Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Enhancing rice aroma through innovative approaches

DOI
https://doi.org/10.14719/pst.4625
Submitted
11 August 2024
Published
16-10-2024
Versions

Abstract

Aromatic rice is used extensively in many different cuisines around the world for its wonderful aroma and cooking qualities. Aromatic rice varieties such as Basmati and non-Basmati fragrant rice have gained popularity in both domestic and foreign markets, despite their origins being predominantly in Southeast Asia and the Indian subcontinent. The primary gene responsible for rice aroma is the fgr/Badh2/Os2-AP, situated on chromosome 8 and encodes betaine aldehyde dehydrogenase 2 (Badh2). Key aroma compounds are attributed to over 500 volatiles. The primary aromatic molecule in rice, 2-acetyl-1-pyrroline (2-AP), accumulates as a result of mutations in this gene and gives rice its distinctive scent. Aroma is not decided by single compound rather it is decided by volatile profile and also by environmental factors. The identification of Quantitative Trait Loci (QTLs) linked to fragrance features on different chromosomes has improved our comprehension of the genetic processes behind rice scent. Advances in genetic engineering, particularly CRISPR/Cas9 and TALEN have facilitated the manipulation of the Badh2 gene, enhancing aroma profiles in rice. Additionally, gene silencing and introgression techniques have also proven in increasing 2-AP content. The review explores the biochemical properties and advancement of aromatic rice, emphasizing its complex inheritance patterns and potential for breeding improvement.

References

  1. Ahuja S, Panwar D, Uma A, Gupta K. Basmati rice: the scented pearl. Basmati rice: the scented pearl. 1995. Directorate of Publication, CCS Haryana Agricultural University, Hisar, India. p.11-24.
  2. Hashemi FG, Rafii M, Ismail M, Mahmud T, Rahim H, Asfaliza R, et al. Biochemical, genetic and molecular advances of fragrance characteristics in rice. Critical Reviews in Plant Sciences. 2013;32(6):p.445-57. https://doi.org/10.1080/07352689.2013.807716
  3. Wakte K, Zanan R, Hinge V, Khandagale K, Nadaf A, Henry R. Thirty-three years of 2-acetyl-1-pyrroline, a principal basmati aroma compound in scented rice (Oryza sativa L.): a status review. Journal of the Science of Food and Agriculture. 2017;97(2):384-95. https://doi.org/10.1080/07352689.2013.807716
  4. Prodhan ZH, Qingyao S. Rice aroma: A natural gift comes with price and the way forward. Rice Science. 2020;27(2):p.86-100.
  5. Hu EA, Pan A, Malik V, Sun Q. White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. Bmj. 2012;p.344. https://doi.org/10.1016/j.tifs.2020.01.003
  6. Yang X, Zandstra EH, Boesveldt S. How sweet odors affect healthy food choice: An eye-tracking study. Food Quality and Preference. 2023;109:p.104922.
  7. Juliano BO, Villareal C. Grain quality evaluation of world rices. Int Rice Res Inst.; 1993.
  8. Fitzgerald MA, McCouch SR, Hall RD. Not just a grain of rice: the quest for quality. Trends in Plant Science. 2009;14(3):p.133-39. https://doi.org/10.1016/j.plantsci.2008.06.005
  9. Jewel Z, Patwary A, Maniruzzaman S, Barua R, Begum S. Physico-chemical and genetic analysis of aromatic rice (Oryza sativa L.) germplasm. The Agriculturists. 2011;9(1-2):p.82-88. https://doi.org/10.3329/agric.v9i1-2.9482
  10. Kadaru SB. Identification of molecular markers and association mapping of selected loci associated with agronomic traits in rice. 2007. Ph.D, Louisiana State University and Agricultural and Mechanical college, Baton Rouge. LA, USA.
  11. Bordoloi D, Sarma D, Sarma Barua N, Das BK. Mutation induction in aromatic Joha rice of Assam for improvement of morpho-agronomic traits through M1 to M3 generation. International Journal of Radiation Biology. 2023;99(11):p.1760-77.
  12. Sharma A, Srivastava A, Singh S, Mishra S, Mohan S, Singh A, et al. Aromatic rice of India: It’s types and breeding strategies. Integrative Advances in Rice Research. 2021;59.
