallholder plantations of rubber or oil palm leads to species loss and community shifts in canopy ants (Hymenoptera: Formicidae). Myrmecological News. 2020;

Qi D, Yang C, Yun T, Wu Z. The main service functions and driving forces of rubber (Hevea brasiliensis) plantation ecosystem in China. J Rubber Res [Internet]. 2023; 26(2):155-64. https://doi.org/10.1007/s42464-023-00202-w.

Jin S, Min S, Huang J, Waibel H. Rising labour costs and the future of rubber intercropping in China. Int J Agric Sustain. 2022 Mar 4;20(2):124-39. https://doi.org/10.1080/14735903.2021.1918482.

Zeng H, Wu J, Singh AK, Zhu X, Zhang W, Hahn P, et al. Effect of intercrops complexity on water uptake patterns in rubber plantations: Evidence from stable isotopes (C-H-O) analysis. Agric Ecosyst Environ. 2022 Oct; 338:108086. https://doi.org/10.1016/j.agee.2022.108086.

Knörzer H, Grözinger H, Graeff-Hönninger S, Hartung K, Piepho H-P, Claupein W. Integrating a simple shading algorithm into CERES-wheat and CERES-maize with particular regard to a changing microclimate within a relay-intercropping system. F Crop Res. 2011;121(2):274-85. https://doi.org/10.1016/j.fcr.2010.12.016.

Liu Y, Nie Y, Chen J, Lu T, Niu L, Jia J, et al. Genetic diversity of three major spider mites damaging rubber trees. Syst Appl Acarol. 2022. https://doi.org/10.11158/saa.27.10.13.

Jiang J, Wang J, Wang H, Zhang H. Vague adaptive optimization based research on western guangdong province favorable natural rubber species. J Phys Conf Ser. 2021; 1744(4):042192. https://doi.org/10.1088/1742-6596/1744/4/042192

Cao X, Xu X, Che H, West JS, Luo D. Three Colletotrichum Species, including a New Species, are Associated to leaf anthracnose of rubber tree in Hainan, China. Plant Dis. 2019;103(1):117-24. https://doi.org/10.1094/PDIS-02-18-0374-RE.

Tian YH, Yuan HF, Xie J, Deng JW, Dao XS, Zheng YL. Effect of diurnal irradiance on night-chilling tolerance of six rubber cultivars. Photosynthetica. 2016; 54(3):374-80. https://doi.org/10.1007/s11099-016-0192-z.

Qi D, Zhou J, Xie G, Wu Z. Studies on Rubber Trees Exist Plant Type after Planting and Available Tapping Tree of Rubber Plantation in China. Am J Plant Sci. 2014;5(20):3017-21. https://doi.org/10.4236/ajps.2014.520318.

Oktofian WE, Biantary MP, Yahya Z, Kamarubayana L, Tirkaamina MT, Ramayana SA. The Degree of Stability of Rubber Stands (Hevea brasiliensis) in the Timber Estate Area of PT. Sylvaduta District Kembang Janggut, Kutai Kartanegara District East Kalimantan Province. J Agric Ecol Res Int. 2023 Jul 25;24(5):135-41. https://doi.org/10.9734/jaeri/2023/v24i5551.

Lokmal N, Mohd Zaki A, Farah Fazwa MA, Suhaimi WC, Azmy Y, Zakaria I, et al. Growth of several rubber clones for timber production. J Trop For Sci. 2008;

Tian YH, Yuan HF, Xie J, Deng JW, Dao XS, Zheng YL. Effect of diurnal irradiance on night-chilling tolerance of six rubber cultivars. Photosynthetica. 2016; 54(3):374-80. https://doi.org/10.1007/s11099-016-0192-z.

Langenberger G, Cadisch G, Martin K, Min S, Waibel H. Rubber intercropping: a viable concept for the 21st century? Agrofor Syst. 2017 Jun 2;91(3):577-96. https://doi.org/10.1007/s10457-016-9961-8.

Santosa E, Sugiyama N, Hikosaka S, Takano T, Kubota N. Intercropping practices in cacao, rubber and timber plantations in West Java, Indonesia. Japanese J Trop Agric. 2005;

Nattharom N, Roongtawanreongsri S, Bumrungsri S. The economic value of ecosystem services of rubber-based agroforest plantations in South Thailand. J Sustain Sci Manag [Internet]. 2021 Jul 31; 16(5):247-62. https://doi.org/10.46754/jssm.2021.07.016.

