Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Trillium govanianum (Nagchattri): A promising rare and commercially important medicinal herb from higher altitudes of the Himalayas

DOI
https://doi.org/10.14719/pst.4325
Submitted
11 July 2024
Published
12-01-2025

Abstract

Secondary metabolites and bioactive compounds derived from naturally occurring sources have been the prime ingredients in modern health care as well as ancient medicine systems like Ayurveda, Yunani, and traditional folk medicines. A large number of plant species and their extracts are utilized to cure several human ailments. Trillium govanianum, belonging to the genus Trillium (family: Melanthiaceae alt. Trilliaceae), is a traditional medicinal herb of the Himalayan region used to cure joint pains, wounds, boils, dysentery, inflammation, menstrual and sexual disorders. T. govanianum root extracts have analgesic, anti-inflammatory, cancer-preventing, anti-fungal, and wound-healing activities. The main bioactive compounds present in this species are steroidal saponins. Indiscriminate and commercial harvesting in an unsustainable manner, along with various other biotic pressures, have created a synergistically severe menace toward the subsistence of T. govanianum in its natural habitat. Population assessment, conservative and in vitro proliferation methods pertaining to mass multiplication and advancement in ex–situ and in–situ environments are required for sustainable use of this species. In lieu of the significance of this herb, the present study aims at the exploration of phytochemical, ethnomedicinal, ecological, pharmacological, and conservational practices of T. govanianum for a better understanding of medicinal activities and sustainable use of this plant. This review summarised the potential resources of T. govaninanum in terms of biologically active compounds and their dependence on the local population. It focuses on the medicinal utility of T. govaninanum in different diseases and ailments.

References

  1. (1) Vedras JC, Li JWH. Drug discovery and natural products: End of an era or an endless frontier. Science. 2009;80:161–165. DOI: 10.1126/science.1168243
  2. (2) Madhumitha G, Saral AM. Free radical scavenging assay of Thevetia neriifolia leaf extracts. Asian J. Chem. 2009;21:2468–2470. https://www.researchgate.net/publication/288621533
  3. (3) Rout SP, Choudary KA, Kar DM, Das L, Jain A. Plants in traditional medicinal system-Future source on new drugs. Int. J. Pharm. Pharm. Sci. 2009;1:1–23. researchgate.net/publication/26626847
  4. (4) Jahan N, Afaque SH, Khan NA, Ahmad G, Ansari AA. Physico-chemical studies of the Gum Acacia. Nat. Prod. Radiance. 2008;7:335–337. https://www.researchgate.net/publication/290171412_
  5. (5) Rathore S, Walia S, Devi R, Kumar R. Review on Trillium govanianum Wall. ex D. Don: a threatened medicinal plant from the Himalayas, Journal of Herbal Medicine 2020; https://doi.org/10.1016/j.hermed.2020.100395
  6. (6) Singh P, Dash SS. Plant Discoveries 2013 – New Genera, Species and New Records, Botanical Survey of India, Kolkata. 2014. https://www.researchgate.net/publication/263125934
  7. (7) Singh B, Chettri A, Adhikari D, Barik SK. Taxonoic history, rediscovery, and assessment of threat status of Streblus ilicifolius (Moraceae) from India. J. Bot. Res. Inst. 2012;6:611–614. http://www.jstor.org/stable/41972449
  8. (8) Sharma A, Bhardwaj G, Bhardwaj P, Cannoo DS. Medicinal Plants of the TransHimalayas: India. Natural Products of Silk Road Plants, CRC Press. 2020;73–103. Doi: 10.1201/9780429061547-6
  9. (9) Dhar U, Rawal RS, Upreti J. Setting priorities for conservation of medicinal plants - A case study in the Indian Himalaya, Biol. Conserv. 2000; 95:57–65. https://doi.org/10.1016/S0006-3207(00)00010-0
  10. (10) Samant SS, Dhar U, Diversity. endemism and economic potential of wild edible plants of Indian Himalaya, Int. J. Sustain. Dev. World Ecol. 1997;4:179–191. https://doi.org/10.1080/13504509709469953
  11. (11) Ramawat KG, Goyal S, The Indian herbal drugs scenario in global perspectives. In: Ramawat, KG, Merillon, JM (Eds.). Bioactive Molecules and Medicinal Plants. Springer, Berlin Heidelberg New York. 2008; 323. DOI:10.1007/978-3-540-74603-4_18