  13. Engle LM. The cytogentics of sterility in F1 hybrids of Indica x Indica and Indica x Javanica varieties of rice, Oryza sativa L. Philippine Agriculturist. 1969;53(5-6):p.289-307. https://doi.org/10.1508/cytologia.34.572
  14. Glaszmann J-C. Isozymes and classification of Asian rice varieties. Theoretical and Applied Genetics. 1987;74:p.21-30. https://doi.org/10.1007/BF00290078
  15. Luo H, Duan M, Kong L, He L, Chen Y, Wang Z, et al. The regulatory mechanism of 2-acetyl-1-pyrroline biosynthesis in fragrant Rice (Oryza sativa L.) under different soil moisture contents. Frontiers in Plant Science. 2021;12:p.772-28. https://doi.org/10.1016/j.tibtech.2013.04.004
  16. Luo H, Zhang T, Zheng A, He L, Lai R, Liu J, et al. Exogenous proline induces regulation in 2-acetyl-1-pyrroline (2-AP) biosynthesis and quality characters in fragrant rice (Oryza sativa L.). Scientific Reports. 2020;10(1):p.139-71. https://doi.org/10.1038/s41598-020-70984-1
  17. Patra PS, Saha R, Ahmed AS, Kanjilal B, Debnath MK, Paramanik B, et al. Enhancing aromatic rice production through agronomic and nutritional management for improved yield and quality. Scientific Reports. 2024;14(1):p.15555. https://doi.org/10.1038/s41598-024-65476-5
  18. Ramtekey V, Cherukuri S, Modha KG, Kumar A, Kethineni UB, Pal G, et al. Extraction, characterization, quantification and application of volatile aromatic compounds from Asian rice cultivars. Reviews in Analytical Chemistry. 2021;40(1):p.272-92. https://doi.org/10.1515/revac-2021-0137
  19. Singh U. Aromatic rices: Int Rice Res Inst.; 2000.
  20. Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. 2013;31(7):p.397-405. https://doi.org/10.1016/j.tibtech.2013.04.004
  21. Zaidi SS-e-A, Vanderschuren H, Qaim M, Mahfouz MM, Kohli A, Mansoor S, et al. New plant breeding 2019;363(6434):1390-91. https://doi.org/10.1126/science.aav6316
  22. Jiang Y, Cai Z, Xie W, Long T, Yu H, Zhang Q. Rice functional genomics research: progress and implications for crop genetic improvement. Biotechnology Advances. 2012;30(5):1059-70. https://doi.org/10.1016/j.biotechadv.2011.08.013
  23. Singh S, Singh M, Kumar S, Sravan US. Cultivation of aromatic rice: A review. Agronomic Crops: Volume 1: Production Technologies. 2019;175-98. https://doi.org/10.1007/978-981-32-9151-5_10
  24. Wambugu PW, Brozynska M, Furtado A, Waters DL, Henry RJ. Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Scientific Reports. 2015;5(1):p.13957. https://doi.org/10.1038/srep13957
  25. Bhattacharjee P, Singhal RS, Kulkarni PR. Basmati rice: a review. International Journal of Food Science and Technology. 2002;37(1):1-12. https://doi.org/10.1046/j.1365-2621.2002.00541.x
  26. Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S. Genetic structure and diversity in Oryza sativa L. Genetics. 2005;169(3):p.1631-38.
