Trillium govanianum (Nagchattri): A promising rare and commercially important medicinal herb from higher altitudes of the Himalayas
DOI:
https://doi.org/10.14719/pst.4325Keywords:
ethnomedicinal herb, Nagchhatri, pharmacology, phytochemistry, secondary metabolites, Trillium govaninanumAbstract
Secondary metabolites and bioactive compounds derived from naturally occurring sources have been the prime ingredients in modern health care as well as ancient medicine systems like Ayurveda, Yunani, and traditional folk medicines. A large number of plant species and their extracts are utilized to cure several human ailments. Trillium govanianum, belonging to the genus Trillium (family: Melanthiaceae alt. Trilliaceae), is a traditional medicinal herb of the Himalayan region used to cure joint pains, wounds, boils, dysentery, inflammation, menstrual and sexual disorders. T. govanianum root extracts have analgesic, anti-inflammatory, cancer-preventing, anti-fungal, and wound-healing activities. The main bioactive compounds present in this species are steroidal saponins. Indiscriminate and commercial harvesting in an unsustainable manner, along with various other biotic pressures, have created a synergistically severe menace toward the subsistence of T. govanianum in its natural habitat. Population assessment, conservative and in vitro proliferation methods pertaining to mass multiplication and advancement in ex–situ and in–situ environments are required for sustainable use of this species. In lieu of the significance of this herb, the present study aims at the exploration of phytochemical, ethnomedicinal, ecological, pharmacological, and conservational practices of T. govanianum for a better understanding of medicinal activities and sustainable use of this plant. This review summarised the potential resources of T. govaninanum in terms of biologically active compounds and their dependence on the local population. It focuses on the medicinal utility of T. govaninanum in different diseases and ailments.
Downloads
References
(1) Vedras JC, Li JWH. Drug discovery and natural products: End of an era or an endless frontier. Science. 2009;80:161–165. DOI: 10.1126/science.1168243
(2) Madhumitha G, Saral AM. Free radical scavenging assay of Thevetia neriifolia leaf extracts. Asian J. Chem. 2009;21:2468–2470. https://www.researchgate.net/publication/288621533
(3) Rout SP, Choudary KA, Kar DM, Das L, Jain A. Plants in traditional medicinal system-Future source on new drugs. Int. J. Pharm. Pharm. Sci. 2009;1:1–23. researchgate.net/publication/26626847
(4) Jahan N, Afaque SH, Khan NA, Ahmad G, Ansari AA. Physico-chemical studies of the Gum Acacia. Nat. Prod. Radiance. 2008;7:335–337. https://www.researchgate.net/publication/290171412_
(5) Rathore S, Walia S, Devi R, Kumar R. Review on Trillium govanianum Wall. ex D. Don: a threatened medicinal plant from the Himalayas, Journal of Herbal Medicine 2020; https://doi.org/10.1016/j.hermed.2020.100395
(6) Singh P, Dash SS. Plant Discoveries 2013 – New Genera, Species and New Records, Botanical Survey of India, Kolkata. 2014. https://www.researchgate.net/publication/263125934
(7) Singh B, Chettri A, Adhikari D, Barik SK. Taxonoic history, rediscovery, and assessment of threat status of Streblus ilicifolius (Moraceae) from India. J. Bot. Res. Inst. 2012;6:611–614. http://www.jstor.org/stable/41972449
(8) Sharma A, Bhardwaj G, Bhardwaj P, Cannoo DS. Medicinal Plants of the TransHimalayas: India. Natural Products of Silk Road Plants, CRC Press. 2020;73–103. Doi: 10.1201/9780429061547-6
(9) Dhar U, Rawal RS, Upreti J. Setting priorities for conservation of medicinal plants - A case study in the Indian Himalaya, Biol. Conserv. 2000; 95:57–65. https://doi.org/10.1016/S0006-3207(00)00010-0
(10) Samant SS, Dhar U, Diversity. endemism and economic potential of wild edible plants of Indian Himalaya, Int. J. Sustain. Dev. World Ecol. 1997;4:179–191. https://doi.org/10.1080/13504509709469953
(11) Ramawat KG, Goyal S, The Indian herbal drugs scenario in global perspectives. In: Ramawat, KG, Merillon, JM (Eds.). Bioactive Molecules and Medicinal Plants. Springer, Berlin Heidelberg New York. 2008; 323. DOI:10.1007/978-3-540-74603-4_18