  12. (12) Kala CP, Dhyani PP, Sajwan BS. Developing the medicinal plants sector in northern India: challenges and opportunities. J. Ethnobiol. Ethnomed. 2006;2:1-15. https://doi.org/10.1186/1746-4269-2-32
  13. (13) Goraya GS, Ved, DK. Medicinal plants in India: An assessment of their demand and supply. National Medicinal Plants Board. Ministry of AYUSH, Government of India, New Delhi and Indian Council of Forestry Research and Education. 2018;Dehradun.Uttarakhand, India
  14. (14) Samant SS, Pant S, Rana MS, Lal M, Singh A, Sharma A, Bhandari S. Medicinal plants in Himachal Pradesh, North Western Himalaya. Int. J. Biodiv. Sci. Manag. 2007;3:234– 251. DOI:10.1080/17451590709618177
  15. (15) Vidyarthi S, Samant SS, Sharma P. Dwindling status of Trillium govanianum Wall. ex D. Don—a case study from Kullu district of Himachal Pradesh, India. J. Med. Plant. Res. 2013; 7:392–397. DOI:10.5897/JMPR12.622
  16. (16) Chauhan KH. Bisht KA, Bhatt DI, Bhatt A, Gallacher D, Santo A, Population change of Trillium govanianum (Melanthiaceae) amid altered indigenous harvesting practices in the Indian Himalayas. J. Ethnopharmacol. 2017;213:302–-310. DOI: 10.1016/j.jep.2017.11.003
  17. (17) Muhammad KS. Diversity of vascular plants, ethnobotany and conservation status of Ushairy Valley, District Dir, Upper NWFP Northern Pakistan. PhD Thesis, Quaid-i-Azam University, Islamabad. 2011;PhD Thesis. http://localhost:80/xmlui/handle/123456789/10303
  18. (18) Uniyal SK, Datta A. Nag chhatri- A Plant in Peril. J. Biodivers. Manage. Forestry. 2012;1:1– 2. doi:10.4172/2327-4417.1000101
  19. (19) Ved DK, Goraya GS. Demand and supply of medicinal plants in India. in: Singh, B., Singh, M. P, (Eds.)., 2008;Dehradun, India. https://nmpb.nic.in/sites/default/files/publications/Contents.pdf
  20. (20) Ved DK, Kinhal GA, Ravikumar K, Vijaya SR, Haridasan K. Conservation assessment and management prioritization (CAMP) for the wild medicinal plants of NorthEast India. Med. Plant. Cons. 2005;11:40–44. https://www.researchgate.net/publication/233994293
  21. (21) Fukuda I. The Origin and Evolution in Trillium-. 1. The Origin of the Himalayan Trillium govanianum. Cytologia. 2001;66:105–111. https://www.researchgate.net/publication/347193127
  22. (22) Ohara M, Life history evolution in the genus Trillium. Plant Species Biology, 1989;4:1-28. https://doi.org/10.1111/j.1442-1984.1989.tb00044.x(23) Chauhan HK, Bisht AK, Bhatt ID, Bhatt A, Gallacher D, Santo A. Population change of Trillium govanianum (Melanthiaceae) amid altered indigenous harvesting practices in the Indian Himalayas. J Ethnopharmacol. 2018;213:302–310. DOI: 10.1016/j.jep.2017.11.003
  23. (24)Chauhan HK, Bisht AK, Bhatt ID, Bhatt A, Gallacher D. Trillium—toward sustainable utilization of a biologically distinct genus valued for traditional medicine. Bot Rev. 2019;1–21. DOI 10.1007/s12229-019-09211-0
  24. (25) Rahman US, Ismail M, Khurram M, Haq.Inam U. Pharmacognostic and ethnomedicinal studies on Trillium govanianum. Pak. J. Bot. 2015a;47:187–192. https://www.researchgate.net/publication/289250686
  25. (26) Chauhan HK, Indra D, Bhatt and Anil K. Bisht Biology, Uses and Conservation of Trillium govanianum Springer Nature Switzerland AG. N. Roy et al. (eds.), Socio-economic and Eco-biological Dimensions in Resource use and Conservation, Environmental Science and Engineering. 2020;https://doi.org/10.1007/978-3-030-32463-6_11
  26. (27) Sagar A, Thakur L, Thakur JS. Studies on endophytes and antibacterial activity of Trillium govanianum Wall. ex D. Don. Int. J. Bot. Studies. 2017;21:63–67. https://www.botanyjournals.com/assets/archives/2017/vol2issue1/2-1-12-200.pdf
  27. (28) Roskov Y, Abucay L, Orrell T, Nicolson D, Bailly N, Kirk PM, Bourgoin T, DeWalt RE, Decock W, DeWever A, van Nieukerken E, Zarucchi J, Penev L. (eds) Species 2000 & ITIS catalogue of life. 2018;Digital resource at www.catalogueoflife.org/col. Species 2000: Naturalis, Leiden, the Netherlands
  28. (29) Ohara M, Kawano S. Life-history monographs of Japanese plants. 2: Trillium camschatcense Ker-Gawl. (Trilliaceae). Plant Species Biol 20 (1) (2005) 75–82. https://doi.org/10.1111/j.1442-1984.2005.00126.x
  29. (30) Karthikeyan S, Jain SK, Nayar MP, Sanjappa M, Florae Indicae Enumeratio: Monocotyledonae. Botanical Survey of India, Calcutta. 1989;1:435.
