Outlook on nutritional importance and breeding strategies for oil and quality improvement in sesame (Sesamum indicum L.)
DOI:
https://doi.org/10.14719/pst.4216Keywords:
Sesame; oil, nutrition, genetic resources and diversity, gene action, breeding, genes, molecular markersAbstract
Sesame (Sesamum indicum L.), is a pivotal crop in global agriculture due to its high oil content (50-60 %), rich in quality unsaturated fatty acids and an array of bioactive compounds like sesamin and sesamol. This review is a compilation of information on sesame nutrition, mechanism of action of bioactive principles, health benefits in terms of unsaturated fats, antioxidants and essential nutrients to combat health disorders. The genetic resources are the base for any crop improvement programs. The genetic wealth of this crop as ex-situ conservation world-wide, traits of importance from its wild relatives, studies on genetic diversity through agronomic and molecular techniques for quality traits are focused. Both conventional and molecular breeding methods are examined. Conventional breeding efforts covers trait variability, correlations, gene action, combining ability studies, breeding methods and varieties released. The insights into molecular biology probes the novel QTLs, discovery of candidate genes, molecular markers for quality traits, genome sequencing, advancements in gene expression studies, genetic maps and pangemone. Despite the significant progress, the lacuna and future prospects in these areas are highlighted. Integrating the information from modern genomic technologies with conventional methods is the key to maximize the crop's potential for oil and nutritional security.
Downloads
References
Bedigian D, Harlan JR. Evidence for cultivation of sesame in the ancient world. Econ Bot. 1986;40:137-54. https://doi.org/10.1007/BF02859136
Nayar NM, Mehra KL. Sesame: Its uses, botany, cytogenetics and origin. Econ Bot. 1970;20-31. https://doi.org/10.1007/BF02860629
Brar GS, Ahuja KL. Sesame: its culture, genetics, breeding and biochemistry. Annual Reviews of Plant Sciences. 1979;1:245-313.
Zhang YP, Zhang YY, Thakur K, Zhang F, Hu F, Zhang JG, et al. Integration of miRNAs, degradome and transcriptome omics uncovers a complex regulatory network and provides insights into lipid and fatty acid synthesis during sesame seed development. Front Plant Sci. 2021;12:709197. https://doi.org/10.3389/fpls.2021.709197
Elleuch M, Bedigian D, Zitoun A. Sesame (Sesamum indicum L.) seeds in food, nutrition and health. In: Nuts and Seeds in Health and Disease Prevention. Elsevier; 2011. p. 1029-36. https://doi.org/10.1016/B978-0-12-375688-6.10122-7
Wang S, Liu S, Wang J, Yokosho K, Zhou B, Yu YC, et al. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev. 2020;7(11):1776-86. https://doi.org/10.1093/nsr/nwaa110
Sibt-e-Abbas M, Butt MS, Khan MR, Sultan MT, Saddique MS, Shahid M. nutritional and functional characterization of defatted oilseed protein isolates. Pak J Agric Sci. 2020;57(1).
Kapadia GJ, Azuine MA, Tokuda H, Takasaki M, Mukainaka T, Konoshima T. Chemopreventive effect of resveratrol, sesamol, sesame oil and sunflower oil in the Epstein–Barr virus early antigen activation assay and the mouse skin two-stage carcinogenesis. Pharmacol Res. 2002;45(6):499-505. https://doi.org/10.1006/phrs.2002.0992
Toma RB, Tabekhia MM, Williams JD. Phytate and oxalate contents in sesame seed (Sesamum indicum L.). Journal of Nutrition Reports International.1979;20(1):25-31.
Arab R, Casal S, Pinho T, Cruz R, Freidja ML, Lorenzo JM, et al. Effects of seed roasting temperature on sesame oil fatty acid composition, lignan, sterol and tocopherol contents, oxidative stability and antioxidant potential for food applications. Molecules. 2022;27(14):4508. https://doi.org/10.3390/molecules27144508
Ahmed IAM, Uslu N, Özcan MM, Juhaimi FAL, Ghafoor K, Babiker EE, et al. Effect of conventional oven roasting treatment on the physicochemical quality attributes of sesame seeds obtained from different locations. Food Chem. 2021;338:128109. https://doi.org/10.1016/j.foodchem.2020.128109
Ramezani M, Rezaei M. Physicochemical properties, heavy metals and aflatoxin in sesame oil: A review study. Journal of Nutrition, Fasting and Health. 2018;6:45-51.