(12) Kala CP, Dhyani PP, Sajwan BS. Developing the medicinal plants sector in northern India: challenges and opportunities. J. Ethnobiol. Ethnomed. 2006;2:1-15. https://doi.org/10.1186/1746-4269-2-32
(13) Goraya GS, Ved, DK. Medicinal plants in India: An assessment of their demand and supply. National Medicinal Plants Board. Ministry of AYUSH, Government of India, New Delhi and Indian Council of Forestry Research and Education. 2018;Dehradun.Uttarakhand, India
(14) Samant SS, Pant S, Rana MS, Lal M, Singh A, Sharma A, Bhandari S. Medicinal plants in Himachal Pradesh, North Western Himalaya. Int. J. Biodiv. Sci. Manag. 2007;3:234– 251. DOI:10.1080/17451590709618177
(15) Vidyarthi S, Samant SS, Sharma P. Dwindling status of Trillium govanianum Wall. ex D. Don—a case study from Kullu district of Himachal Pradesh, India. J. Med. Plant. Res. 2013; 7:392–397. DOI:10.5897/JMPR12.622
(16) Chauhan KH. Bisht KA, Bhatt DI, Bhatt A, Gallacher D, Santo A, Population change of Trillium govanianum (Melanthiaceae) amid altered indigenous harvesting practices in the Indian Himalayas. J. Ethnopharmacol. 2017;213:302–-310. DOI: 10.1016/j.jep.2017.11.003
(17) Muhammad KS. Diversity of vascular plants, ethnobotany and conservation status of Ushairy Valley, District Dir, Upper NWFP Northern Pakistan. PhD Thesis, Quaid-i-Azam University, Islamabad. 2011;PhD Thesis. http://localhost:80/xmlui/handle/123456789/10303
(18) Uniyal SK, Datta A. Nag chhatri- A Plant in Peril. J. Biodivers. Manage. Forestry. 2012;1:1– 2. doi:10.4172/2327-4417.1000101
(19) Ved DK, Goraya GS. Demand and supply of medicinal plants in India. in: Singh, B., Singh, M. P, (Eds.)., 2008;Dehradun, India. https://nmpb.nic.in/sites/default/files/publications/Contents.pdf
(20) Ved DK, Kinhal GA, Ravikumar K, Vijaya SR, Haridasan K. Conservation assessment and management prioritization (CAMP) for the wild medicinal plants of NorthEast India. Med. Plant. Cons. 2005;11:40–44. https://www.researchgate.net/publication/233994293
(21) Fukuda I. The Origin and Evolution in Trillium-. 1. The Origin of the Himalayan Trillium govanianum. Cytologia. 2001;66:105–111. https://www.researchgate.net/publication/347193127
(22) Ohara M, Life history evolution in the genus Trillium. Plant Species Biology, 1989;4:1-28. https://doi.org/10.1111/j.1442-1984.1989.tb00044.x(23) Chauhan HK, Bisht AK, Bhatt ID, Bhatt A, Gallacher D, Santo A. Population change of Trillium govanianum (Melanthiaceae) amid altered indigenous harvesting practices in the Indian Himalayas. J Ethnopharmacol. 2018;213:302–310. DOI: 10.1016/j.jep.2017.11.003
(24)Chauhan HK, Bisht AK, Bhatt ID, Bhatt A, Gallacher D. Trillium—toward sustainable utilization of a biologically distinct genus valued for traditional medicine. Bot Rev. 2019;1–21. DOI 10.1007/s12229-019-09211-0
(25) Rahman US, Ismail M, Khurram M, Haq.Inam U. Pharmacognostic and ethnomedicinal studies on Trillium govanianum. Pak. J. Bot. 2015a;47:187–192. https://www.researchgate.net/publication/289250686
(26) Chauhan HK, Indra D, Bhatt and Anil K. Bisht Biology, Uses and Conservation of Trillium govanianum Springer Nature Switzerland AG. N. Roy et al. (eds.), Socio-economic and Eco-biological Dimensions in Resource use and Conservation, Environmental Science and Engineering. 2020;https://doi.org/10.1007/978-3-030-32463-6_11
(27) Sagar A, Thakur L, Thakur JS. Studies on endophytes and antibacterial activity of Trillium govanianum Wall. ex D. Don. Int. J. Bot. Studies. 2017;21:63–67. https://www.botanyjournals.com/assets/archives/2017/vol2issue1/2-1-12-200.pdf
(28) Roskov Y, Abucay L, Orrell T, Nicolson D, Bailly N, Kirk PM, Bourgoin T, DeWalt RE, Decock W, DeWever A, van Nieukerken E, Zarucchi J, Penev L. (eds) Species 2000 & ITIS catalogue of life. 2018;Digital resource at www.catalogueoflife.org/col. Species 2000: Naturalis, Leiden, the Netherlands
(29) Ohara M, Kawano S. Life-history monographs of Japanese plants. 2: Trillium camschatcense Ker-Gawl. (Trilliaceae). Plant Species Biol 20 (1) (2005) 75–82. https://doi.org/10.1111/j.1442-1984.2005.00126.x
(30) Karthikeyan S, Jain SK, Nayar MP, Sanjappa M, Florae Indicae Enumeratio: Monocotyledonae. Botanical Survey of India, Calcutta. 1989;1:435.