  30. (31) Hara H, Stearn WT, Williams HJ. An enumeration of the flowering plants of Nepal. Trustees of British Museum, London. 1978;1:1–154.
  31. (32) Rechinger KH, Browicz K, Persson K, Wendelbo P. Flora Iranica. Naturhistorisches Museums. Wien. 1990;165:1–194. https://www.researchgate.net/publication/280255290
  32. (33) Zhengyi W, Raven PH. Flora of China. Missouri Botanical Garden Press. St. Louis. 2000; 241–431.
  33. (34) Dad J.M. Distribution, species diversity and composition of plant communities in relation to various affecting factors in an alpine grassland at Bandipora. Kashmir. Pak. J. Bot. 2016;48:551–-560. https://www.pakbs.org/pjbot/PDFs/48(2)/17.pdf
  34. (35) Kumar S, Sharma S. Species diversity, uses and distribution of medicinal plants along an altitudinal gradient in Paddar valley in Northwestern Himalaya. International J. Med. Aromat. Pl. 2013;3:343–-351. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20133354960
  35. (36) Christopher K, Gina G, Lucas W. Partnership for land use science. (Forest-Plus) Quarterly Report. 2014;4. https://moef.gov.in/uploads/2019/06/Quarter-1-Year-2013-14.pdf
  36. (37) Sharma A, Parashar B. A review on Trillium govanianum. World J. Pharmaceut. Res. 2017;6:500–511. DOI:10.20959/wjpr20172-7824
  37. (38) Rani S, Rana J, Rana P. Ethnomedicinal plants of Chamba district, Himachal Pradesh, India. J. Med. Plant. Res. 2013;73:147–3157. DOI:10.5897/JMPR2013.5249
  38. (39) Sharma OR, Arya, D, Goel S, VyasK, Shinde P. Trillium govanianum Wall. Ex D. Don (Nagchatri): An important ethno medicinal plant of Himalayan region (Himachal Pradesh). J. Med. Plants. Stud. 2018;6:11–13. https://www.plantsjournal.com/archives/2018/vol6issue1/PartA/5-6-28-266.pdf
  39. (40) Sharma P, Samant S. Diversity, distribution and indigenous uses of medicinal plants in Parbati valley of Kullu district in Himachal Pradesh, Northwestern Himalaya. Asian. J. Adv. Basic. Sci. 2014;2:77–98. https://www.researchgate.net/publication/288811888
  40. (41) Chawla A, Parkash O, Sharma V, Rajkumar S, Lal B, Gopichand Singh RD, Thukral AK. Vascular plants, Kinnaur, Himachal Pradesh, India. Check List. 2012;8:321–348. doi: 10.15560/8.3.321
  41. (42) Devi U, Sharma P, Rana JC, Sharma A. Phytodiversity assessment in Sangla valley, Northwest Himalaya, India. Check List. 2014;10:740–760. doi: 10.15560/10.4.740
  42. (43) Jagdish S, Joginder S, Tewari VP. Screening and evaluation of superior chemotypes of Podophyllum hexandrum Royle from different geographical locations of north-west Himalayas. J. Plant. Chem. and Ecophysiol. 2018; 3:1021-1028. https://www.researchgate.net/publication/323771814
  43. (44) Ismail M, Shah MR, Adhikari A, Anis I, Ahmad MS, Khurram M, Govanoside A, a new steroidal saponin from rhizomes of Trillium govanianum. Steroids. 2015;104:270–275. DOI: 10.1016/j.steroids.2015.10.013
  44. (45) Pant S, Samant S. Ethnobotanical observations in the Mornaula reserve forest of Komoun, West Himalaya, India. Ethnobot. Leafl. 14 (2010) 193–217. https://www.researchgate.net/publication/48303598
  45. (46) Sharma KD. Review on traditional medicinal plant: Trillium govanianum (Nag chhatri). J. Med. Plants. Stud. 2017;5:120–122. https://www.plantsjournal.com/archives/?year=2017&vol=5&issue=2&part=B&ArticleId=557