Wei P, Zhao F, Wang Z, Wang Q, Chai X, Hou G, et al. Sesame (Sesamum indicum L.): A comprehensive review of nutritional value, phytochemical composition, health benefits, development of food and industrial applications. Nutrients. 2022;14(19):4079. https://doi.org/10.3390/nu14194079
Hadipour E, Emami SA, Tayarani-Najaran N, Tayarani-Najaran Z. Effects of sesame (Sesamum indicum L.) and bioactive compounds (sesamin and sesamolin) on inflammation and atherosclerosis: A review. Food Sci Nutr. 2023;11(7):3729-57. https://doi.org/10.1002/fsn3.3407
Xu F, Zhou R, Dossou SSK, Song S, Wang L. Fine mapping of a major pleiotropic QTL associated with sesamin and sesamolin variation in sesame (Sesamum indicum L.). Plants. 2021;10(7):1343. https://doi.org/10.3390/plants10071343
Ogawa H, Sasagawa S, Murakami T, Yoshizumi H. Sesame lignans modulate cholesterol metabolism in the stroke-prone spontaneously hypertensive rat. Clin Exp Pharmacol Physiol. 1995;22:S310-12. https://doi.org/10.1111/j.1440-1681.1995.tb02932.x
Hirata F. Hypocholesterolemic effect of sesamin lignan in humans. Atherosclerosis. 1996;122:135-36. https://doi.org/10.1016/0021-9150(95)05769-2
Singh UK, Kumar N, Mandal RK, Kumar M, Kumar R. Analysis of genetic variability, character association and path analysis in sesame (Sesamum indicum L.). The Pharma Innovation Journal. 2022;11(7):2215-21.
Phillips KM, Ruggio DM, Ashraf-Khorassani M. Phytosterol composition of nuts and seeds commonly consumed in the United States. J Agric Food Chem. 2005;53(24):9436-45. https://doi.org/10.1021/jf051505h
Grasso S. Extruded snacks from industrial by-products: A review. Trends Food Sci Technol. 2020;99:284-94. https://doi.org/10.1016/j.tifs.2020.03.012
Alobo AP. Effect of sesame seed flour on millet biscuit characteristics. Plant Foods for Human Nutrition. 2001;56:195-202. https://doi.org/10.1023/A:1011168724195
Haghighian MK, Alipoor B, Sadat BE, Mahdavi AM, Moghaddam A, Vatankhah AM. Effects of sesame seed supplementation on lipid profile and oxidative stress biomarkers in patients with knee osteoarthritis. Health Promot Perspect. 2014;4(1):90.
Rohilla S, Bhatt DC. Significance of hepatoprotective liver specific targeted drug delivery: a review on novel herbal and formulation approaches in the management of hepatotoxicity. Curr Drug Targets. 2018;19(13):1519-49. https://doi.org/10.2174/1389450119666180104113601
Mohammed OB, El-Razek A, Mohamed A, Bekhet MH, Moharram YGED. Evaluation of Egyptian chia (Salvia hispanica L.) seeds, oil and mucilage as novel food ingredients. Egyptian Journal of Food Science. 2019;47(1):11-26.
Ma Y, Karunakaran T, Veeraraghavan VP, Mohan SK, Li S. Sesame inhibits cell proliferation and induces apoptosis through inhibition of STAT-3 translocation in thyroid cancer cell lines (FTC-133). Biotechnology and Bioprocess Engineering. 2019;24:646-52. https://doi.org/10.1007/s12257-019-0151-1
Bukvicki D, Gottardi D, Prasad S, Novakovic M, Marin PD, Tyagi AK. The healing effects of spices in chronic diseases. Curr Med Chem. 2020;27(26):4401-20. https://doi.org/10.2174/0929867325666180831145800
Abbas S, Sharif MK, Sibt-e-Abbas M, Fikre Teferra T, Sultan MT, Anwar MJ. Nutritional and therapeutic potential of sesame seeds. J Food Qual. 2022;2022(1):6163753. https://doi.org/10.1155/2022/6163753
Wu MS, Aquino LBB, Barbaza MYU, Hsieh CL, De Castro-Cruz KA, Yang LL, et al. Anti-inflammatory and anticancer properties of bioactive compounds from Sesamum indicum L.—A review. Molecules. 2019;24(24):4426. https://doi.org/10.3390/molecules24244426
Farouk SM, Gad FA monem, Emam MA. Comparative immuno-modulatory effects of basil and sesame seed oils against diazinon-induced toxicity in rats; a focus on TNF-? immunolocalization. Environmental Science and Pollution Research. 2021;28:5332-46. https://doi.org/10.1007/s11356-020-10840-x
Farbood Y, Ghaderi S, Rashno M, Khoshnam SE, Khorsandi L, Sarkaki A, et al. Sesamin: a promising protective agent against diabetes-associated cognitive decline in rats. Life Sci. 2019;230:169-77. https://doi.org/10.1016/j.lfs.2019.05.071
Aslam F, Iqbal S, Nasir M, Anjum AA. White sesame seed oil mitigates blood glucose level, reduces oxidative stress and improves biomarkers of hepatic and renal function in participants with type 2 diabetes mellitus. J Am Coll Nutr. 2019;38(3):235-46. https://doi.org/10.1080/07315724.2018.1500183
Ang ES, Lee ST, Gan CS, See PG, Chan YH, Ng LH, et al. Evaluating the role of alternative therapy in burn wound management: randomized trial comparing moist exposed burn ointment with conventional methods in the management of patients with second-degree burns. MedGenMed. 2001;3(2):3.