(31) Hara H, Stearn WT, Williams HJ. An enumeration of the flowering plants of Nepal. Trustees of British Museum, London. 1978;1:1–154.
(32) Rechinger KH, Browicz K, Persson K, Wendelbo P. Flora Iranica. Naturhistorisches Museums. Wien. 1990;165:1–194. https://www.researchgate.net/publication/280255290
(33) Zhengyi W, Raven PH. Flora of China. Missouri Botanical Garden Press. St. Louis. 2000; 241–431.
(34) Dad J.M. Distribution, species diversity and composition of plant communities in relation to various affecting factors in an alpine grassland at Bandipora. Kashmir. Pak. J. Bot. 2016;48:551–-560. https://www.pakbs.org/pjbot/PDFs/48(2)/17.pdf
(35) Kumar S, Sharma S. Species diversity, uses and distribution of medicinal plants along an altitudinal gradient in Paddar valley in Northwestern Himalaya. International J. Med. Aromat. Pl. 2013;3:343–-351. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20133354960
(36) Christopher K, Gina G, Lucas W. Partnership for land use science. (Forest-Plus) Quarterly Report. 2014;4. https://moef.gov.in/uploads/2019/06/Quarter-1-Year-2013-14.pdf
(37) Sharma A, Parashar B. A review on Trillium govanianum. World J. Pharmaceut. Res. 2017;6:500–511. DOI:10.20959/wjpr20172-7824
(38) Rani S, Rana J, Rana P. Ethnomedicinal plants of Chamba district, Himachal Pradesh, India. J. Med. Plant. Res. 2013;73:147–3157. DOI:10.5897/JMPR2013.5249
(39) Sharma OR, Arya, D, Goel S, VyasK, Shinde P. Trillium govanianum Wall. Ex D. Don (Nagchatri): An important ethno medicinal plant of Himalayan region (Himachal Pradesh). J. Med. Plants. Stud. 2018;6:11–13. https://www.plantsjournal.com/archives/2018/vol6issue1/PartA/5-6-28-266.pdf
(40) Sharma P, Samant S. Diversity, distribution and indigenous uses of medicinal plants in Parbati valley of Kullu district in Himachal Pradesh, Northwestern Himalaya. Asian. J. Adv. Basic. Sci. 2014;2:77–98. https://www.researchgate.net/publication/288811888
(41) Chawla A, Parkash O, Sharma V, Rajkumar S, Lal B, Gopichand Singh RD, Thukral AK. Vascular plants, Kinnaur, Himachal Pradesh, India. Check List. 2012;8:321–348. doi: 10.15560/8.3.321
(42) Devi U, Sharma P, Rana JC, Sharma A. Phytodiversity assessment in Sangla valley, Northwest Himalaya, India. Check List. 2014;10:740–760. doi: 10.15560/10.4.740
(43) Jagdish S, Joginder S, Tewari VP. Screening and evaluation of superior chemotypes of Podophyllum hexandrum Royle from different geographical locations of north-west Himalayas. J. Plant. Chem. and Ecophysiol. 2018; 3:1021-1028. https://www.researchgate.net/publication/323771814
(44) Ismail M, Shah MR, Adhikari A, Anis I, Ahmad MS, Khurram M, Govanoside A, a new steroidal saponin from rhizomes of Trillium govanianum. Steroids. 2015;104:270–275. DOI: 10.1016/j.steroids.2015.10.013
(45) Pant S, Samant S. Ethnobotanical observations in the Mornaula reserve forest of Komoun, West Himalaya, India. Ethnobot. Leafl. 14 (2010) 193–217. https://www.researchgate.net/publication/48303598
(46) Sharma KD. Review on traditional medicinal plant: Trillium govanianum (Nag chhatri). J. Med. Plants. Stud. 2017;5:120–122. https://www.plantsjournal.com/archives/?year=2017&vol=5&issue=2&part=B&ArticleId=557
