Evaluation of antimalarial potential of Artemisia nilagirica against chloroquine resistant and sensitive strains of Plasmodium falciparum
DOI:
https://doi.org/10.14719/pst.4806Keywords:
antimalarial activity, Artemisia nilagirica, chloroquine resistant, chloroquine sensitive, Plasmodium falciparumAbstract
Malaria represents a major vector borne global health problem. The greatest challenge in the malarial treatment is due to the increasing resistance of parasite to antimalarial drugs. The rise of drug-resistant malaria parasites is undermining the effectiveness of more potential drugs. Consequently, there is an urgent requirement for novel antimalarial compounds to manage this disease. Therefore, the current investigation is designed to analyze the antimalarial properties of Artemisia nilagirica against chloroquine (CQ) resistant K1 strain and chloroquine-sensitive 3D7 strain through different solvent extracts of various plant parts (root, stem, leaf and flower). Among the multiple extracts tested, the methanolic flower extract exhibited the highest antiplasmodial activity against CQ resistant K1 strain (IC50= 5.76 ?g/mL) and CQ-sensitive 3D7 strain (IC50= 6.24 ?g/mL) respectively. The lowest values of antimalarial activity were reported in aqueous extract of root against CQ resistant K1 strain (IC50= 68.83 ?g/mL) and CQ sensitive 3D7 strain (IC50= 70.02 ?g/mL). However, moderate activity was reported in chloroform, n-hexane, petroleum ether and ethanol extracts. The GC-MS investigation of methanol extracts of flower confirmed the availability of specific bioactive compounds like bicyclo (2.2.1) heptane-2-one 1,7,7-trimethyl, bicyclo (3.1.1) heptanes 2,4,6-trimethyl, 1,6- cyclodecadiene 1- methyl-5- methylene-8-(1-methyl ethyl) and 3,3- iminosprolamine, 3- methyl-3,5 (cyanoethyl) tetrahydro-4-thiopyranone which are responsible for antiplasmodial activity. The present study’s findings confirm the potential antimicrobial activity of flower methanolic extracts of A. nilagirica against CQ resistant and sensitive strains of P. falciparum.
Downloads
References
Murray GPD, Lissenden N, Jones J, Voloshin V, Toe HK, Sherrard- Smith E, et al. Barrier bednets target malaria vectors and expand the range of usable insecticides. Nat Microbiol. 2020;5(1):40-47. https://doi.org/10.1038/s41564-019-0607-2
Nathan SS, Hisham A, Jayakumar G. Larvicidal and growth inhibition of the malaria vector Anopheles stephensi by triterpenes from Dysoxylum malabaricum and Dysoxylum beddomei. Fitoterapia. 2008;79(2):106-11. https://doi.org/10.1016/j.fitote.2007.07.013
WHO guidelines for malaria. World Health Organization; 2023 Mar 14 [Internet]. Available from: https://www.who.int/ publications/i/item/guidelines-for-malaria
Kumar A, Valecha N, Jain T, Dash AP. Burden of malaria in India: retrospective and prospective view. Am J Trop Med Hyg. 2007;77 (6):69-78. https://doi.org/10.4269/ajtmh.2007.77.69
Kamal S, Chandra R, Singh RM, Kumar A, Singh RK, Srivastava R. Mass drug administration (MDA) for lymphatic filariasis elimination in Uttar Pradesh: lessons learnt. J Commun Dis. 2023;60-70. https:// doi.org/10.24321/0019.5138.202033
Dhal P, Rout JR, Dash PK, Panda S, Pati P, Rath CC, et al. Larvicidal and pupicidal activity of Clerodendrum philippinum Schauer leaf extracts against Anopheles stephensi and Aedes aegypti. Phcog J. 2018;10(6):1137-42. https://doi.org/10.5530/pj.2018.6.194