Wang D, Zhang L, Huang X, Wang X, Yang R, Mao J, et al. Identification of nutritional components in black sesame determined by widely targeted metabolomics and traditional Chinese medicines. Molecules. 2018;23(5):1180. https://doi.org/10.3390/molecules23051180
Singletary KW. Sesame: potential health benefits. Nutr Today. 2022;57(5):271-87. https://doi.org/10.1097/NT.0000000000000562
Hiltebrandt VM. Sesame (Sesamum indicum L.) Trudy prikl. Bot Genet Selek (Ser.9). 1932;2:3-114.
Bedigian D. Evolution of sesame revisited: domestication, diversity and prospects. Genet Resour Crop Evol. 2003;50:779-87.
Wei X. Genetic discovery for oil production and quality in sesame. N Biotechnol. 2016;(33):S23. https://doi.org/10.1016/j.nbt.2016.06.807
Miao H, Wang L, Qu L, Liu H, Sun Y, Le M, et al. Genomic evolution and insights into agronomic trait innovations of Sesamum species. Plant Commun. 2024;5(1). https://doi.org/10.1016/j.xplc.2023.100729
Nimmakayala P, Perumal R, Mulpuri S, Reddy UK. Sesamum. In: Wild Crop Relatives: Genomic and Breeding Resources: Oilseeds. Springer; 2010. p. 261-73. https://doi.org/10.1007/978-3-642-14871-2_16
John CM. The wild gingelly of Malabar. Madras Agric J. 1950;37:47-50. https://doi.org/10.29321/MAJ.10.A04464
Uzo JO, Adedzwa DK, Onwukwe RO. Yield, yield components and nutritional attributes of cultivated sesame, S. indicum and its endemic wild relatives in Nigeria. Journal of FAO Plant Production and Protection paper. 1985;66:166-76.
Pathak N, Rai AK, Kumari R, Thapa A, Bhat KV. Sesame crop: an underexploited oilseed holds tremendous potential for enhanced food value. Agricultural Sciences. 2014;2014. https://doi.org/10.4236/as.2014.56054
Mondini L, Noorani A, Pagnotta MA. Assessing plant genetic diversity by molecular tools. Diversity (Basel). 2009;1(1):19-35. https://doi.org/10.3390/d1010019
Isshiki S, Umezaki T. Genetic variations of isozymes in cultivated sesame (Sesamum indicum L.). Euphytica. 1997;93:375-77. https://doi.org/10.1023/A:1002985625087
Venkataramana Bhat K, Babrekar PP, Lakhanpaul S. Study of genetic diversity in Indian and exotic sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Euphytica. 1999;110:21-34. https://doi.org/10.1023/A:1003724732323
Parsaeian M, Mirlohi A, Saeidi G. Study of genetic variation in sesame (Sesamum indicum L.) using agro-morphological traits and ISSR markers. Russ J Genet. 2011;47:314-21. https://doi.org/10.1134/S1022795411030136
Dossa K, Diouf D, Cissé N. Genome-wide investigation of Hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response. Front Plant Sci. 2016;7:214582. https://doi.org/10.3389/fpls.2016.01522
Wu K, Yang M, Liu H, Tao Y, Mei J, Zhao Y. Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using Insertion-Deletion (InDel) and Simple Sequence Repeat (SSR) markers. BMC Genet. 2014;15:1-15. https://doi.org/10.1186/1471-2156-15-35
Zhang R, Yu Y, Hu S, Zhang J, Yang H, Han B, et al. Sesamin ameliorates hepatic steatosis and inflammation in rats on a high-fat diet via LXR? and PPAR?. Nutrition Research. 2016;36(9):1022-30. https://doi.org/10.1016/j.nutres.2016.06.015
Uncu AO, Frary A, Karlovsky P, Doganlar S. High-throughput single nucleotide polymorphism (SNP) identification and mapping in the sesame (Sesamum indicum L.) genome with genotyping by sequencing (GBS) analysis. Molecular Breeding. 2016;36(12):173. https://doi.org/10.1007/s11032-016-0604-6
Myint D, Gilani SA, Kawase M, Watanabe KN. Sustainable sesame (Sesamum indicum L.) production through improved technology: An overview of production, challenges and opportunities in Myanmar. Sustainability. 2020;12(9):3515. https://doi.org/10.3390/su12093515
Tripathy SK, Kar J, Sahu D. Advances in sesame (Sesamum indicum L.) breeding. Advances in Plant Breeding Strategies: Industrial and Food Crops. 2019;6:577-635. https://doi.org/10.1007/978-3-030-23265-8_15