(47) Shah A, Bharati, KA, Ahmad J, Sharma MP, New ethnomedicinal claims from Gujjar and Bakerwals tribes of Rajouri and Poonch districts of Jammu and Kashmir, India. J. Ethnopharmacol. 2015;166:119–1-28. DOI: 10.1016/j.jep.2015.01.056
(48) Rahman US, Adhikari A, Ismail M, Raza SM, Khurram M, Shahid M. Beneficial effects of Trillium govanianum rhizomes in pain and inflammation. Molecules. 2016;8:20–21. doi: 10.3390/molecules21081095
(49) Ono M, HamadaT, Nohara T. An 18-norspirostanol glycoside from Trillium tschonoskii. Phytochem. 1986;25:544–545. DOI: 10.1016/S0031-9422(00)85524-7
(50) Yokosuka A, Mimaki Y. Steroidal glycosides from the underground parts of Trillium erectum and their cytotoxic activity. Phytochem. 2008;69:2724–2730.doi: 10.1016/j.phytochem.2008.08.004.
(51) Chauhan NS. Medicinal and aromatic plants of Himachal Pradesh. Indus Publishing Company. 1999; New Delhi, India. https://www.scirp.org/reference/referencespapers?referenceid=454815
(52) Huang W, Zou K. Cytotoxicity of a plant steroidal saponin on human lung cancer cells. Asian. Pac. J. Cancer Prev. 2011;125:13-17.PMID: 21545222
(53) Rahman US, Ismail M, Khurram M, Ullah I, Rabbi F, Iriti M. Bioactive steroids and saponins of the genus Trillium. Molecules. 2017a;22:1-15. PMID: 29206216
(54) Yan T, Wang A, Hu G, Jia J. Chemical constituents of Trillium tschonoskii Maxim. Nat Prod Res. 2020: https://doi.org/10.1080/14786419.2019.1700245.
(55) Singh PP, Suresh PS, Bora PS, Bhatt V, Sharma U. Govanoside B, A new steroidal saponin from rhizomes of Trillium govanianum. Nat Prod Res. 2020; https://doi.org/10.1080/14786419.2020.17 61360
(56) Rahman US, Ismail M, Shah RM, Adhikari A, Anis I, Ahmad MS. Govanoside A, a new steroidal saponin from rhizomes of Trillium govanianum. Steroids. 2015c;104:270–275. DOI: 10.1016/j.steroids.2015.10.013
(57) Singh P, Singh G, Bhandawat A, Singh G, Parmar R, Seth R, Sharma RK. Spatial transcriptome analysis provides insights of key gene(s) involved in steroidal saponin biosynthesis in medicinally important herb Trillium govanianum. Sci. Rep. 2017;7:45295- 45307. DOI: 10.1038/srep45295
(58) Rahman US, Ismail M, Shah MR, Iriti M, Shahid M. GC/MS analysis, free radical scavenging, anticancer and ?- glucuronidase inhibitory activities of Trillium govanianum rhizome. Bangladesh. J. Pharmacol. 2015b;105:77–83. DOI:10.3329/bjp.v10i3.23446
(59) Rahman US, Adhikari A, Ismail M, Shah RM, Khurram M, Anis I, Ali F. A New trihydroxylated fatty acid and phytoecdysteroids from rhizomes of Trillium govanianum. Rec. Nat. Prod. 2017b;11:323–327. https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/7740496
(60) Khan MK, Nahar L, Abdul M, Ul-Haq MI, Arfan M, Khan GrA, Hussain I, Sarker SD. Cytotoxicity, In vitro anti- Leishmanial and fingerprint HPLC- photodiode array analysis of the roots of Trillium govanianum., Nat. Prod. Res. 2017;51-910. https://www.academia.edu/48482086
(61) Raju J, Rao CV, Diosgenin. A steroid saponin constituent of yams and fenugreek: Emerging evidence for applications in medicine, in: Prof. Iraj, R., (Ed.), Bioactive compounds in phytomedicine. InTech Publisher, Shanghai, China. 2012;125-142.(Ed.). ISBN: 978-953-307-805-2. DOI: 10.5772/26700
