Microsatellite markers-based genotyping, population structure analysis and field screening of chickpea (Cicer arietinum L.) genotypes against Fusarium wilt
DOI:
https://doi.org/10.14719/pst.4587Keywords:
chickpea, Fusarium wilt, molecular markers, resistant, SSRs, wilt sick plotAbstract
As an important source of protein, vitamins and minerals, chickpeas (Cicer arietinum L.) are the most significant self-pollinated pulse crop. The main cause of its low production is Fusarium wilt, which is brought on by the fungal disease Fusarium oxysporum f. sp. ciceris. Thus, the present investigation aimed to conduct field-level screening of 71 chickpea genotypes against Fusarium wilt disease as well as microsatellite markers-based analysis in the laboratory. In the field investigation, one genotype was found to be resistant, 13 genotypes were moderately resistant, 34 genotypes moderately susceptible, 14 genotypes susceptible, while 9 genotypes were highly susceptible at the reproductive stage under wilt sick plot. Out of 22 markers, 13 markers were found to be polymorphic and the highest PIC value was shown by the marker TA200 followed by H3A12, TA110, GA137, GA20, TR2, TS79, TA37, TR19 and H1B06. Based on the dendrogram, all 71 genotypes were grouped into 6 clusters. In this investigation, a structured population in tested chickpea genotypes was demonstrated. All genotypes were stratified into 2 populations (P1, P2), representing 50.70% and 49.29% of genotypes used in structure analysis respectively. Based on both sick plot and molecular screening result analysis, it can be concluded that the genotypes viz., JG315, RVSSG84, JAKI 9218, ICC 4958, SAGL-152339, RVSSG 52 and RVSSG 74 are resistant against Fusarium wilt and therefore, may be effectively used by the breeders in Fusarium resistant chickpea breeding development programmes.
Downloads
References
Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol. 2013;31:240–46. https://doi.org/10.1038/nbt.2491
Zhang J, Wang J, Zhu C, Singh RP, Chen W. Chickpea: Its origin, distribution, nutrition, benefits, breeding and symbiotic relationship with Mesorhizobium species. Plants. 2024;13(3):429. https://doi.org/10.3390/plants13030429.
FAOSTAT. Crops and livestock products. 2021. http://www.fao.org/faostat/en/#data/QCL
Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci. 2017;8:537–52. https://doi.org/10.3389/fpls.2017.00537
Yadav RK, Tripathi MK, Tiwari S, Tripathi N, Asati R, Patel V, et al. Breeding and genomic approaches towards development of Fusarium wilt resistance in chickpea. Life. 2023;13(4):988. https://doi.org/10.3390/life13040988
Asati R, Tripathi MK, Tiwari S, Yadav RK, Tripathi N. Molecular breeding and drought tolerance in chickpea. Life. 2022;12(11):1846. https://doi.org/10.3390/life12111846
Jiménez-Díaz RM, Castillo P, Jiménez-Gasco M, del M, Landa BB, Navas-Cortés JA. Fusarium wilt of chickpeas: Biology, ecology and management. Crop Prot. 2015;73:16–27. https://doi.org/10.1016/j.cropro.2015.02.023
Pande S, Kishore GK, Upadhyaya HD, Rao JN. Identification of multiple diseases resistance in mini-core collection of chickpea. Plant Dis. 2006;90:1214–18. https://doi.org/10.1094/PD-90-1214
Infantino A, Kharrat M, Riccioni L, Coyne CJ, McPhee KE, Grunwald NJ. Screening techniques and sources of resistance to root diseases of food legumes. Euphytica. 2006;147:201–21. https://doi.org/10.1007/s10681-006-6963-z
Varshney RK, Mohan SM, Gaur PM, Chamarthi SK, Singh VK, Srinivasan SN, et al. Marker-assisted backcrossing to introgress resistance to Fusarium wilt race 1 and Ascochyta blight in C 214, an elite cultivar of chickpea. Plant Gen. 2014;7:2013–20. https://doi.org/10.3835/plantgenome2013.10.0035
Fayaz H, Mir AH, Tyagi S, Wani AA, Jan N, Yasin M, et al. Assessment of molecular genetic diversity of 384 chickpea genotypes and development of core set of 192 genotypes for chickpea improvement programs. Genet Resour Crop Evol. 2021;69:1193–205. https://doi.org/10.1007/s10722-021-01296-0
Danakumara T, Kumar N, Patil BS, Kumar T, Bharadwaj C, Jain PK, et al. Unraveling the genetics of heat tolerance in chickpea landraces (Cicer arietinum L.) using genome-wide association studies. Front Plant Sci. 2024;5:1376381. https://doi:0.3389/fpls.2024.1376381.