Durodola FA, Azeez MA, Adubi AO. Morpho-agronomic variability, heritability and genetic advance studies in sesame (Sesamum indicum L.) in Nigeria. Bangladesh J Bot. 2024;53(1):75-81. https://doi.org/10.3329/bjb.v53i1.72137
Zeinalzadeh-Tabrizi H. Assessment of heritability and genetic efficiency in advanced sesame inbred lines. J Anim Plant Sci. 2024;34(2):515-23. https://doi.org/10.36899/japs.2024.2.0737
Kumar A, Bajaj P, Singh B, Paul K, Sharma P, Mehra S, et al. Sesamol as a potent anticancer compound: From chemistry to cellular interactions. Naunyn Schmiedebergs Arch Pharmacol. 2024;1-19. https://doi.org/10.1007/s00210-023-02919-2
Kant C, Mishra SP, Mani N, Kumar N. Assessment of genetic variability and some biochemical traits in sesame (Sesamum Indicum L.) genotypes. J Pharmacogn Phytochem. 2021;10(5):252-56.
Vamshi P, Ramya KT, Prasad MS, Ramana JV, Kumhar SR. Genetic variability studies for yield and yield attributes in breeding lines of sesame (Sesamum indicum L.). Indian Society of Oilseeds Research. 2021;240. https://doi.org/10.56739/jor.v38i3.137142
Pavani K, Lal Ahamed M, Ramana JV, Sirisha ABM. Studies on genetic variability parameters in sesame (Sesamum indicum L.). Int J Chem Stud. 2020;8(4):101-04. https://doi.org/10.22271/chemi.2020.v8.i4b.9673
Mohanty TA, Singh UK, Singh SK, Kushwaha N, Singh D. Study of genetic variability, heritability and genetic advance in sesame (Sesamum indicum L.) genotypes. Int J Curr Microbiol Appl Sci. 2020;9(2):347-56. https://doi.org/10.20546/ijcmas.2020.902.044
Kadvani G, Patel JA, Patel JR, Prajapati KP, Patel PJ. Estimation of genetic variability, heritability and genetic advance for seed yield and its attributes in sesame (Sesamum indicum L.). International Journal of Bio-resource and Stress Management. 2020;11(3):219-24. https://doi.org/10.23910/1.2020.2097
Umamaheswari S, Suganthi S, Sathiskumar P, Kamaraj A. Genetic variability, correlation and path analysis in sesame (Sesamum indicum L.). Plant Archives. 2019;19(2):4543-48.
Kehie T, Shah P, Chaturvedi HP, Singh AP. Variability, correlation and path analysis studies in sesame (Sesamum indicum L.) genotypes under foothill condition of Nagaland. Int J Curr Microbiol App Sci. 2020;9(5):2917-26. https://doi.org/10.20546/ijcmas.2020.905.335
Navaneetha JS, Murugan E, Parameswari C. Correlation and path analysis for seed yield and its components in sesame (Sesamum indicum L.). Electronic Journal of Plant Breeding. 2019;10(3):1262-68. https://doi.org/10.5958/0975-928X.2019.00161.3
Kiruthika S, Narayanan SL, Parameshwari C, Arunachalam P, Mini ML. Studies on trait association and path co-efficient analysis of sesame (Sesamum sp.) for quantitative traits and oil quality parameters. Electronic Journal of Plant Breeding. 2020;11(1):18-24. https://doi.org/10.37992/2020.1101.004
Kumar V, Sinha S, Sinha S, Singh RS, Singh SN. Assessment of genetic variability, correlation and path analysis in sesame (Sesamum indicum L.). Electronic Journal of Plant Breeding. 2022;13(1):208-15. https://doi.org/10.37992/2022.1301.029
Park JH, Suresh S, Raveendar S, Baek HJ, Kim CK, Lee S, et al. Development and evaluation of core collection using qualitative and quantitative trait descriptor in sesame (Sesamum indicum L.) germplasm. Korean Journal of Crop Science. 2015;60(1):75-84. https://doi.org/10.7740/kjcs.2014.60.1.075
Li C, Miao H, Wei L, Zhang T, Han X, Zhang H. Association mapping of seed oil and protein content in Sesamum indicum L. using SSR markers. PLoS One. 2014;9(8):e105757. https://doi.org/10.1371/journal.pone.0105757
Wu Kun WK, Wu WenXiong WW, Yang MinMin YM, Liu HongYan LH, Hao GuoCun HG, Zhao YingZhong ZY. QTL mapping for oil, protein and sesamin contents in seeds of white sesame. Journal of Acta Agronomica Sinica. 2017;43(7):1003-11. https://doi.org/10.3724/SP.J.1006.2017.01003
Dar AA, Kancharla PK, Chandra K, Sodhi YS, Arumugam N. Assessment of variability in lignan and fatty acid content in the germplasm of Sesamum indicum L. J Food Sci Technol. 2019;56:976-86. https://doi.org/10.1007/s13197-018-03564-x