  27. RGP K. The 3000 rice genomes project. GigaScience. 2014;3(1):2047-175.
  28. Zhao K, Tung C-W, Eizenga GC, Wright MH, Ali ML, Price AH, et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications. 2011;2(1):p.467. https://doi.org/10.1038/ncomms1467
  29. Civá? P, Ali S, Batista-Navarro R, Drosou K, Ihejieto C, Chakraborty D, et al. Origin of the aromatic group of cultivated rice (Oryza sativa L.) traced to the Indian subcontinent. Genome Biology and Evolution. 2019;11(3):832-43. https://doi.org/10.1093/gbe/evz039
  30. Bourgis F, Guyot R, Gherbi H, Tailliez E, Amabile I, Salse J, et al. Characterization of the major fragance gene from an aromatic japonica rice and analysis of its diversity in Asian cultivated rice. Theoretical and Applied Genetics. 2008;117:353-68. https://doi.org/10.1007/s00122-008-0780-9
  31. Champagne ET. Rice aroma and flavor: a literature review. Cereal Chemistry. 2008;85(4):p.445-54. https://doi.org/10.1094/cchem-85-4-0445
  32. Ashokkumar S, Jaganathan D, Ramanathan V, Rahman H, Palaniswamy R, Kambale R, et al. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing. PloS One. 2020;15(8):e0237018. https://doi.org/10.1371/journal.pone.0237018
  33. Amarawathi Y, Singh R, Singh AK, Singh VP, Mohapatra T, Sharma TR, et al. Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.). Molecular Breeding. 2008;21:p.49-65. https://doi.org/10.1007/s11032-007-9108-8
  34. Kovach MJ, Calingacion MN, Fitzgerald MA, McCouch SR. The origin and evolution of fragrance in rice (Oryza sativa L.). Proceedings of the National Academy of Sciences. 2009;106(34):p.14444-49. https://doi.org/10.1073/pnas.0904077106
  35. Lang NT, Buu BC. Identification and fine mapping of SSR marker linked to fgr gene of rice. Omonrice. 2002;10:16-22.
  36. Lang NT, Buu BC. Development of PCR-based markers for aroma (fgr) gene in rice (Oryza sativa L.). Omonrice. 2008;16:p.16-23. https://doi.org/10.1111/j.1601-5223.1999.00121.x
  37. Jezussek M, Juliano BO, Schieberle P. Comparison of key aroma compounds in cooked brown rice varieties based on aroma extract dilution analyses. Journal of Agricultural and Food Chemistry. 2002;50(5):1101-05. https://doi.org/10.1021/jf0108720
  38. Hussain A, Mujtaba Naqvi S, Hammerschmidt F, editors. Isolation and identification of volatile components from basmati rice (Oryza sativa L.). Flavour Science and Technology: Proceedings of the 5th Weurman Flavour Research Symposium, held at the Sara Hotel, Voksenasen, Oslo, 23rd-25th March, 1987/edited by M Martens, GA Dalen and H Russwurm, Jr; 1987: Chichester [West Sussex]: Wiley, c1987.
  39. Lin CF, Hsieh TCY, Hoff BJ. Identification and quantification of the “Popcorn”-like aroma in Louisiana aromatic Delia rice (Oryza sativa L.). Journal of Food Science. 1990;55(5):p.1466-67. https://doi.org/10.1111/j.1365-2621.1990.tb03961.x
  40. Tanchotikul U, Hsieh TC. An improved method for quantification of 2-acetyl-1-pyrroline, a" popcorn"-like aroma, in aromatic rice by high-resolution gas chromatography/mass spectrometry/selected ion monitoring. Journal of Agricultural and Food Chemistry. 1991;39(5):p.944-47. https://doi.org/10.1021/jf00005a029
  41. Tava A, Bocchi S. Aroma of cooked rice (Oryza sativa): Comparison between commercial Basmati. 1999;76(4):p.526-29. https://doi.org/10.1094/cchem.1999.76.4.526
  42. Verma DK, Srivastav PP. Extraction technology for rice volatile aroma compounds. Food Engineering: Apple Academic Press. 2016;p. 281-328. https://dx.doi.org/10.13140/RG.2.1.5172.9364
  43. Widjaja R, Craske JD, Wootton M. Comparative studies on volatile components of non-fragrant and fragrant rices. Journal of the Science of Food and Agriculture. 1996;70(2):p.151-61. https://doi.org/10.1002/(sici)1097-0010(199602)70:2%3C151::aid-jsfa478%3E3.0.co;2-u
  44. Bergman C, Delgado J, Bryant R, Grimm C, Cadwallader K, Webb B. Rapid gas chromatographic technique for quantifying 2-acetyl-1-pyrroline and hexanal in rice (Oryza sativa L.). Cereal Chemistry. 2000;77(4):454-58. https://doi.org/10.1094/CCHEM.2000.77.4.454
  45. Wongpornchai S, Dumri K, Jongkaewwattana S, Siri B. Effects of drying methods and storage time on the aroma and milling quality of rice (Oryza sativa L.) cv. Khao Dawk Mali 105. Food Chemistry. 2004;87(3):407-14. https://doi.org/10.1016/j.foodchem.2003.12.014
  46. Kim C-Y, Lee J-C, Kim Y-H, Pyon J-Y, Lee S-G. Volatile flavor components of scent, colored and common rice cultivars in Korea. Korean Journal of Crop Science. 1999;44(3):p.181-85.