(62) Sharma S, Sharma A, Mehta V, Chauhan RS, Malairaman U, Sood H. Efficient hydroalcoholic extraction for highest diosgenin content from Trillium govanianum (nag chhatri) and it’s in vitro anticancerous activity. Asian J. Pharmaceut. Clinical Res. 2016;9:386– 392. https://www.researchgate.net/publication/305538354
(63) Khan KM, Nahar L, Al-Groshi, A, Zavoianu AG, Evans A, Dempster NM, Wansi JD, Ismail F, Mannan A, Sarker SD. Cytotoxicity of the roots of Trillium govanianum against breast (MCF7), liver (HepG2), lung (A549) and urinary bladder (EJ138) carcinoma cells. Phytother. Res. 2016;30:1716–1720. DOI: 10.1002/ptr.5672
(64) Lui MJ, Wang Z, Ju Y, Wong RN, Wu QY. Diosgenin induces cell cycle arrest and apoptosis in human leukemia K562 cells with the disruption of Ca2+ homeostasis. Cancer Chemother. Pharmacol. 2005;55:79–-90. DOI: 10.1007/s00280-004-0849-3
(65) Lone PA, Bhardwaj AK and Bahar FA. Traditional knowledge on healing properties of plants in bandipora district of Jammu and Kashmir, India. Int. J. Recent Sci. Res. 2013;4(11):1755-1765. https://www.researchgate.net/publication/285739126
(66) Mahmood A, Mahmood A, Malik RN. Indigenous knowledge of medicinal plants from Leepa valley, Azad Jammu and Kashmir, Pakistan. J. Ethnopharmacol. 2012;143:338–346. DOI: 10.1016/j.jep.2012.06.046
(67) Qiong MX, Yan-Li L, Xiao-Ran L, Xia Li, Shi-Lin Y. Three new fatty acids from the roots of Boehmeria nivea and their antifungal activities. Nat. Prod. Res. 2011;25:640–647. DOI: 10.1080/14786419.2010.488230
(68) Melo PS, De Azevedo MBM, Zullo MAT, Fabrin-Neto JB, Haun M. Cytotoxicity of the phytosterol diosgenin and its derivatives in rat cultured hepatocytes and V79 fibroblasts. Hum. Exp. Toxicol. 2004;23:487–93. DOI: 10.1191/0960327104ht474oa
(69) Wabwoba B, Anjili C, Ngeiywa M, Ngure P, Kigondu E, Ingonga J, Makwali J. Experimental chemotherapy with Allium sativum (Liliaceae) methanolic extract in rodents infected with Leishmania major and Leishmania donovani. J. Vect. Borne. Dis. (2010;47:160– 167. PMID: 20834086
(70) Khan I, Yasinzai MM, Mehmood Z, Ilahi I, Khan J, Khalil A, Saqib MS, Rahman WU. Comparative study of green fruit extract of Melia azedarach Linn. with its ripe fruit extract for antileishmanial, larvicidal, antioxidant and cytotoxic activity. Am. J. Phytomed. Clin. Therap. 2014;2:442–452. https://www.researchgate.net/publication/261214905
(71) Tasdemir D, Kaiser M, Brun R, Yardley V, Schmidt TJ, Tosun F. Ruedi P. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob. Agents. Chemother. 2006;50:1352–1364. DOI: 10.1128/AAC.50.4.1352-1364.2006
(72) Wang JR, Zhou H, Jiang ZH, Wong YF, Liu L. In vivo anti-inflammatory and analgesic activities of a purified saponin fraction derived from the root of Ilex pubescens. Biol. Pharm. Bull. 2008;31:643–650. DOI: 10.1248/bpb.31.643
(73) Fantone JC, Ward P. Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am. J. Pathol. 1982;107:395–418. PMID: 6282132
(74) Agnihotri S, Wakode S, Agnihotri A. An overview on anti-inflammatory properties and chemo-profiles of plants used in traditional medicine. Indian J. Nat. Prod. Resour. 2010;1:150–167. https://www.researchgate.net/publication/265893260
(75) Punitha D, Udhayasankar MR, Danya U, Arumugasamy K., Shalimol A. Anti-inflammatory Activity of Characterized Compound Diosgenin Isolated from Tinospora malabarica Miers in Ann. (Menispermaceae) in Animal Model. Int. J. Herb. Med. 2013;1:76–78. https://www.florajournal.com/archives/2013/vol1issue3/PartA/26.1.pdf