Kancharla PK, Arumugam N. Variation of oil, sesamin and sesamolin content in the germplasm of the ancient oilseed crop Sesamum indicum L. J Am Oil Chem Soc. 2020;97(5):475-83. https://doi.org/10.1002/aocs.12346
Wei X, Liu K, Zhang Y, Feng Q, Wang L, Zhao Y, et al. Genetic discovery for oil production and quality in sesame. Nat Commun. 2015;6(1):8609. https://doi.org/10.1038/ncomms9609
Cui C, Liu Y, Liu Y, Cui X, Sun Z, Du Z, et al. Genome-wide association study of seed coat color in sesame (Sesamum indicum L.). PLoS One. 2021;16(5):e0251526. https://doi.org/10.1371/journal.pone.0251526
Usman SM, Viswanathan PL, Manonmani S, Uma D. Genetic studies on sesamin and sesamolin content and other yield attributing characters in sesame (Sesamum indicum L.). Electronic Journal of Plant Breeding. 2020;11(01):132-38. https://doi.org/10.37992/2020.1101.024
Ashri A. Report on FAO/IAEA expert consultation on breeding improved sesame cultivars. Hebrew University, Jerusalem. 1987.
Ashri A. Induced mutations in sesame breeding. Hebrew University, Jerusalem. 2001;13-20.
Zhang H, Miao H, Ju M. Potential for adaptation to climate change through genomic breeding in sesame. Genomic Designing of Climate-Smart Oilseed Crops. 2019;371-440. https://doi.org/10.1007/978-3-319-93536-2_7
Stamatov S, Velcheva N, Deshev M. Introduced sesame accessions as donors of useful qualities for breeding of mechanized harvesting cultivars. Bulgarian Journal of Agricultural Science. 2018;24(5):820-24.
Collard BCY, Mackill DJ. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences. 2008;363(1491):557-72. https://doi.org/10.1098/rstb.2007.2170
Kim S, Lee E, Lee J, An YJ, Oh E, Kim JI, et al. Identification of QTLs and allelic effect controlling lignan content in sesame (Sesamum indicum L.) using QTL-seq approach. Front Genet. 2023;14:1289793. https://doi.org/10.3389/fgene.2023.1289793
Chandra K, Sinha A, Arumugam N. Gene isolation, heterologous expression, purification and functional confirmation of sesamin synthase from Sesamum indicum L. Biotechnology Reports. 2019;22:e00336. https://doi.org/10.1016/j.btre.2019.e00336
Murata J, Ono E, Yoroizuka S, Toyonaga H, Shiraishi A, Mori S, et al. Oxidative rearrangement of (+)-sesamin by CYP92B14 co-generates twin dietary lignans in sesame. Nat Commun. 2017 Dec 18;8. https://doi.org/10.1038/s41467-017-02053-7
Teboul N, Gadri Y, Berkovich Z, Reifen R, Peleg Z. Genetic architecture underpinning yield components and seed mineral–nutrients in sesame. Genes (Basel). 2020;11(10):1221. https://doi.org/10.3390/genes11101221
Dixit A, Jin M, Chung J, Yu J, Chung H, Ma K, et al. Development of polymorphic microsatellite markers in sesame (Sesamum indicum L.). Mol Ecol Notes. 2005;5(4):736-38. https://doi.org/10.1111/j.1471-8286.2005.01048.x
Li-Bin WEI, Zhang HY, Zheng YZ, Wang-Zhen GUO, Zhang TZ. Developing EST-derived microsatellites in sesame (Sesamum indicum L.). Acta Agronomica Sinica. 2008;34(12):2077-84. https://doi.org/10.1016/S1875-2780(09)60019-5
Zhang H, Miao H, Wang L, Qu L, Liu H, Wang Q, et al. Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biol. 2013;14:1-9. https://doi.org/10.1186/gb-2013-14-1-401
Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, Sorrells ME. Designing future crops: genomics-assisted breeding comes of age. Trends Plant Sci. 2021;26(6):631-49. https://doi.org/10.1016/j.tplants.2021.03.010
Zhao X, Han Y, Li Y, Liu D, Sun M, Zhao Y, et al. Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max (L.) Merr.) via association and linkage maps. The Plant Journal. 2015;82(2):245-55. https://doi.org/10.1111/tpj.12810
Syvänen AC. Toward genome-wide SNP genotyping. Nat Genet. 2005;37(Suppl 6):S5-10. https://doi.org/10.1038/ng1558