  47. Buttery RG, Turnbaugh JG, Ling LC. Contribution of volatiles to rice aroma. Journal of Agricultural and Food Chemistry. 1988;36(5):p.1006-09.
  48. Hu X, Lu L, Guo Z, Zhu Z. Volatile compounds, affecting factors and evaluation methods for rice aroma. 2020;97:p.136-46. https://doi.org/10.1016/j.tifs.2020.01.003
  49. McGorrin RJ. Character impact compounds: Flavors and off-flavors in foods. Flavor, Fragrance and Odor Analysis: CRC Press. 2001;p. 391-430. https://doi.org/10.1201/9780203908273.ch14
  50. Lam H, Proctor A. Milled rice oxidation volatiles and odor development. Journal of Food Science. 2003;68(9):p.2676-81. https://doi.org/10.1111/j.1365-2621.2003.tb05788.x
  51. Tananuwong K, Lertsiri S. Changes in volatile aroma compounds of organic fragrant rice during storage under different conditions. Journal of the Science of Food and Agriculture. 2010;90(10):1590-96. https://doi.org/10.1002/jsfa.3976
  52. Weber D, Rohilla R, Singh U. Chemistry and biochemistry of aroma in scented rice. Singh, Singh and Khush (eds), Aromatic Rices, Oxford and IBH Publ. 2000;p.29-46.
  53. Yang DS, Lee K-S, Jeong O-Y, Kim K-J, Kays SJ. Characterization of volatile aroma compounds. 2008;56(1):p.235-40. https://doi.org/10.1021/jf072360c
  54. Vanavichit A, Yoshihashi T. Molecular aspects of fragrance and aroma in rice. Advances in Botanical Research. 56: Elsevier. 2010;p. 49-73. https://doi.org/10.1016/B978-0-12-381518-7.00002-9
  55. Hinge VR, Patil HB, Nadaf AB. Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and Non-Basmati scented rice (Oryza sativa L.) cultivars. Rice. 2016;9(1):p.1-22. https://doi.org/10.1186/s12284-016-0113-6
  56. Poonlaphdecha J, Gantet P, Maraval I, Sauvage F-X, Menut C, Morère A, et al. Biosynthesis of 2-acetyl-1-pyrroline in rice calli cultures: Demonstration of 1-pyrroline as a limiting substrate. Food Chemistry. 2016;197:p.965-71. https://doi.org/10.1016/j.foodchem.2015.11.060
  57. Yoshihashi T, Huong NTT, Inatomi H. Precursors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety. Journal of Agricultural and Food Chemistry. 2002;50(7):p.2001-04. https://doi.org/10.1021/jf011268s
  58. Kaikavoosi K, Kad TD, Zanan RL, Nadaf AB. 2-acetyl-1-pyrroline augmentation in scented indica rice (Oryza sativa L.) varieties through ? 1-pyrroline-5-carboxylate synthetase (P5CS) gene transformation. Applied Biochemistry and Biotechnology. 2015;177:p.1466-79. https://doi.org/10.1007/s12010-015-1827-4
  59. Bradbury LM, Fitzgerald TL, Henry RJ, Jin Q, Waters DL. The gene for fragrance in rice. Plant Biotechnology Journal. 2005;3(3):p.363-70. https://doi.org/10.1111/j.1467-7652.2005.00131.x
  60. Peng B, Kong D, Song X, Li H, He L, Gong A, et al. A method for detection of main metabolites in aromatic rice seeds. Agricultural Biotechnology. 2018;7(1):p.112-16.