  46. (47) Shah A, Bharati, KA, Ahmad J, Sharma MP, New ethnomedicinal claims from Gujjar and Bakerwals tribes of Rajouri and Poonch districts of Jammu and Kashmir, India. J. Ethnopharmacol. 2015;166:119–1-28. DOI: 10.1016/j.jep.2015.01.056
  47. (48) Rahman US, Adhikari A, Ismail M, Raza SM, Khurram M, Shahid M. Beneficial effects of Trillium govanianum rhizomes in pain and inflammation. Molecules. 2016;8:20–21. doi: 10.3390/molecules21081095
  48. (49) Ono M, HamadaT, Nohara T. An 18-norspirostanol glycoside from Trillium tschonoskii. Phytochem. 1986;25:544–545. DOI: 10.1016/S0031-9422(00)85524-7
  49. (50) Yokosuka A, Mimaki Y. Steroidal glycosides from the underground parts of Trillium erectum and their cytotoxic activity. Phytochem. 2008;69:2724–2730.doi: 10.1016/j.phytochem.2008.08.004.
  50. (51) Chauhan NS. Medicinal and aromatic plants of Himachal Pradesh. Indus Publishing Company. 1999; New Delhi, India. https://www.scirp.org/reference/referencespapers?referenceid=454815
  51. (52) Huang W, Zou K. Cytotoxicity of a plant steroidal saponin on human lung cancer cells. Asian. Pac. J. Cancer Prev. 2011;125:13-17.PMID: 21545222
  52. (53) Rahman US, Ismail M, Khurram M, Ullah I, Rabbi F, Iriti M. Bioactive steroids and saponins of the genus Trillium. Molecules. 2017a;22:1-15. PMID: 29206216
  53. (54) Yan T, Wang A, Hu G, Jia J. Chemical constituents of Trillium tschonoskii Maxim. Nat Prod Res. 2020: https://doi.org/10.1080/14786419.2019.1700245.
  54. (55) Singh PP, Suresh PS, Bora PS, Bhatt V, Sharma U. Govanoside B, A new steroidal saponin from rhizomes of Trillium govanianum. Nat Prod Res. 2020; https://doi.org/10.1080/14786419.2020.17 61360
  55. (56) Rahman US, Ismail M, Shah RM, Adhikari A, Anis I, Ahmad MS. Govanoside A, a new steroidal saponin from rhizomes of Trillium govanianum. Steroids. 2015c;104:270–275. DOI: 10.1016/j.steroids.2015.10.013
  56. (57) Singh P, Singh G, Bhandawat A, Singh G, Parmar R, Seth R, Sharma RK. Spatial transcriptome analysis provides insights of key gene(s) involved in steroidal saponin biosynthesis in medicinally important herb Trillium govanianum. Sci. Rep. 2017;7:45295- 45307. DOI: 10.1038/srep45295
  57. (58) Rahman US, Ismail M, Shah MR, Iriti M, Shahid M. GC/MS analysis, free radical scavenging, anticancer and ?- glucuronidase inhibitory activities of Trillium govanianum rhizome. Bangladesh. J. Pharmacol. 2015b;105:77–83. DOI:10.3329/bjp.v10i3.23446
  58. (59) Rahman US, Adhikari A, Ismail M, Shah RM, Khurram M, Anis I, Ali F. A New trihydroxylated fatty acid and phytoecdysteroids from rhizomes of Trillium govanianum. Rec. Nat. Prod. 2017b;11:323–327. https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/7740496
  59. (60) Khan MK, Nahar L, Abdul M, Ul-Haq MI, Arfan M, Khan GrA, Hussain I, Sarker SD. Cytotoxicity, In vitro anti- Leishmanial and fingerprint HPLC- photodiode array analysis of the roots of Trillium govanianum., Nat. Prod. Res. 2017;51-910. https://www.academia.edu/48482086
  60. (61) Raju J, Rao CV, Diosgenin. A steroid saponin constituent of yams and fenugreek: Emerging evidence for applications in medicine, in: Prof. Iraj, R., (Ed.), Bioactive compounds in phytomedicine. InTech Publisher, Shanghai, China. 2012;125-142.(Ed.). ISBN: 978-953-307-805-2. DOI: 10.5772/26700