Riahi L, Zoghlami N, Dereeper A, Laucou V, Mliki A, This P. Single nucleotide polymorphism and haplotype diversity of the gene NAC4 in grapevine. Ind Crops Prod. 2013;43:718-24. https://doi.org/10.1016/j.indcrop.2012.08.021
Wei L, Miao H, Li C, Duan Y, Niu J, Zhang T, et al. Development of SNP and InDel markers via de novo transcriptome assembly in Sesamum indicum L. Molecular Breeding. 2014;34:2205-17. https://doi.org/10.1007/s11032-014-0174-4
Zhou W, Song S, Dossou SSK, Zhou R, Wei X, Wang Z, et al. Genome-wide association analysis and transcriptome reveal novel loci and a candidate regulatory gene of fatty acid biosynthesis in sesame (Sesamum indicum L.). Plant Physiology and Biochemistry. 2022;186:220-31. https://doi.org/10.1016/j.plaphy.2022.07.023
Li H, Tahir ul Qamar M, Yang L, Liang J, You J, Wang L. Current progress, applications and challenges of multi-omics approaches in sesame genetic improvement. Int J Mol Sci. 2023;24(4):3105. https://doi.org/10.3390/ijms24043105
Wang Z, Zhou F, Tang X, Yang Y, Zhou T, Liu H. Morphology and SSR markers-based genetic diversity analysis of sesame (Sesamum indicum L.) cultivars released in China. Agriculture. 2023;13(10):1885. https://doi.org/10.3390/agriculture13101885
Kitts PA, Church DM, Thibaud-Nissen F, Choi J, Hem V, Sapojnikov V, et al. Assembly: a resource for assembled genomes at NCBI. Nucleic Acids Res. 2016;44(D1):D73-80. https://doi.org/10.1093/nar/gkv1226
Mahendra Kumar C, Singh SA. Bioactive lignans from sesame (Sesamum indicum L.): evaluation of their antioxidant and antibacterial effects for food applications. J Food Sci Technol. 2015;52:2934-41. https://doi.org/10.1007/s13197-014-1334-6
Yashaswini PS, Sadashivaiah B, Ramaprasad TR, Singh SA. In vivo modulation of LPS induced leukotrienes generation and oxidative stress by sesame lignans. J Nutr Biochem. 2017;41:151-57. https://doi.org/10.1016/j.jnutbio.2016.12.010
Majdalawieh AF, Dalibalta S, Yousef SM. Effects of sesamin on fatty acid and cholesterol metabolism, macrophage cholesterol homeostasis and serum lipid profile: A comprehensive review. Eur J Pharmacol. 2020;885:173417. https://doi.org/10.1016/j.ejphar.2020.173417
Shi L, Karrar E, Liu R, Chang M, Wang X. Comparative effects of sesame lignans (sesamin, sesamolin and sesamol) on oxidative stress and lipid metabolism in steatosis HepG2 cells. J Food Biochem. 2022;46(8):e14180. https://doi.org/10.1111/jfbc.14180
Gupta B, Dalal P, Rao R. Cyclodextrin decorated nanosponges of sesamol: Antioxidant, anti-tyrosinase and photostability assessment. Food Biosci. 2021;42:101098. https://doi.org/10.1016/j.fbio.2021.101098
Jan KC, Wang TY, Hwang LS, Gavahian M. Biotransformation of sesaminol triglycoside by intestinal microflora of swine supplemented with probiotic or antibiotic diet. Quality Assurance and Safety of Crops and Foods. 2022;14(3):19-29. https://doi.org/10.15586/qas.v14i3.1027
Rosalina R, Weerapreeyakul N. An insight into sesamolin: physicochemical properties, pharmacological activities and future research prospects. Molecules. 2021;26(19):5849. https://doi.org/10.3390/molecules26195849
Kaji H, Matsui-Yuasa I, Matsumoto K, Omura A, Kiyomoto K, Kojima-Yuasa A. Sesaminol prevents Parkinson’s disease by activating the Nrf2-ARE signaling pathway. Heliyon. 2020;6(11). https://doi.org/10.1016/j.heliyon.2020.e05342
Gao J, Wang R, Lu X, Jia C, Sun Q, Huang J, et al. Enzymatic preparation and structure-activity relationship of sesaminol. J Oleo Sci. 2021;70(9):1261-74. https://doi.org/10.5650/jos.ess21112
Sadiq M, Akram NA, Ashraf M, Al-Qurainy F, Ahmad P. Alpha-tocopherol-induced regulation of growth and metabolism in plants under non-stress and stress conditions. J Plant Growth Regul. 2019;38:1325-40. https://doi.org/10.1007/s00344-019-09936-7
Jannat B, Oveisi MR, Sadeghi N, Hajimahmoodi M, Behzad M, Nahavandi B, et al. Effect of roasting process on total phenolic compounds and ?-tocopherol contents of Iranian sesame seeds (Sesamum indicum.L). Iran J Pharm Res. 2013;12(4):751.
