This is an outdated version published on 30-03-2025. Read the most recent version.
Forthcoming

Microsatellite markers-based genotyping, population structure analysis and field screening of chickpea (Cicer arietinum L.) genotypes against Fusarium wilt

Authors

  • K Y Rakesh Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474 002, Madhya Pradesh, India https://orcid.org/0000-0002-7004-7248
  • K T Manoj Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474 002, Madhya Pradesh, India; Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474 002, Madhya Pradesh, India https://orcid.org/0009-0004-1921-3046
  • A Ruchi Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474 002, Madhya Pradesh, India https://orcid.org/0009-0001-3657-348X
  • T Niraj Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482 004, Madhya Pradesh, India https://orcid.org/0000-0002-4474-6184

DOI:

https://doi.org/10.14719/pst.4587

Keywords:

chickpea, Fusarium wilt, molecular markers, resistant, SSRs, wilt sick plot

Abstract

As an important source of protein, vitamins and minerals, chickpeas (Cicer arietinum L.) are the most significant self-pollinated pulse crop. The main cause of its low production is Fusarium wilt, which is brought on by the fungal disease Fusarium oxysporum f. sp. ciceris. Thus, the present investigation aimed to conduct field-level screening of 71 chickpea genotypes against Fusarium wilt disease as well as microsatellite markers-based analysis in the laboratory. In the field investigation, one genotype was found to be resistant, 13 genotypes were moderately resistant, 34 genotypes moderately susceptible, 14 genotypes susceptible, while 9 genotypes were highly susceptible at the reproductive stage under wilt sick plot. Out of 22 markers, 13 markers were found to be polymorphic and the highest PIC value was shown by the marker TA200 followed by H3A12, TA110, GA137, GA20, TR2, TS79, TA37, TR19 and H1B06. Based on the dendrogram, all 71 genotypes were grouped into 6 clusters. In this investigation, a structured population in tested chickpea genotypes was demonstrated. All genotypes were stratified into 2 populations (P1, P2), representing 50.70% and 49.29% of genotypes used in structure analysis respectively. Based on both sick plot and molecular screening result analysis, it can be concluded that the genotypes viz., JG315, RVSSG84, JAKI 9218, ICC 4958, SAGL-152339, RVSSG 52 and RVSSG 74 are resistant against Fusarium wilt and therefore, may be effectively used by the breeders in Fusarium resistant chickpea breeding development programmes.

Downloads

Download data is not yet available.

References

Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol. 2013;31:240–46. https://doi.org/10.1038/nbt.2491

Zhang J, Wang J, Zhu C, Singh RP, Chen W. Chickpea: Its origin, distribution, nutrition, benefits, breeding and symbiotic relationship with Mesorhizobium species. Plants. 2024;13(3):429. https://doi.org/10.3390/plants13030429.

FAOSTAT. Crops and livestock products. 2021. http://www.fao.org/faostat/en/#data/QCL

Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci. 2017;8:537–52. https://doi.org/10.3389/fpls.2017.00537

Yadav RK, Tripathi MK, Tiwari S, Tripathi N, Asati R, Patel V, et al. Breeding and genomic approaches towards development of Fusarium wilt resistance in chickpea. Life. 2023;13(4):988. https://doi.org/10.3390/life13040988

Asati R, Tripathi MK, Tiwari S, Yadav RK, Tripathi N. Molecular breeding and drought tolerance in chickpea. Life. 2022;12(11):1846. https://doi.org/10.3390/life12111846

Jiménez-Díaz RM, Castillo P, Jiménez-Gasco M, del M, Landa BB, Navas-Cortés JA. Fusarium wilt of chickpeas: Biology, ecology and management. Crop Prot. 2015;73:16–27. https://doi.org/10.1016/j.cropro.2015.02.023

Pande S, Kishore GK, Upadhyaya HD, Rao JN. Identification of multiple diseases resistance in mini-core collection of chickpea. Plant Dis. 2006;90:1214–18. https://doi.org/10.1094/PD-90-1214

Infantino A, Kharrat M, Riccioni L, Coyne CJ, McPhee KE, Grunwald NJ. Screening techniques and sources of resistance to root diseases of food legumes. Euphytica. 2006;147:201–21. https://doi.org/10.1007/s10681-006-6963-z

Varshney RK, Mohan SM, Gaur PM, Chamarthi SK, Singh VK, Srinivasan SN, et al. Marker-assisted backcrossing to introgress resistance to Fusarium wilt race 1 and Ascochyta blight in C 214, an elite cultivar of chickpea. Plant Gen. 2014;7:2013–20. https://doi.org/10.3835/plantgenome2013.10.0035

Fayaz H, Mir AH, Tyagi S, Wani AA, Jan N, Yasin M, et al. Assessment of molecular genetic diversity of 384 chickpea genotypes and development of core set of 192 genotypes for chickpea improvement programs. Genet Resour Crop Evol. 2021;69:1193–205. https://doi.org/10.1007/s10722-021-01296-0

Danakumara T, Kumar N, Patil BS, Kumar T, Bharadwaj C, Jain PK, et al. Unraveling the genetics of heat tolerance in chickpea landraces (Cicer arietinum L.) using genome-wide association studies. Front Plant Sci. 2024;5:1376381. https://doi:0.3389/fpls.2024.1376381.

