Nematicides: history, mode, and mechanism action
DOI:
https://doi.org/10.14719/pst.2019.6.2.468Keywords:
abamectin, carbamates, fumigants, non-fumigants, nematodes, organophosphatesAbstract
Nematodes are non-segmented invertebrate animals, which are one of the major phytosanitary problems worldwide, especially in tropical and subtropical regions, attacking the root system of plants they removing photo-assimilates and reducing the absorption capacity of water and nutrients of plant. In order to avoid economic losses by reducing productivity and quality, synthetic compounds have been developed to control nematodes. The use of these synthetic compounds, known as chemical control, has high economic importance, being the current tool most used by farmers for control of these individuals. Moreover, only in Brazil, the trade of these products reaches hundreds of millions of dollars per year. This review aims to address the fundamental aspects of nematode biology and the chemical control of the major genus (Meloidogyne, Heterodera, and Globodera). It covers the historical evolution of the chemical control agents since its beginning in the nineteenth century until today, their mode of action (fumigants and non-fumigants), mechanisms of action (inhibition of the acetylcholinesterase enzyme, opening of the chloride channel, inhibition of electron transport in the electron transport chain, enzymatic inactivation, as a Dauer phase-inducing agent or agent that ensures the organism remains irreversibly in the Dauer phase), the products available for each crop, including their commercial names and forms of application.
Downloads
References
2. Agrios GN. Plant pathology. 5th ed. Department of Plant Pathology, University of Florida. Elsevier Academic Press; 2005.
3. Bernard GC, Egnin M, Bonsi C. The Impact of Plant-Parasitic Nematodes on Agriculture and Methods of Control. Nematology: Concepts, Diagnosis and Control. 2017. https://doi.org/10.5772/intechopen.68958
4. Souza DSL. Seleção e avaliação funcional de fatores potencialmente envolvidos com interações entre plantas e nematoides parasitas. Tese em Biologia Molecular – UnB, Brasília. 2008; 146.
5. Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG et al. Top 10 plant?parasitic nematodes. Mol Plant Pathol. 2013; 14: 946-961. https://doi.org/10.1111/mpp.12057
6. Arieira, GO. Diversidade de nematoides em sistemas de culturas e manejo do solo. Tese em Agronomia, UEM, Londrina. 2012; 98. Available from: http://docentes.esalq.usp.br/sbn/ajuda/disgio.pdf
7. Lambert K, S Bekal. Introduction to Plant-Parasitic Nematodes. The Plant Health Instructor. 2002. https://doi.org/10.1094/PHI-I-2002-1218-01
8. Almeida JE, Santos JM, Martins ABG. Influência do parasitismo pelo nematoide de galhas nos níveis de nutrientes em folhas e na fenologia de goiabeira ‘Paluma’. Bragantia. 2011; 70 (4): 876-881. Available from: http://www.scielo.br/pdf/brag/v70n4/21.pdf
9. McCarter JP, Mitreva MD, Martin J, Dante M, Wylie T, Rao U et al. Analysis and functional classification of transcripts from the nematode Meloidogyne incognita. Genome Biology. 2003; 4:26. https://doi.org/10.1186/gb-2003-4-4-r26
10. Nunes HT, Monteiro AC, Pomela AWV. Uso de agentes microbianos e químico para o controle de Meloidogyne incognita em soja. Acta Sci Agron. (Online). 2010; 32(3): 403-409. https://doi.org/10.4025/actasciagron.v32i3.2166
11. Silva WRJ, Machado ART, Campos VAC, Zeri ACM, Campos VP, Oliveira DF. Volatile organic compounds for the control of Meloidogyne exigua in Coffea arabica. Trop. plant pathol. 2013; 38 (5): 375-386. [cited 01 Apr. 2018]. Available from http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1982-56762013000500002&lng=en&nrm=iso
12. Dinardo-Miranda LL, Menegatti CC. Danos causados por nematoides a variedades de cana-de-açúcar em cana planta. Nematol Bras. 2003; 27(1): 69-73.