Patil BS, Ravikumar RL, Bhat JS, Soregaon CD. Molecular mapping of QTLs for resistance to early and late Fusarium wilt in chickpea. Czech J Genet Plant Breed. 2014;50(2):171–76. https://doi.org/10.17221/188/2013-CJGPB
Jingade PK, Ravikumar RL. Development of molecular map and identification of QTLs linked to Fusarium wilt resistance in chickpea. J Genet. 2015;94(4):723–29. https://doi.org/10.1007/s12041-015-0589-7
Min W, Run-zhi L, Wan-ming Y, Wei-jun D. Assessing the genetic diversity of cultivars and wild soybeans using SSR markers. African J Biotechnol. 2010;9(31):4857–66.
Özkan G, Halilo? glu K, Türko? glu A, Özturk HI, Elkoca E, Poczai P. Determining genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from Turkey using SSR markers. Genes. 2022;13:1410. https://doi.org/10.3390/genes13081410
Sharma KD, Muehlbauer FJ. Fusarium wilt of chickpea: physiological specialization, genetics of resistance and resistance gene tagging. Euphytica. 2007;157:1–14. https://doi.org/10.1007/s10681-007-9401-y
Irulappan V, Mali KV, Patil BS, Manjunatha H, Muhammad S, Senthil-Kumar M. Asick plot-Based protocol for dry root rot disease assessment in field-grown chickpea plants. Appl Plant Sci. 2021;9(8):e11445. https://doi.org/10.1002/aps3.11445
Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bullet. 1987;19:11–15.
Peakall R, Smouse PE. GenAlEx 6.5: Genetic analysis in excel. Population genetic software for teaching and research-An update. Bioinform Appl Note. 2012;28:2537–39. https://doi.org/10.1093/bioinformatics/bts460
Liu K, Muse SV. Power marker: an integrated analysis environment for genetic marker analysis. Bioinform. 2005;21(9):2128–29. https://doi.org/10.1093/bioinformatics/bti282
Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022–27. https://doi.org/10.1093/molbev/msab120
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multi locus genotype data. Genet. 2000;155(2):945–59. https://doi.org/10.1093/genetics/155.2.945
Sonkar P, Kumar V, Sonkar A. Studies on cultural and morphological characters of tomato wilt (Fusarium oxysporum f.sp. lycospersici). Bioassays. 2014;3:1637–40.
Priyadarshini P, Sahu S, Kalwan G, Yadava YK, Nagar R, Rai V, et al. Unravelling the mechanism of Fusarium wilt resistance in chickpea seedlings using biochemical studies and expression analysis of NBS-LRR and WRKY genes. Physiol Mol Plant Pathol. 2023;124:101958. https://doi.org/10.1016/j.pmpp.2023.101958
Muhammad AA, Sheikh MI, Najma A, Yasmin A, Abida A. Identification of resistance sources in chickpea against Fusarium wilt. Pak J Bot. 2010;42(1):417–26.
Nikam PS, Jagtap GP, Sontakke PL. Survey, surveillance and cultural characteristics of chickpea wilt caused by Fusarium oxysporium f.sp. ciceri. Afr J Agricul Res. 2011;6:1913–17.
Thaware DST, Gholve VM, Gholve VM. Cultural, morphological and molecular variability of Fusarium oxysporum f. sp. ciceri Isolates by RAPD method. Int J Curr Microbiol Appl Sci. 2017;6(4):2721–34. https://doi.org/10.20546/ijcmas.2017.604.316
Hotkar S, Jayalakshmi SK, Suhas PD. Screening for resistant sources in chickpea entries against Fusarium wilt. J Pharmaco Phytochem. 2018;7(5):663–65.