  61. (62) Sharma S, Sharma A, Mehta V, Chauhan RS, Malairaman U, Sood H. Efficient hydroalcoholic extraction for highest diosgenin content from Trillium govanianum (nag chhatri) and it’s in vitro anticancerous activity. Asian J. Pharmaceut. Clinical Res. 2016;9:386– 392. https://www.researchgate.net/publication/305538354
  62. (63) Khan KM, Nahar L, Al-Groshi, A, Zavoianu AG, Evans A, Dempster NM, Wansi JD, Ismail F, Mannan A, Sarker SD. Cytotoxicity of the roots of Trillium govanianum against breast (MCF7), liver (HepG2), lung (A549) and urinary bladder (EJ138) carcinoma cells. Phytother. Res. 2016;30:1716–1720. DOI: 10.1002/ptr.5672
  63. (64) Lui MJ, Wang Z, Ju Y, Wong RN, Wu QY. Diosgenin induces cell cycle arrest and apoptosis in human leukemia K562 cells with the disruption of Ca2+ homeostasis. Cancer Chemother. Pharmacol. 2005;55:79–-90. DOI: 10.1007/s00280-004-0849-3
  64. (65) Lone PA, Bhardwaj AK and Bahar FA. Traditional knowledge on healing properties of plants in bandipora district of Jammu and Kashmir, India. Int. J. Recent Sci. Res. 2013;4(11):1755-1765. https://www.researchgate.net/publication/285739126
  65. (66) Mahmood A, Mahmood A, Malik RN. Indigenous knowledge of medicinal plants from Leepa valley, Azad Jammu and Kashmir, Pakistan. J. Ethnopharmacol. 2012;143:338–346. DOI: 10.1016/j.jep.2012.06.046
  66. (67) Qiong MX, Yan-Li L, Xiao-Ran L, Xia Li, Shi-Lin Y. Three new fatty acids from the roots of Boehmeria nivea and their antifungal activities. Nat. Prod. Res. 2011;25:640–647. DOI: 10.1080/14786419.2010.488230
  67. (68) Melo PS, De Azevedo MBM, Zullo MAT, Fabrin-Neto JB, Haun M. Cytotoxicity of the phytosterol diosgenin and its derivatives in rat cultured hepatocytes and V79 fibroblasts. Hum. Exp. Toxicol. 2004;23:487–93. DOI: 10.1191/0960327104ht474oa
  68. (69) Wabwoba B, Anjili C, Ngeiywa M, Ngure P, Kigondu E, Ingonga J, Makwali J. Experimental chemotherapy with Allium sativum (Liliaceae) methanolic extract in rodents infected with Leishmania major and Leishmania donovani. J. Vect. Borne. Dis. (2010;47:160– 167. PMID: 20834086
  69. (70) Khan I, Yasinzai MM, Mehmood Z, Ilahi I, Khan J, Khalil A, Saqib MS, Rahman WU. Comparative study of green fruit extract of Melia azedarach Linn. with its ripe fruit extract for antileishmanial, larvicidal, antioxidant and cytotoxic activity. Am. J. Phytomed. Clin. Therap. 2014;2:442–452. https://www.researchgate.net/publication/261214905
  70. (71) Tasdemir D, Kaiser M, Brun R, Yardley V, Schmidt TJ, Tosun F. Ruedi P. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob. Agents. Chemother. 2006;50:1352–1364. DOI: 10.1128/AAC.50.4.1352-1364.2006
  71. (72) Wang JR, Zhou H, Jiang ZH, Wong YF, Liu L. In vivo anti-inflammatory and analgesic activities of a purified saponin fraction derived from the root of Ilex pubescens. Biol. Pharm. Bull. 2008;31:643–650. DOI: 10.1248/bpb.31.643
  72. (73) Fantone JC, Ward P. Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am. J. Pathol. 1982;107:395–418. PMID: 6282132
  73. (74) Agnihotri S, Wakode S, Agnihotri A. An overview on anti-inflammatory properties and chemo-profiles of plants used in traditional medicine. Indian J. Nat. Prod. Resour. 2010;1:150–167. https://www.researchgate.net/publication/265893260