(76) Ono M, Sugita F, Shigematsu S, Takamura C, Yoshimitsu H, Miyashita H, Lkeda T, Nohara T. Three new steroid glycosides from the underground parts of Trillium kamtschaticum, Chem. Pharm. Bull. 2007;55:1093–1096. https://doi.org/10.1248/cpb.55.1093
(77) Samant SS, Dhar U, Palni LMS. Medicinal plants of Indian Himalaya: Diversity distribution potential values. Gyanodaya Prakashan, Nainital, India. Gyanodaya Prakashan. 1998;163. https://lib.icimod.org/record/4884
(78) Ali A, Badshah L, Hussain F, Shinwari ZK. Floristic composition and ecological characteristics of plants of Chail Valley, district Swat, Pakistan. Pak. J. Bot. 2016; 48:1013- 1026. https://www.researchgate.net/publication/303844112
(79) Chauhan HK, Bisht AK, Bhatt ID, Bhatt A, Protocol for vegetative propagation of Trillium govanianum Wall ex D. Don, Journal of Applied Research on Medicinal and Aromatic Plants. 2019; https://doi.org/10.1016/j.jarmap.2019.100233.
(80) Goraya GS, Ved DK, Ravikumar K, Rawat RS. Domestic trade of herbal raw drugs. In: Goraya GS, Ved DK (eds) Medicinal plants in India: an assessment of their demand and supply. National Medicinal Plants Board, Ministry of AYUSH, Government of India, New Delhi and Indian Council of Forestry Research & Education, 2017;Dehradun, India http://www.rcfceast.org/wp-content/uploads/2019
(81) Bhatt A, Joshi SK, Gairola S, Dactylorhiza hatagirea (D. Don) Soo—a west Himalayan orchid in peril. Curr Sci. 2005;89(4):610–612. https://www.jstor.org/stable/24111155
(82) Sage TL, Griffin SR, Pontieri V, Drobac P, Cole WW, Barrett SC, Stigmatic selfincompatibility and mating patterns in Trillium grandiflorum and Trillium erectum (Melanthiaceae). Ann Bot. 2001;88(5):829–841. DOI:10.1006/anbo.2001.1517
(83) Jules ES, Rathcke BJ, Mechanisms of reduced Trillium recruitment along edges of old-growth forest fragments. Conserv Biol. 1999;13(4):784–793.DOI:10.1046/j.1523-1739.1999.97435.x
(84) Nivot, N, Olivier A, Lapointe L. Vegetative propagation of five northern forest understory plant species from either rhizome or stem sections. HortScience. 2008;43:1531-1537. DOI:10.21273/HORTSCI.43.5.1531
(85) Routhier MC, Lapointe L. Impact of tree leaf phenology on growth rates and reproduction in the spring flowering species Trillium erectum (Liliaceae). Am J Bot.2002;89(3):500–505. DOI: 10.3732/ajb.89.3.500
(86) Malhotra N, Sood H, Chauhan RS. Transcriptome-wide mining suggests conglomerate of genes associated with tuberous root growth and development in Aconitum heterophyllum Wall. 3. Biotech. 2016;6:152. https://doi.org/10.1007/s13205-016-0466-y
(87) Kumar V, Malhotra N, Pal T, Chauhan RS. Molecular dissection of pathway components unravel atisine biosynthesis in a non-toxic Aconitum species, A. heterophyllum Wall. 3. Biotech 2016;6;106. doi: 10.1007/s13205-016-0417-7
(88) Mehrafarin A, Qaderi A, Rezazadeh Sh, Naghdi BH, Noormohammadi Gh, Zand E. Bioengineering of important secondary metabolites and metabolic pathways in fenugreek (Trigonella foenum-graecum L.). J Med Plants. 2010;9:1–18.DOI: 20.1001.1.2717204.2010.9.35.1.1