Zewdie A, Bedasa T. Source of resistance to chickpea Fusarium wilt (Fusarium oxysporum f. sp. ciceris) under field conditions in Ethiopia. 2020; 15(1):85–89. https://doi.org/10.5897/AJAR2019.14595
Sachdeva S, Bharadaj C, Singh S, Roorkiwal M, Sharma V, Singh A, Varshney R. Yield plasticity and molecular diversity analysis in chickpea (Cicer arietinum L). Indian J Agric Sci. 2019;89:834–41. https://doi.org/10.56093/ijas.v89i5.89666
Tiwari PN, Tiwari S, Sapre S, Babbar A, Tripathi N, Tiwari S, Tripathi MK. Prioritization of microsatellite markers linked with drought tolerance associated traits in chickpea (Cicer arietinum L.). Leg Res. 2023;46:1422?30. https://doi.org/10.18805/LR-5191
Zhang Z, Deng Y, Tan J, Hu S, Yu J, Xue Q. A genome-wide microsatellite polymorphism database for the indica and japonica rice. DNA Res. 2007;14:37–45. https://doi.org/10.1093/dnares/dsm005
Lal D, Ravikumar RL, Jingade P, Subramanya S. Validation of molecular markers linked to fusarium wilt resistance in recombinant inbred lines of chickpea (Cicer arietinum L.). Plant Breed. 2021;429?38. https://doi.org/10.21203/rs.3.rs-366182/v1
Radhika P, Gowda SJM, Kadoo NY, Mhase LB, Jamadagni BM, Sainani MN, et al. Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. Theor Appl Genet. 2007;115:209–16. https://doi.org/10.1007/s00122-007-0556-7
Gowda SJM, Radhika P, Kadoo NY, Mhase LB, Gupta VS. Molecular mapping of wilt resistance genes in chickpea. Mol Breed. 2009;24:177?83. https://doi.org/10.1007/s11032-009-9282-y
Nayak SN, Zhu H, Vargeese N, Datta S, Choi HK, Horres R, et al. Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet. 2010;120:1415–41. https://doi.org/10.1007/s00122-010-1265-1
Hajibarat Z, Saidi A, Hajibarat Z, Talebi R. Characterization of genetic diversity in chickpea using SSR markers, start codon targeted polymorphism (SCoT) and conserved DNA-derived polymorphism (CDDP). Physiol Mol Biol Plants. 2015;21:365–73. https://doi.org/10.1007/s12298-015-0306-2
Barman P, Handique AK, Tanti B. Tagging STMS markers to Fusarium wilt race-1 resistance in chickpea (Cicer arietinum L.). Indian J Biotechnol. 2014;13:370?75.
Winter P, Benko-Iseppon AM, Huttel B. A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum x C. reticulatum cross: localization of resistance genes for Fusarium wilt races 4 and 5. Theor Appl Genet. 2000;101:1155–63. https://doi.org/10.1007/s001220051592
Cobos M, Rubio J, Strange R. A new QTL for Ascochyta blight resistance in an RIL population derived from an interspecific cross in chickpea. Euphytica. 2006;149:105–11. https://doi.org/10.1007/s10681-005-9058-3
Sharma KD, Winter P, Kahl G. Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theor Appl Genet. 2004;108:1243–48. https://doi.org/10.1007/s00122-003-1561-0
Lichtenzveig J, Bonfil D, Zhang H. Mapping quantitative trait loci in chickpea associated with time to flowering and resistance to Didymella rabiei the causal agent of Ascochyta blight. Theor Appl Genet. 2006;113:1357–69. https://doi.org/10.1007/s00122-006-0390-3
Segura-Alabart N, Serratosa F, Gómez S, Fernández A. Nonunique UPGMA clusterings of microsatellite markers. Brief Bioinform 2022:23:bbac312. https://doi.org/10.1093/bib/bbac312
Ningwal R, Tripathi MK, Tiwari S, Asati R, Yadav RK, Tripathi N, Yasin M. Identification of polymorphic SSR markers and diversity analysis in a set of desi chickpea genotypes. Biol Forum. 2023a;15(3):45–51.
Rani R, Raza G, Tung MH, Rizwan M, Ashfaq H, Shimelis H. Genetic diversity and population structure analysis in cultivated soybean (Glycine max [L.] Merr.) using SSR and EST-SSR markers. PLoS One. 2023;18(5):e0286099. https://doi.org/10.1371/journal.pone.0286099
Kumar JSP, Susmita C, Sripathy KV, Agarwal DK, Pal G, Singh AN, et al. Molecular characterization and genetic diversity studies of Indian soybean (Glycine max (L.) Merr.) cultivars using SSR markers. Mol Biol Rep. 2022;49:2129–40. https://doi.org/10.1007/s11033-021-07030-4
Obua T, Julius PS, Stephen OO, Phinehas T, Thomas LO, Josiah MN. Genetic diversity and population structure analysis of tropical soybean (Glycine max (L.) Merr.) using single nucleotide polymorphic markers. Global J Sci Front Res. 2020;20:35?43. https://doi.org/10.34257/GJSFRDVOL20IS6PG35
Mazkirat S, Baitarakova K, Kudaybergenov M, Babissekova D, Bastaubayeva S, Bulatova K, Shavrukov Y. SSR Genotyping and marker–trait association with yield components in a Kazakh germplasm collection of chickpea (Cicer arietinum L.). Biomol. 2023;13:1722. https://doi.org/10.3390/biom13121722

Downloads
Published
Versions
- 13-04-2025 (2)
- 30-03-2025 (1)
How to Cite
Issue
Section
License
Copyright (c) 2025 K Y Rakesh , K T Manoj, A Ruchi, T Niraj

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).