13. Abd-Elgawad MMM, Askary TH. Impact of phytonematodes on agriculture economy. Biocontrol Agents of Phytonematodes. CABI, Wallingford, UK. 2015.
14. Singh S, Singh B, Singh AP. Nematodes: A Threat to Sustainability of Agriculture. Procedia Environ Sci. 2015; 29: 215-216. https://doi.org/10.1016/j.proenv.2015.07.270
15. Ferraz LCCB, Brown DJF. Nematologia de plantas: Fundamentos e importância. Norma Editora, Manaus – AM. 2016; p. 251.
16. Rich JR, Dunn RA, Noling JW. Nematology: advances and perspectives. Tsinghua University Press, Xue Yan Building, Tsinghua University, Beijing, 100084, PR China, 2003.
17. Taylor AL. Nematocides and Nematicides – A history. Nematropica. 2003; 33 (2).
18. Starr JL, Koenning SR, Kirkpatrick TL, Robinson AF, Roberts PA, Nichols RL. The future of nematode management in cotton. J Nematol. 2007; 39:283-294.
19. Kim J, Mwamula A, Kabir M. Efficacy of Different Nematicidal Compounds on Hatching and Mortality of Heterodera schachtii Infective Juveniles. The Korean Journal of Pesticide Science. 2016; 20 (4): 293-299. https://doi.org/10.7585/kjps.2016.20.4.293
20. Taylor, AL. Nematocides and nematicides-histov. Florida Department of Agriculture and Consumer Services, Division of Plant Industry Memo Series. 1979; 11.
21. Jones RK, Fourie H, Spaull VW, Daneel MS, Waele D. Nematology in South Africa: A View from the 21st Century. © Springer International Publishing Switzerland. 2017. https://doi.org/10.1007/978-3-319-44210-5
22. Desaeger J, Dickson DW, Locascio SJ. Methyl Bromide Alternatives for Control of Root-knot Nematode (Meloidogyne spp.) in Tomato Production in Florida. . J Nematol. 2017; 49(2): 140-140.
23. Galbieri R, Belot JL. Nematoides fitoparasitas do algodoeiro nos cerrados brasileiros: biologia e medidas de controle. Instituto Mato-grossense do Algodão – IMAmt Boletim de P&D. 2016; 3: 23.
24. Inomoto MM, Asmus GL. Controle de nematoides une resistência, rotação e nematicidas. Visão Agrícola. 2006; 47-50. [cited 09 Jun. 2018]. Available from: http://nematologia.com.br/wp-content/uploads/2012/07/marimus.pdf
25. Dinardo-Miranda LL, Morelli JL, Landell MGA, Silva MA. Comportamento de genótipos de cana-de-açúcar em relação a Pratylenchus zeae. Nematol Bras. 1996; 20(2): 52-58.
26. Vitti AJ. Tratamento de sementes de soja (Glycine max (L.) Merr.) com abamectina, tiabendazol e acibezolar-S-metil no manejo de nematoides. 2009; 120 p. Tese (Doutorado em Agronomia: Produção Vegetal) – Escola de Agronomia e Engenharia de Alimentos, Universidade Federal de Goiás, Goiânia.
27. Faske TR, Starr JL. Cotton root protection from plant-parasitic nematodes by abamectin treated seed. J Nematol. 2007; 39: 27-30.
28. Agrofit, Ministério da Agricultura, Pecuária e Abastecimento. 2018. [internet] [cited 22 Jun. 2018]. Available from: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons
29. Spurr HW. Mode of action of nematicides. In: Sasser, J.N. & Carter, C.C. (Eds). An advanced treatise on Meloidogyne, v.1, Biology and Control. 1985; p. 269-276.
30. Tao T, Maciel GE. Interaction of Methyl Bromide with Soil. Environ. Sci. Technol. 2002; 36: 603-60. https://doi.org/10.1021/es010943b
31. Gowen SR. Plant Nematode Problems and their Control in the Near East Region – FAO. Plant Production and Protection Paper – 144. Part. I: Chemical control of nematodes: efficiency and side-effects. Karachi: University of Karachi. 1992.