Singh AK, Liu W, Zakari S, Wu J, Yang B, Jiang XJ, et al. A global review of rubber plantations: Impacts on ecosystem functions, mitigations, future directions, and policies for sustainable cultivation. Sci Total Environ [Internet]. 2021 Nov 20; 796:148948. https://doi.org/10.1016/j.scitotenv.2021.148948.

Gitz V, Meybeck A, Pinizzotto S, Nair L, Penot E, Baral H, Xu J. Sustainable development of rubber plantations in a context of climate change: Challenges and opportunities. FTA Brief 4; CIFOR: Bogor, Indonesia, 2020. https://doi.org/10.17528/cifor/007860.

Jessy MD, Joseph P, George S. Possibilities of diverse rubber-based agroforestry systems for smallholdings in India. Agrofor Syst. 2017. https://doi.org/10.1007/s10457-016-9953-8.

Hougni D-GJM, Chambon B, Penot E, Promkhambut A. The household economics of rubber intercropping during the immature period in Northeast Thailand. J Sustain For. 2018; 37(8):787-803. https://doi.org/10.1080/10549811.2018.1486716.

Fox J, Castella J-C. Expansion of rubber (Hevea brasiliensis) in Mainland Southeast Asia: what are the prospects for smallholders? J Peasant Stud. 2013; 40(1):155-70. https://doi.org/10.1080/03066150.2012.750605.

Khan NA, Khisa SK. Sustainable land management with rubber-based agroforestry: A Bangladeshi example of uplands community development. Sustain Dev. 2000. https://doi.org/10.1002/(SICI)1099-1719(200002)8:1<1::AID-SD126>3.0.CO;2-C.

Ahrends A, Hollingsworth PM, Ziegler AD, Fox JM, Chen H, Su Y, et al. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Glob Environ Chang. 2015; 34:48-58. https://doi.org/10.1016/j.gloenvcha.2015.06.002.

S. P, A. A, V. G, J. S-B, L. N, E. G, et al. Natural rubber systems and climate change: Proceedings and extended abstracts from the online workshop, 23-25 June 2020 [Internet]. Natural rubber systems and climate change: Proceedings and extended abstracts from the online workshop, 23-25 June 2020. Center for International Forestry Research (CIFOR); 2021. https://doi.org/10.17528/cifor/008029.

Guo S, Wu Z, Liu W, Sun Z, Wu L, Fang M, et al. Attribution analysis of water use efficiency in tropical rubber plantations during drought-monsoon season transition. Front For Glob Chang. 2023;6. https://doi.org/10.3389/ffgc.2023.1208595.

Wu Z, Guan L, Chen B, Yang C, Lan G, Xie G, et al. Components of Soil Respiration and its Monthly Dynamics in Rubber Plantation Ecosystems. Res J Appl Sci Eng Technol. 2014;7(5):1040-8. https://doi.org/10.19026/rjaset.7.356.

Wang YF, Owen SM, Li QJ, Peñuelas J. Monoterpene emissions from rubber trees (Hevea brasiliensis) in a changing landscape and climate: Chemical speciation and environmental control. Glob Chang Biol. 2007. https://doi.org/10.1111/j.1365-2486.2007.01441.x.

Jongrungrot V, Thungwa S, Snoeck D. Tree-crop diversification in rubber plantations to diversify sources of income for small-scale rubber farmers in Southern Thailand. Bois Forets Des Trop. 2014 ;321(321):21. https://doi.org/10.19182/bft2014.321.a31214.

Su Y, Sujakhu NM, Smith A. Gendered impacts of falling rubber prices: Changing livelihood strategies in China’s rubber hearltand. ICRAF Work Pap. 2022;

Li J, Lin W. Effects of nitrogen fertilizer rates on the growth and nutrient utilization of calla lily intercropped with rubber trees. Soil Tillage Res. 2021; 211:105031. https://doi.org/10.1016/j.still.2021.105031

Thanh T, Nhan NT, Truong V Van, Minh TD. Effects of Planting Density on Growth and Yield Attributes of Rubber Trees (Hevea brasiliensis). Pertanika J Trop Agric Sci. 2022;45(1):245-56. ttps://doi.org/10.47836/pjtas.45.1.14.