  61. Chakraborty D, Deb D, Ray A. An analysis of variation of the aroma gene in rice (Oryza sativa L. subsp. indica Kato) landraces. Genetic Resources and Crop Evolution. 2016;63(6):p.953-59. https://doi.org/10.1007/s10722-016-0414-z
  62. Ky H, Tung NCT, Hien NL, van Manh N, Thanh NN, Thanh VC, et al. Novel deletion in exon 7 of betaine aldehyde dehydrogenase 2 (BADH2). Rice Science. 2023;30(2):p.104-12. https://doi.org/10.1016/j.rsci.2023.01.003
  63. Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, et al. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Molecular Plant. 2013;6(4):p.1365-68. https://doi.org/10.1093/mp/sss162
  64. Chen S, Yang Y, Shi W, Ji Q, He F, Zhang Z, et al. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. The Plant Cell. 2008;20(7):p.1850-61. https://doi.org/10.1105/tpc.108.058917
  65. Shao G, Tang A, Tang S, Luo J, Jiao G, Wu J, et al. A new deletion mutation of fragrant gene and the development of three molecular markers for fragrance in rice. Plant Breeding. 2011;130(2):p.172-76. https://doi.org/10.1111/j.1439-0523.2009.01764.x
  66. Niu X, Tang W, Huang W, Ren G, Wang Q, Luo D, et al. RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.). BMC Plant Biology. 2008;8(1):p.1-10. https://doi.org/10.1186/1471-2229-8-100
  67. Ootsuka K, Takahashi I, Tanaka K, Itani T, Tabuchi H, Yoshihashi T, et al. Genetic polymorphisms in Japanese fragrant landraces and novel fragrant allele domesticated in northern Japan. Breeding Science. 2014;64(2):p.115-24. https://doi.org/10.1270/jsbbs.64.115
  68. Shi Y, Zhao G, Xu X, Li J. Discovery of a new fragrance allele and development of functional markers for identifying diverse fragrant genotypes in rice. Molecular Breeding. 2014;33:p.701-08. https://doi.org/10.1007/s11032-013-9986-x
  69. Sakthivel K, Sundaram R, Rani NS, Balachandran S, Neeraja C. Genetic and molecular basis of fragrance in rice. Biotechnology Advances. 2009;27(4):p.468-73. https://doi.org/10.1016/j.biotechadv.2009.04.001
  70. Lorieux M, Petrov M, Huang N, Guiderdoni E, Ghesquière A. Aroma in rice: genetic analysis of a quantitative trait. Theoretical and Applied Genetics. 1996;93:p.1145-51. https://doi.org/10.1007/BF00230138
  71. Talukdar PR, Rathi S, Pathak K, Chetia SK, Sarma RN. Population structure and marker-trait association in indigenous aromatic rice. Rice Science. 2017;24(3):p.145-54. https://doi.org/10.1016/j.rsci.2016.08.009
  72. Pachauri V, Mishra V, Mishra P, Singh AK, Singh S, Singh R, et al. Identification of candidate genes for rice grain aroma by combining QTL mapping and transcriptome profiling approaches. Cereal Research Communications. 2014;42:p.376-88. https://doi.org/10.1556/crc.42.2014.3.2
  73. Aqib Z, Ahmad S, Tabbasum J, Sheng Z, Peisong H. Rice grain yield and quality improvement via crispr/cas9 system: an updated review. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2022;50(3):p.12388.
  74. Hui S, Li H, Mawia AM, Zhou L, Cai J, Ahmad S, et al. Production of aromatic three-line hybrid rice using novel alleles of BADH2. Plant Biotechnology Journal. 2022;20(1):p.59-74. https://doi.org/10.1111/pbi.13695
  75. Shan Q, Zhang Y, Chen K, Zhang K, Gao C. Creation of fragrant rice by targeted knockout of the Os BADH 2 gene using TALEN technology. Plant Biotechnology Journal. 2015;13(6):p.791-800. https://doi.org/10.1111/pbi.12312
  76. Usman B, Nawaz G, Zhao N, Liu Y, Li R. Generation of high yielding and fragrant rice (Oryza sativa L.) lines by CRISPR/Cas9 targeted mutagenesis of three homoeologs of cytochrome P450 gene family and OsBADH2 and transcriptome and proteome profiling of revealed changes triggered by mutations. Plants. 2020;9(6):788. https://doi.org/10.3390/plants9060788
  77. Shao GaoNeng SG, Xie LiHong XL, Jiao Guiai JG, Wei XiangJin WX, Sheng ZhongHua SZ, Tang ShaoQing TS, et al. CRISPR/CAS9-mediated editing of the fragrant gene Badh2 in rice. 2017;31(2): p.216-22. https://doi.org/10.16819/j.1001-7216.2017.6098