  74. (75) Punitha D, Udhayasankar MR, Danya U, Arumugasamy K., Shalimol A. Anti-inflammatory Activity of Characterized Compound Diosgenin Isolated from Tinospora malabarica Miers in Ann. (Menispermaceae) in Animal Model. Int. J. Herb. Med. 2013;1:76–78. https://www.florajournal.com/archives/2013/vol1issue3/PartA/26.1.pdf
  75. (76) Ono M, Sugita F, Shigematsu S, Takamura C, Yoshimitsu H, Miyashita H, Lkeda T, Nohara T. Three new steroid glycosides from the underground parts of Trillium kamtschaticum, Chem. Pharm. Bull. 2007;55:1093–1096. https://doi.org/10.1248/cpb.55.1093
  76. (77) Samant SS, Dhar U, Palni LMS. Medicinal plants of Indian Himalaya: Diversity distribution potential values. Gyanodaya Prakashan, Nainital, India. Gyanodaya Prakashan. 1998;163. https://lib.icimod.org/record/4884
  77. (78) Ali A, Badshah L, Hussain F, Shinwari ZK. Floristic composition and ecological characteristics of plants of Chail Valley, district Swat, Pakistan. Pak. J. Bot. 2016; 48:1013- 1026. https://www.researchgate.net/publication/303844112
  78. (79) Chauhan HK, Bisht AK, Bhatt ID, Bhatt A, Protocol for vegetative propagation of Trillium govanianum Wall ex D. Don, Journal of Applied Research on Medicinal and Aromatic Plants. 2019; https://doi.org/10.1016/j.jarmap.2019.100233.
  79. (80) Goraya GS, Ved DK, Ravikumar K, Rawat RS. Domestic trade of herbal raw drugs. In: Goraya GS, Ved DK (eds) Medicinal plants in India: an assessment of their demand and supply. National Medicinal Plants Board, Ministry of AYUSH, Government of India, New Delhi and Indian Council of Forestry Research & Education, 2017;Dehradun, India http://www.rcfceast.org/wp-content/uploads/2019
  80. (81) Bhatt A, Joshi SK, Gairola S, Dactylorhiza hatagirea (D. Don) Soo—a west Himalayan orchid in peril. Curr Sci. 2005;89(4):610–612. https://www.jstor.org/stable/24111155
  81. (82) Sage TL, Griffin SR, Pontieri V, Drobac P, Cole WW, Barrett SC, Stigmatic selfincompatibility and mating patterns in Trillium grandiflorum and Trillium erectum (Melanthiaceae). Ann Bot. 2001;88(5):829–841. DOI:10.1006/anbo.2001.1517
  82. (83) Jules ES, Rathcke BJ, Mechanisms of reduced Trillium recruitment along edges of old-growth forest fragments. Conserv Biol. 1999;13(4):784–793.DOI:10.1046/j.1523-1739.1999.97435.x
  83. (84) Nivot, N, Olivier A, Lapointe L. Vegetative propagation of five northern forest understory plant species from either rhizome or stem sections. HortScience. 2008;43:1531-1537. DOI:10.21273/HORTSCI.43.5.1531
  84. (85) Routhier MC, Lapointe L. Impact of tree leaf phenology on growth rates and reproduction in the spring flowering species Trillium erectum (Liliaceae). Am J Bot.2002;89(3):500–505. DOI: 10.3732/ajb.89.3.500
  85. (86) Malhotra N, Sood H, Chauhan RS. Transcriptome-wide mining suggests conglomerate of genes associated with tuberous root growth and development in Aconitum heterophyllum Wall. 3. Biotech. 2016;6:152. https://doi.org/10.1007/s13205-016-0466-y
  86. (87) Kumar V, Malhotra N, Pal T, Chauhan RS. Molecular dissection of pathway components unravel atisine biosynthesis in a non-toxic Aconitum species, A. heterophyllum Wall. 3. Biotech 2016;6;106. doi: 10.1007/s13205-016-0417-7
  87. (88) Mehrafarin A, Qaderi A, Rezazadeh Sh, Naghdi BH, Noormohammadi Gh, Zand E. Bioengineering of important secondary metabolites and metabolic pathways in fenugreek (Trigonella foenum-graecum L.). J Med Plants. 2010;9:1–18.DOI: 20.1001.1.2717204.2010.9.35.1.1