(89) Vaidya K, Ghosh A, Kumar V, Chaudhary S, Srivastava N, Katudia K, Tiwari T, Chika SK. De novo transcriptome sequencing in Trigonella foenum graecum to identify genes involved in the biosynthesis of diosgenin. Plant Genome. 2013;6:1–11. https://doi.org/10.3835/plantgenome2012.08.0021
(90) Malhotra N, Kumar V, Sood H, Singh TR, Chauhan RS. Multiple genes of mevalonate and non-mevalonate pathways contribute to high aconites content in an endangered medicinal herb, Aconitum heterophyllum Wall. Phytochemistry. 2014;108:26–34.DOI: 10.1016/j.phytochem.2014.08.025
(91) Kumar V, Shitiz K, Chauhan RS, Sood H. Tandon C Tracking dynamics of enzyme activities and their gene expression in Picrorhiza kurroa with respect to picroside accumulation. J Plant Biochem Biotechnol. 2015;http://doi.org/10.1007/s13562-015-0317-7
(92) Liagre B, Vergne-Salle P, Corbiere C, Charissoux JL, Beneytout JL. Diosgenin, a plant steroid, induces apoptosis in human rheumatoid arthritis synoviocytes with cyclooxygenase-2 overexpression. Arthritis Res Ther. 2004;6:373–383.DOI: 10.1186/ar1199
(93) Sato K, Fujita S, Iemitsu M, Acute administration of diosgenin or Dioscorea improves hyperglycemia with increases muscular steroidogenesis in STZ-induced type 1 diabetic rats. J Steroid Biochem. 2014;143:152–159. DOI: 10.1016/j.jsbmb.2014.02.020
(94) Diarra ST, He J, Wang J, Li J Ethylene treatment improves diosgenin accumulation in in vitro cultures of Dioscorea zingiberensis via up-regulation of CAS and HMGR gene expression. Electron J Biotechnol. 2013;16(5).http://dx.doi.org/10.2225/vol16-issue5-fulltext-9
(95) Gulzar, N., Andleeb, S., Raza, A., Ali, S., Liaqat, I., Raja, S.A., Ali, N.M., Khan, R., Awan, U.A., ‘Acute toxicity, anti-diabetic, and anti-cancerous potential of Trillium govanianum-conjugated silver nanoparticles in Balb/c mice’. Curr Pharm Biotechnol 2023. doi: 10.2174/1389201024666230818124025
(96) Patil SS, Singh PP, Sharma A, Padwad YS, Sharma U. Steroidal saponins of Trillium govanianum: Quality control, pharmacokinetic analysis, and anti-inflammatory activity’, Biocatalysis and Agricultural Biotechnology. 2021;35:1878-8181: http://doi.org/10.1016/j.bcab.2021.102071
(97) Rashid K, Rashid S, Ganie AH, Nawchoo IA, Tantry MA, Khuroo AA. Trillium govanianum – A Promising Endemic Medicinal Herb of the Himalaya. In: Arunachalam, Yang K, Puthanpura X, Sasidharan S. (eds) Bioprospecting of Tropical Medicinal Plants. Springer. 2023; Cham. https://doi.org/10.1007/978-3-031-28780-0_14
(98) Caldwell B, Green G, Baccali K. Partnership for land use science (Forest-Plus) program. Training manual for sustainable management of non-timber forest products in Himachal Pradesh landscape. 2016;31–32. https://www.climatelinks.org/sites/default/files/asset/document/2016
(99) Kumar, D., Sharma, A., Joshi, R., Nadda, G., Kumar, D. Comprehensive search of the primary and secondary metabolites and radical scavenging potential of Trillium govanianum Wall. ex D. Don, Chem. Biodiversity. 2021; http://doi.org/10.1002/cbdv.202100300
(100) Hayes PY, Lehmann R, Penman K, Kitching W, De Voss JJ. Steroidal saponins from the roots of Trillium erectum (Beth root). Phytochemistry. 2009;70:105–113. DOI: 10.1016/j.phytochem.2008.10.019

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 R Gupta, N Sharma, H Sood

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).