  78. Tang Y, Abdelrahman M, Li J, Wang F, Ji Z, Qi H, et al. CRISPR/Cas9 induces exon skipping that facilitates development of fragrant rice. Plant Biotechnology Journal. 2021;19(4):p.642. https://doi.org/10.1111/pbi.13514
  79. Bradbury LM, Gillies SA, Brushett DJ, Waters DL, Henry RJ. Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Molecular Biology. 2008;68:p.439-49. https://doi.org/10.1007/s11103-008-9381-x
  80. Warthmann N, Chen H, Ossowski S, Weigel D, Hervé P. Highly specific gene silencing by artificial miRNAs in rice. PLoS One. 2008;3(3):e1829. https://doi.org/10.1371/journal.pone.0001829
  81. Khandagale KS, Chavhan R, Nadaf AB. RNAi-mediated down regulation of BADH2 gene for expression of 2-acetyl-1-pyrroline in non-scented indica rice IR-64 (Oryza sativa L.). 3 Biotech. 2020;10(4):p.145. https://doi.org/10.1007/s13205-020-2131-8
  82. Ossowski S, Schwab R, Weigel D. Gene silencing in plants using artificial microRNAs and other small RNAs. The Plant Journal. 2008;53(4):p.674-90. https://doi.org/10.1111/j.1365-313x.2007.03328.x
  83. Dormatey R, Sun C, Ali K, Coulter JA, Bi Z, Bai J. Gene pyramiding for sustainable crop improvement against biotic and abiotic stresses. Agronomy. 2020;10(9):p.1255.
  84. Wang Y, Tang S, Guo N, An R, Ren Z, Hu S, et al. Pyramiding rice blast resistance gene Pi2 and fragrance gene badh2. Agronomy. 2023;13(2):p.589. https://doi.org/10.3390/agronomy13020589
  85. Khandagale KS, Chavan R, Nadaf AB. RNAi mediated down regulation of BADH2 gene for expression of 2-acetyl-1-pyrroline in non-scented indica rice IR-64 (Oryza sativa L.). Can J Biotechnol. 2017;1:p.169. https://doi.org/10.24870/cjb.2017-a155
  86. Shi W, Yang Y, Chen S, Xu M. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Molecular Breeding. 2008;22:p.185-92. https://doi.org/10.1007/s11032-008-9165-7
  87. Shao G, Tang S, Chen M, Wei X, He J, Luo J, et al. Haplotype variation at Badh2, the gene determining fragrance in rice. Genomics. 2013;101(2):p.157-62. https://doi.org/10.1016/j.ygeno.2012.11.010
  88. He Q, Park Y-J. Discovery of a novel fragrant allele and development of functional markers for fragrance in rice. Molecular Breeding. 2015;35:p.1-10. https://doi.org/10.1007/s11032-015-0412-4
  89. Ganigara Bindusree GB, Purushothaman Natarajan PN, Sukesh Kalva SK, Parani Madasamy PM. Whole genome sequencing of Oryza sativa L. cv. seeragasamba identifies a new fragrance allele in rice. 2017;12(11);e0188920. https://doi.org/10.1371/journal.pone.0188920
  90. Information NCfB. PubChem compound summary for CID 17100, alpha-terpineol: Pubchem; 2024 [updated 07-09-2024. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Alpha-Terpineol.
  91. Information NCfB. PubChem compound summary for CID 522834, 2-acetyl-1-pyrroline 2024 [updated 07-09-2024. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/2-Acetyl-1-pyrroline.
  92. Information NCfB. PubChem compound summary for CID 8103, 1-hexanol 2024 [updated 07-09-2024. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/1-Hexanol.
  93. Information NCfB. PubChem compound summary for CID 454, octanal. 2024 [updated 09-07-2024. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Octanal.
  94. Information NCfB. PubChem compound summary for CID 31289, nonanal. 2024 [pdated 07-09-2024. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Nonanal.
  95. Information NCfB. PubChem compound summary for CID 18827, 1-octen-3-OL. 2024 [updated 07-09-2024. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/1-Octen-3-OL.
  96. Information NCfB. PubChem compound summary for CID 19602, 2-pentylfuran. 2024 [updated 07-09-2024. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/2-Pentylfuran.
  97. Information NCfB. PubChem compound summary for CID 34286, 2-methyl-3-furanthiol. 2024 [updated 07-09-2024. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/2-Methyl-3-furanthiol.

Downloads

Download data is not yet available.