32. Nowling JW. Movement and Toxicity of Nematicides in the Plant Root Zone. IFAS Extension – University of Florida. 1997; 8.
33. Nasr, HM. Toxicity and Biochemical Effect of Organophosphates and Bio-pesticides against Root-knot Nematode, Meloidogyne incógnita. J Pollut Eff. 2015; Cont: 4: 151. https://doi.org/10.4172/2375-4397.1000151
34. Cayrol JC, Djian JP, Frankowski C. Efficacy of abamectin B1 for the control of Meloidogyne arenaria. Fundam. Appl. Nematol. 1993; 16:239-246.
35. Aguiar NDC. Impacto do isotiocianato de alila sobre a comunidade microbiana e indicadores microbiológicos do solo. Tese (doutorado), Universidade Federal de Viçosa. 2012; 122.
36. Chitwood DJ. Encyclopedia of Agrochemicals. Nematicides. 3 Volume set. 2002; p. 1638: 1104-15.
37. Nelmes AJ. Behavioral responses of Heterodera rostochiensis larvae to aldicarb and its sulfoxide and sulfone. J Nematol. 1970; 2:223-227.
38. Huang SP, Van Gundy SD. Effects of Aldicarb and Its Sulfoxide and Sulfone on the Biology of Tylenchulus semipenetrans. J Nematol. 1978; 10: 100-106
39. Mangelsdorf DJ, Auchus RJ, Motola DL, Cummins CL, Sharma KK. Ligands for nematode nuclear receptors and uses thereof. United States Patent Application Publication. 2011; 22p. [cited 17 Jun. 2018]. Available from: https://patents.google.com/patent/US20110028443
40. Karp X. Working with Dauer Larvae.” WormBook?: the online review of C. elegans biology. PMC 2016; 1-19. https://doi.org/10.1895/wormbook.1.180.1
41. Cabrera JA, Klewnick S, Frimm C, Dababat AA, SikoraI RA. Efficacy of abamectin seed treatment on Pratylenchus zeae, Meloidogyne incognita and Heterodera schachtii. J Plant Dis Prot. 2009; 116: 124-128. https://doi.org/10.1007/BF03356298
42. Novaretti WRT, Reis AM. Influência do método de aplicação de nematicidas no controle de Pratylenchus zeae em soqueiras de cana-de-açúcar e definição dos níveis de dano e de controle. Nematol Bras. 2009; 33:83-89.
43. Corte GD, Pintol FF, Stefanello MT, Gulart C, Ramos JP, Balardin RS. Tecnologia de aplicação de agrotóxicos no controle de fitonematoides em soja. Cienc Rural. 2014; 44(9): 1534-1540. https://doi.org/10.1590/0103-8478cr20130738
44. Bortolini GL, Araújo DV, Zavislak FD, Júnior-Romano J, Krause W. Controle de Pratylenchus brachyuru via tratamento de semente de soja. Enciclopédia Biosfera. 2013; 9(17); 818-830
45. Kubo R. K, Machado ACZ, Oliveira CMG. Efeito do tratamento de sementes no controle de ?Rotylenchulus reniformes em duas cultivares de algodão. In ?7° Congresso Brasileiro de Algodão?. Foz do Iguaçu, PR. 2009.
46. Corte GD. Tecnologia de aplicação de agrotóxicos no controle de fitonematoides em soja. Dissertação (Mestrado), Universidade Federal de Santa Maria, Santa Maria. 2013; p. 61. [cited 14 May. 2018]. Available from: https://repositorio.ufsm.br/bitstream/handle/1/7572/DALLA%20CORTE%2c%20GERSON.pdf
47. Santos OS. Aplicação em sulco de nematicidas em soja. Dissertação (Mestrado), Universidade Federal de Santa Maria - RS, Centro de Ciências Rurais. 2015; 51.
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).