Patil BS, Ravikumar RL, Bhat JS, Soregaon CD. Molecular mapping of QTLs for resistance to early and late Fusarium wilt in chickpea. Czech J Genet Plant Breed. 2014;50(2):171–76. https://doi.org/10.17221/188/2013-CJGPB

Jingade PK, Ravikumar RL. Development of molecular map and identification of QTLs linked to Fusarium wilt resistance in chickpea. J Genet. 2015;94(4):723–29. https://doi.org/10.1007/s12041-015-0589-7

Min W, Run-zhi L, Wan-ming Y, Wei-jun D. Assessing the genetic diversity of cultivars and wild soybeans using SSR markers. African J Biotechnol. 2010;9(31):4857–66.

Özkan G, Halilo? glu K, Türko? glu A, Özturk HI, Elkoca E, Poczai P. Determining genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from Turkey using SSR markers. Genes. 2022;13:1410. https://doi.org/10.3390/genes13081410

Sharma KD, Muehlbauer FJ. Fusarium wilt of chickpea: physiological specialization, genetics of resistance and resistance gene tagging. Euphytica. 2007;157:1–14. https://doi.org/10.1007/s10681-007-9401-y

Irulappan V, Mali KV, Patil BS, Manjunatha H, Muhammad S, Senthil-Kumar M. Asick plot-Based protocol for dry root rot disease assessment in field-grown chickpea plants. Appl Plant Sci. 2021;9(8):e11445. https://doi.org/10.1002/aps3.11445

Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bullet. 1987;19:11–15.

Peakall R, Smouse PE. GenAlEx 6.5: Genetic analysis in excel. Population genetic software for teaching and research-An update. Bioinform Appl Note. 2012;28:2537–39. https://doi.org/10.1093/bioinformatics/bts460

Liu K, Muse SV. Power marker: an integrated analysis environment for genetic marker analysis. Bioinform. 2005;21(9):2128–29. https://doi.org/10.1093/bioinformatics/bti282

Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022–27. https://doi.org/10.1093/molbev/msab120

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multi locus genotype data. Genet. 2000;155(2):945–59. https://doi.org/10.1093/genetics/155.2.945

Sonkar P, Kumar V, Sonkar A. Studies on cultural and morphological characters of tomato wilt (Fusarium oxysporum f.sp. lycospersici). Bioassays. 2014;3:1637–40.

Priyadarshini P, Sahu S, Kalwan G, Yadava YK, Nagar R, Rai V, et al. Unravelling the mechanism of Fusarium wilt resistance in chickpea seedlings using biochemical studies and expression analysis of NBS-LRR and WRKY genes. Physiol Mol Plant Pathol. 2023;124:101958. https://doi.org/10.1016/j.pmpp.2023.101958

Muhammad AA, Sheikh MI, Najma A, Yasmin A, Abida A. Identification of resistance sources in chickpea against Fusarium wilt. Pak J Bot. 2010;42(1):417–26.

Nikam PS, Jagtap GP, Sontakke PL. Survey, surveillance and cultural characteristics of chickpea wilt caused by Fusarium oxysporium f.sp. ciceri. Afr J Agricul Res. 2011;6:1913–17.

Thaware DST, Gholve VM, Gholve VM. Cultural, morphological and molecular variability of Fusarium oxysporum f. sp. ciceri Isolates by RAPD method. Int J Curr Microbiol Appl Sci. 2017;6(4):2721–34. https://doi.org/10.20546/ijcmas.2017.604.316

Hotkar S, Jayalakshmi SK, Suhas PD. Screening for resistant sources in chickpea entries against Fusarium wilt. J Pharmaco Phytochem. 2018;7(5):663–65.

Zewdie A, Bedasa T. Source of resistance to chickpea Fusarium wilt (Fusarium oxysporum f. sp. ciceris) under field conditions in Ethiopia. 2020; 15(1):85–89. https://doi.org/10.5897/AJAR2019.14595

Sachdeva S, Bharadaj C, Singh S, Roorkiwal M, Sharma V, Singh A, Varshney R. Yield plasticity and molecular diversity analysis in chickpea (Cicer arietinum L). Indian J Agric Sci. 2019;89:834–41. https://doi.org/10.56093/ijas.v89i5.89666

Tiwari PN, Tiwari S, Sapre S, Babbar A, Tripathi N, Tiwari S, Tripathi MK. Prioritization of microsatellite markers linked with drought tolerance associated traits in chickpea (Cicer arietinum L.). Leg Res. 2023;46:1422?30. https://doi.org/10.18805/LR-5191