Miedes D, Makran M, Cilla A, Barberá R, Garcia-Llatas G, Alegría A. Aging-related gastrointestinal conditions decrease the bioaccessibility of plant sterols in enriched wholemeal rye bread: In vitro static digestion. Food Funct. 2023;14(13):6012-22. https://doi.org/10.1039/D3FO00710C
Vecka M, Sta?ková B, Kutová S, Tomášová P, Tvrzická E, Žák A. Comprehensive sterol and fatty acid analysis in nineteen nuts, seeds and kernel. SN Appl Sci. 2019;1(12):1531. https://doi.org/10.1007/s42452-019-1576-z
Pathak N, Bhaduri A, Rai AK. Sesame: Bioactive compounds and health benefits. Bioactive molecules in food. 2019;5(1):181-200. https://doi.org/10.1007/978-3-319-78030-6_59
Woo M, Han S, Song YO. Sesame oil attenuates renal oxidative stress induced by a high fat diet. Prev Nutr Food Sci. 2019;24(2):114. https://doi.org/10.3746/pnf.2019.24.2.114
Farajbakhsh A, Mazloomi SM, Mazidi M, Rezaie P, Akbarzadeh M, Ahmad SP, et al. Sesame oil and vitamin E co-administration may improve cardiometabolic risk factors in patients with metabolic syndrome: a randomized clinical trial. Eur J Clin Nutr. 2019;73(10):1403-11. https://doi.org/10.1038/s41430-019-0438-5
Jacklin A, Ratledge C, Welham K, Bilko D, Newton CJ. The sesame seed oil constituent, sesamol, induces growth arrest and apoptosis of cancer and cardiovascular cells. Ann N Y Acad Sci. 2003;1010(1):374-80. https://doi.org/10.1196/annals.1299.068
Animasaun DA, Oyedeji S, Musa LB, Adedibu PA, Adekola OF. Performance and genetic diversity of some sesame (Sesamum indicum L.) accessions based on morpho-agronomic traits and seed proximate composition in Kwara State of Nigeria. Acta Agric Slov. 2022;118(1):1-15. https://doi.org/10.14720/aas.2022.118.1.1972
Mukhthambica K, Bisen R, Ramya KT. Genetic diversity analysis in sesame (Sesamum indicum L.). Electronic Journal of Plant Breeding. 2023;14(1):303-13. https://doi.org/10.37992/2023.1401.039
Mohanty TA, Singh UK, Singh SK, Singh D, Kushwaha N. Assessment of genetic diversity in sesame (Sesamum indicum L.) based on agro-morphological traits. Current Journal of Applied Science and Technology. 2020;39(25):100-07. https://doi.org/10.9734/cjast/2020/v39i2530890
Laurentin HE, Karlovsky P. Genetic relationship and diversity in a sesame (Sesamum indicum L.) germplasm collection using amplified fragment length polymorphism (AFLP). BMC Genet. 2006;7:1-10. https://doi.org/10.1186/1471-2156-7-10
Abdellatef E, Sirelkhatem R, Ahmed MMM, Radwan KH, Khalafalla MM. Study of genetic diversity in Sudanese sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Afr J Biotechnol. 2008;7(24).