  88. (89) Vaidya K, Ghosh A, Kumar V, Chaudhary S, Srivastava N, Katudia K, Tiwari T, Chika SK. De novo transcriptome sequencing in Trigonella foenum graecum to identify genes involved in the biosynthesis of diosgenin. Plant Genome. 2013;6:1–11. https://doi.org/10.3835/plantgenome2012.08.0021
  89. (90) Malhotra N, Kumar V, Sood H, Singh TR, Chauhan RS. Multiple genes of mevalonate and non-mevalonate pathways contribute to high aconites content in an endangered medicinal herb, Aconitum heterophyllum Wall. Phytochemistry. 2014;108:26–34.DOI: 10.1016/j.phytochem.2014.08.025
  90. (91) Kumar V, Shitiz K, Chauhan RS, Sood H. Tandon C Tracking dynamics of enzyme activities and their gene expression in Picrorhiza kurroa with respect to picroside accumulation. J Plant Biochem Biotechnol. 2015;http://doi.org/10.1007/s13562-015-0317-7
  91. (92) Liagre B, Vergne-Salle P, Corbiere C, Charissoux JL, Beneytout JL. Diosgenin, a plant steroid, induces apoptosis in human rheumatoid arthritis synoviocytes with cyclooxygenase-2 overexpression. Arthritis Res Ther. 2004;6:373–383.DOI: 10.1186/ar1199
  92. (93) Sato K, Fujita S, Iemitsu M, Acute administration of diosgenin or Dioscorea improves hyperglycemia with increases muscular steroidogenesis in STZ-induced type 1 diabetic rats. J Steroid Biochem. 2014;143:152–159. DOI: 10.1016/j.jsbmb.2014.02.020
  93. (94) Diarra ST, He J, Wang J, Li J Ethylene treatment improves diosgenin accumulation in in vitro cultures of Dioscorea zingiberensis via up-regulation of CAS and HMGR gene expression. Electron J Biotechnol. 2013;16(5).http://dx.doi.org/10.2225/vol16-issue5-fulltext-9
  94. (95) Gulzar, N., Andleeb, S., Raza, A., Ali, S., Liaqat, I., Raja, S.A., Ali, N.M., Khan, R., Awan, U.A., ‘Acute toxicity, anti-diabetic, and anti-cancerous potential of Trillium govanianum-conjugated silver nanoparticles in Balb/c mice’. Curr Pharm Biotechnol 2023. doi: 10.2174/1389201024666230818124025
  95. (96) Patil SS, Singh PP, Sharma A, Padwad YS, Sharma U. Steroidal saponins of Trillium govanianum: Quality control, pharmacokinetic analysis, and anti-inflammatory activity’, Biocatalysis and Agricultural Biotechnology. 2021;35:1878-8181: http://doi.org/10.1016/j.bcab.2021.102071
  96. (97) Rashid K, Rashid S, Ganie AH, Nawchoo IA, Tantry MA, Khuroo AA. Trillium govanianum – A Promising Endemic Medicinal Herb of the Himalaya. In: Arunachalam, Yang K, Puthanpura X, Sasidharan S. (eds) Bioprospecting of Tropical Medicinal Plants. Springer. 2023; Cham. https://doi.org/10.1007/978-3-031-28780-0_14
  97. (98) Caldwell B, Green G, Baccali K. Partnership for land use science (Forest-Plus) program. Training manual for sustainable management of non-timber forest products in Himachal Pradesh landscape. 2016;31–32. https://www.climatelinks.org/sites/default/files/asset/document/2016
  98. (99) Kumar, D., Sharma, A., Joshi, R., Nadda, G., Kumar, D. Comprehensive search of the primary and secondary metabolites and radical scavenging potential of Trillium govanianum Wall. ex D. Don, Chem. Biodiversity. 2021; http://doi.org/10.1002/cbdv.202100300
  99. (100) Hayes PY, Lehmann R, Penman K, Kitching W, De Voss JJ. Steroidal saponins from the roots of Trillium erectum (Beth root). Phytochemistry. 2009;70:105–113. DOI: 10.1016/j.phytochem.2008.10.019

Downloads

Download data is not yet available.