Zhang Z, Deng Y, Tan J, Hu S, Yu J, Xue Q. A genome-wide microsatellite polymorphism database for the indica and japonica rice. DNA Res. 2007;14:37–45. https://doi.org/10.1093/dnares/dsm005

Lal D, Ravikumar RL, Jingade P, Subramanya S. Validation of molecular markers linked to fusarium wilt resistance in recombinant inbred lines of chickpea (Cicer arietinum L.). Plant Breed. 2021;429?38. https://doi.org/10.21203/rs.3.rs-366182/v1

Radhika P, Gowda SJM, Kadoo NY, Mhase LB, Jamadagni BM, Sainani MN, et al. Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. Theor Appl Genet. 2007;115:209–16. https://doi.org/10.1007/s00122-007-0556-7

Gowda SJM, Radhika P, Kadoo NY, Mhase LB, Gupta VS. Molecular mapping of wilt resistance genes in chickpea. Mol Breed. 2009;24:177?83. https://doi.org/10.1007/s11032-009-9282-y

Nayak SN, Zhu H, Vargeese N, Datta S, Choi HK, Horres R, et al. Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet. 2010;120:1415–41. https://doi.org/10.1007/s00122-010-1265-1

Hajibarat Z, Saidi A, Hajibarat Z, Talebi R. Characterization of genetic diversity in chickpea using SSR markers, start codon targeted polymorphism (SCoT) and conserved DNA-derived polymorphism (CDDP). Physiol Mol Biol Plants. 2015;21:365–73. https://doi.org/10.1007/s12298-015-0306-2

Barman P, Handique AK, Tanti B. Tagging STMS markers to Fusarium wilt race-1 resistance in chickpea (Cicer arietinum L.). Indian J Biotechnol. 2014;13:370?75.

Winter P, Benko-Iseppon AM, Huttel B. A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum x C. reticulatum cross: localization of resistance genes for Fusarium wilt races 4 and 5. Theor Appl Genet. 2000;101:1155–63. https://doi.org/10.1007/s001220051592

Cobos M, Rubio J, Strange R. A new QTL for Ascochyta blight resistance in an RIL population derived from an interspecific cross in chickpea. Euphytica. 2006;149:105–11. https://doi.org/10.1007/s10681-005-9058-3

Sharma KD, Winter P, Kahl G. Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theor Appl Genet. 2004;108:1243–48. https://doi.org/10.1007/s00122-003-1561-0

Lichtenzveig J, Bonfil D, Zhang H. Mapping quantitative trait loci in chickpea associated with time to flowering and resistance to Didymella rabiei the causal agent of Ascochyta blight. Theor Appl Genet. 2006;113:1357–69. https://doi.org/10.1007/s00122-006-0390-3

Segura-Alabart N, Serratosa F, Gómez S, Fernández A. Nonunique UPGMA clusterings of microsatellite markers. Brief Bioinform 2022:23:bbac312. https://doi.org/10.1093/bib/bbac312

Ningwal R, Tripathi MK, Tiwari S, Asati R, Yadav RK, Tripathi N, Yasin M. Identification of polymorphic SSR markers and diversity analysis in a set of desi chickpea genotypes. Biol Forum. 2023a;15(3):45–51.

Rani R, Raza G, Tung MH, Rizwan M, Ashfaq H, Shimelis H. Genetic diversity and population structure analysis in cultivated soybean (Glycine max [L.] Merr.) using SSR and EST-SSR markers. PLoS One. 2023;18(5):e0286099. https://doi.org/10.1371/journal.pone.0286099

Kumar JSP, Susmita C, Sripathy KV, Agarwal DK, Pal G, Singh AN, et al. Molecular characterization and genetic diversity studies of Indian soybean (Glycine max (L.) Merr.) cultivars using SSR markers. Mol Biol Rep. 2022;49:2129–40. https://doi.org/10.1007/s11033-021-07030-4

Obua T, Julius PS, Stephen OO, Phinehas T, Thomas LO, Josiah MN. Genetic diversity and population structure analysis of tropical soybean (Glycine max (L.) Merr.) using single nucleotide polymorphic markers. Global J Sci Front Res. 2020;20:35?43. https://doi.org/10.34257/GJSFRDVOL20IS6PG35

Mazkirat S, Baitarakova K, Kudaybergenov M, Babissekova D, Bastaubayeva S, Bulatova K, Shavrukov Y. SSR Genotyping and marker–trait association with yield components in a Kazakh germplasm collection of chickpea (Cicer arietinum L.). Biomol. 2023;13:1722. https://doi.org/10.3390/biom13121722

Published

30-03-2025

Versions

How to Cite

1.
Rakesh KY, Manoj KT, Ruchi A, Niraj T. Microsatellite markers-based genotyping, population structure analysis and field screening of chickpea (Cicer arietinum L.) genotypes against Fusarium wilt. Plant Sci. Today [Internet]. 2025 Mar. 30 [cited 2025 Apr. 20];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/4587

Issue

Section

Research Articles