Nyongesa BO, Were BA, Gudu S, Dangasuk OG, Onkware AO. Genetic diversity in cultivated sesame (Sesamum indicum L.) and related wild species in East Africa. J Crop Sci Biotechnol. 2013;16:9-15. https://doi.org/10.1007/s12892-012-0114-y
de Sousa Araújo E, Arriel NHC, dos Santos RC, de Lima LM. Assessment of genetic variability in sesame accessions using SSR markers and morpho-agronomic traits. Aust J Crop Sci. 2019;13(1):45-54. https://doi.org/10.21475/ajcs.19.13.01.p1157
Teklu DH, Shimelis H, Tesfaye A, Shayanowako AIT. Analyses of genetic diversity and population structure of sesame (Sesamum indicum L.) germplasm collections through seed oil and fatty acid compositions and SSR markers. Journal of Food Composition and Analysis. 2022;110:104545. https://doi.org/10.1016/j.jfca.2022.104545
Basak M, Uzun B, Yol E. Genetic diversity and population structure of the Mediterranean sesame core collection with use of genome-wide SNPs developed by double digest RAD-Seq. PLoS One. 2019;14(10):e0223757. https://doi.org/10.1371/journal.pone.0223757
Tesfaye T, Tesfaye K, Keneni G, Ziyomo C, Alemu T. Genetic diversity of Sesame (Sesamum indicum L.) using high throughput diversity array technology. J Crop Sci Biotechnol. 2022;25(4):359-71. https://doi.org/10.1007/s12892-021-00137-x
Tripathy SK, Mishra DR, Dash GB, Senapati N, Mishra D, Nayak PK, et al. Combining ability analysis in sesame (Sesamum indicum L.). Int J Biosci. 2016;9(3):114-21. https://doi.org/10.12692/ijb/9.3.114-121
Gadhiya CJ, Patil SS, Kalaria RK, Parsaniya TA, Baria KG, Bhoya BJ, et al. Genetic studies on yield and yield attributing traits in sesame (Sesamum indicum L.). Electronic Journal of Plant Breeding. 2023;14(1):209-16. https://doi.org/10.37992/2023.1401.030
Saleem H, Sadaqat HA, Razzaq H, Chattha AA, Khan SH. Heterotic grouping with combining ability and gene action in Sesamum indicum L. using line× tester analysis. SABRAO Journal of Breeding and Genetics. 2023;55(2):367-78.https://doi.org/10.54910/sabrao2023.55.2.9
Azeez MA, Morakinyo JA. Combining ability studies and potential for oil quality improvement in sesame (Sesamum indicum L.). Journal of Agro Alimentary Processes and Technologies. 2014;20(1):1-8.
Nehra A, Gothwal DK, Yadav R, Jakhar ML, Jeeterwal RC, Kunwar R. Gene action for morphobiochemical traits of sesame (Sesamum indicum L.) in different environments. Indian Journal of Agricultural Sciences. 2023;93(3):263-68. https://doi.org/10.56093/ijas.v93i3.133336
Parameshwarappa SG, Palakshappa MG, Banu H. Determination of combining ability and gene effects for yield and yield attributes in Sesame (Sesamum indicum L.). Journal of Eco-friendly Agriculture. 2023;18(1):61-67. https://doi.org/10.5958/2582-2683.2023.00011.4
Kabi M, Baisakh B, Dash M, Tripathy SK, Sahu S, Panigrahi KK. Gene action and combining ability study in sesame. Plant Archives (09725210). 2021;21(1). https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.248
Kumar R, Patel JA, Rahevar PM, Patel RM. Deciphering combining ability and gene action study in elite genotypes of sesame (Sesamum indicum L.) using diallel mating design. Emergent Life Sciences Research. 2021;7:1-6. https://doi.org/10.31783/elsr.2021.710106
Prakash SH, Dasgupta T. General and specific combining ability in sesame (Sesamum indicum L.) for seed yield and related traits. Current Journal of Applied Science and Technology. 2021;40(12):81-87. https://doi.org/10.9734/cjast/2021/v40i1231383
Ghule VB, Misal AM, Ghodake MK, Shinde DD. Studies on general and specific combining ability in sesame (Sesamum indicum L.). The Pharma Innov J. 2022;11(1):514-17.
Chaudhari MH, Patel SR, Chaudhari VB. yield and contributing characters in sesame (Sesamum indicium L.). International Journal of Current Research. 2017;9(09):57721-727.
Hassan MS, Sedeck FS. Combining ability and heterosis estimates in sesame. World Appl Sci J. 2015;33(5):690-98.
Miao H, Zhang H, Kole C. The sesame genome. Springer; 2021. https://doi.org/10.1007/978-3-319-98098-0
Zhou R, Dossa K, Li D, Yu J, You J, Wei X, et al. Genome-wide association studies of 39 seed yield-related traits in sesame (Sesamum indicum L.). Int J Mol Sci. 2018;19(9):2794. https://doi.org/10.3390/ijms19092794
Downloads
Published
Versions
- 23-10-2024 (2)
- 21-10-2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 S R V N Ganesh Babu, R Saraswathi, A Mahalingam, M Paramasivan, N Manivannan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).