Tantalo S, Liman L, Tsani Farda F, Kusuma Wijaya A, Abrian Frastianto Y, Anjas Pangestu I. Productivity and nutrient value of some grasses under shading of rubber tree plantation. J Ilmu Peternak Terap. 2021;4(2):92-7. https://doi.org/10.25047/jipt.v4i2.2502.

Rizwan M, Rauf A, Rahmawaty, Akub EN. Physiology Response of Soybean Variety to Various Types of Shading in Agroforestry System. In: Proceedings of the 7th International Conference on Multidisciplinary Research [Internet]. ScitepresS - Science and Technology Publications; 2018. p. 225-30. https://doi.org/10.5220/0008887802250230

Androcioli HG, Morais H, Menezes Júnor ADO, Hoshino AT, Androcioli LG, Caramori PH. Cercosporiose progression in the agroforestry consortium coffee-rubber trees. Semin Ciências Agrárias. 2015;36(6):3647. https://doi.org/10.5433/1679-0359.2015v36n6p3647

Nguyen TTP, Masuda M, Iwanaga S. The effect of forestland allocation to the livelihoods of local people in the North Central Coast of Vietnam: A case in Nam Dong district. Tropics. 2016; 24(4):169-80. https://doi.org/10.3759/tropics.24.169

Fallot A, Saint-André L, Le-Maire G, Laclau JP, Nouvellon Y, Marsden C, et al. Biomass sustainability, availability, and productivity. Rev Metall Cah D’Informations Tech. 2009. https://doi.org/10.1051/metal/2009072

Riedel S, Schiborra A, Huelsebusch C, Huanming M, Schlecht E. Opportunities and challenges for smallholder pig production systems in a mountainous region of Xishuangbanna, Yunnan Province, China. Trop Anim Health Prod. 2012;44(8):1971-80. https://doi.org/10.1007/s11250-012-0166-5

Nattharom N, Roongtawanreongsri S, Bumrungsri S. The economic value of ecosystem services of rubber-based agroforest plantations in South Thailand. J Sustain Sci Manag. 2021;16(5):247-62. https://doi.org/10.46754/jssm.2021.07.016

Lillesø JBL, Graudal L, Moestrup S, Kjær ED, Kindt R, Mbora A, et al. Innovation in input supply systems in smallholder agroforestry: seed sources, supply chains, and support systems. Agrofor Syst. 2011;83(3):347-59. https://doi.org/10.1007/s10457-011-9412-5

Sivaranjani S, Panwar VP. Carbon sequestration in agroforestry systems. In: Agricultural Soil Sustainability and Carbon Management. Elsevier; 2023. p. 207-27. https://doi.org/10.1016/B978-0-323-95911-7.00010-4

Ramli R, Chai AB, Kamaruddin S, Ho JH, Mohd. Rasdi FR, De Focatiis DSA. Development of latex foam pillows from deproteinized natural rubber latex. J Rubber Res. 2021 . https://doi.org/10.1007/s42464-021-00130-7

Nizami SM, Yiping Z, Liqing S, Zhao W, Zhang X. Managing Carbon Sinks in Rubber (Hevea brasilensis) Plantation by Changing Rotation length in SW China. Wang S, editor. PLoS One. 2014; 9(12):e115234. https://doi.org/10.1371/journal.pone.0115234

Brahma B, Nath AJ, Das AK. Managing rubber plantations for advancing climate change mitigation strategy. Curr Sci. 2016. https://doi.org/10.18520/cs/v110/i10/2015-2019

Li H, Ma Y, Aide TM, Liu W. Past, present and future land-use in Xishuangbanna, China and the implications for carbon dynamics. For Ecol Manage. 2008 Feb;255(1):16-24. https://doi.org/10.1016/j.foreco.2007.06.051

Kiyono Y, Furuya N, Fujita N, Sato T, Matsumoto M, Bounthabandid S SS. Can converting slash-and-burn agricultural fields into rubber tree (Hevea brasiliensis) plantations provide climate change mitigation? A case study in northern Laos. FFPRI Bulletin, 13(3):79-88. In 2014.

Published

23-07-2024

Versions

How to Cite

1.
Zou R, Sultan H, Muse Muhamed S, Khan MN, pan J, Liao W, Li Q, Cheng S, Tian J, Cao Z, Tao Y, Nie L. Sustainable integration of rubber plantations within agroforestry systems in China: current research and future directions. Plant Sci. Today [Internet]. 2024 Jul. 23 [cited 2024 Nov. 23];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/4180

Issue

Section

Review Articles

Most read articles by the same author(s)