Panda S, Rout JR, Pati P, Ranjit M, Sahoo SL. Antimalarial activity of Artemisia nilagirica against Plasmodium falciparum. J Parasit Dis. 2018;42(1):22-27. https://doi.org/10.1007/s12639-017-0956-9
Flegg JA, Guerin PJ, White NJ, Stepniewska K. Standardizing the measurement of parasite clearance in falciparum malaria: the parasite clearance estimator. Malar J. 2011;10:339. https:// doi.org/10.1186/1475-2875-10-339
Tane P, Tatsimo SD, Ayimele GA, Connolly JD. Bioactive metabolites from Aframomum species. In: 11th NAPRECA Symposium Book of Proceedings. Madagascar: Antananarivo. 2005;214:214-23. Available from: https://www.researchgate.net/ publication/268424491_Bioactive_metabolites_from_Aframomum_s pecies
Kodippili K, Wanigasekera DR, Sirimal P, Udagama PV. An investigation of the antimalarial activity of Artemisia vulgaris leaf extract in a rodent malaria model. Int J Green Pharm. 2011;5(4):276- 81. https://doi.org/10.4103/0973-8258.94347
Hidayati AR, Widyawaruyanti A, Ilmi H, Tanjung M, Widiandani T, Siswandono, et al. Antimalarial activity of flavonoid compound isolated from leaves of Artocarpus altilis. Phcog J. 2020;12(4):835-42. https://doi.org/10.5530/pj.2020.12.120
Ginsburg H, Deharo E. A call for using natural compounds in the development of new antimalarial treatments-an introduction. Malar J. 2011;10(Suppl1):1-6. https://doi.org/10.1186/1475-2875-10-S1-S1
Tsabang N, Fokou PV, Tchokouaha LR, Noguem B, Bakarnga-Via I, Nguepi MS, et al. Ethnopharmacological survey of Annonaceae medicinal plants used to treat malaria in four areas of Cameroon. J Ethnopharmacol. 2012;139(1):171-80. https://doi.org/10.1016/ j.jep.2011.10.035
Bele A, Khale A. An overview on thin layer chromatography. Int J Pharm Sci Res. 2011;2(2):256-67. http://dx.doi.org/10.13040/ IJPSR.0975-8232.2(2).256–67
Batista R, Silva AJJr, de Oliveira AB. Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II. Nonalkaloidal natural products. Molecules. 2009;14(8):3037-72. https:// doi:10.3390/molecules14083037
Waiganjo B, Moriasi G, Onyancha J, Elias N, Muregi F. Antiplasmodial and cytotoxic activities of extracts of selected medicinal plants used to treat malaria in Embu County, Kenya. J Parasitol Res. 2020;8871375. https://doi.org/10.1155/2020/8871375
Randrianarivelojosia M, Raveloson A, Randriamanantena A, Juliano JJ, Andrianjafy T, Raharimalala LA, Robert V. Lessons learnt from the six decades of chloroquine use (1945-2005) to control malaria in Madagascar. Trans R Soc Trop Med Hyg. 2009;103(1):3-10. https:// doi.org/10.1016/j.trstmh.2008.09.013
Payne D. Did medicated salt hasten the spread of chloroquine resistance in Plasmodium falciparum?. Parasitol Today. 1988;4:112- 15. https://doi.org/10.1016/0169-4758(88)90042-7
Duraisingh MT, Cowman AF. Contribution of the pfmdr1 gene to antimalarial drug-resistance. Acta Trop. 2005;94(3):181-90. https:// doi.org/10.1016/j.actatropica.2005.04.008
Sidhu AB, Verdier-Pinard D, Fidock DA. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science. 2002;5591:210-13. https://doi.org/10.1126/ science.1074045
Chinappi M, Via A, Marcatili P, Tramontano A. On the mechanism of chloroquine resistance in Plasmodium falciparum. PLoS One. 2010;5 (11):e14064. https://doi.org/10.1371/journal.pone.0014064
Wicht KJ, Mok S, Fidock DA. Molecular mechanisms of drug resistance in Plasmodium falciparum malaria. Annu Rev Microbiol. 2020;74:431-54. https://doi.org/10.1146/annurev-micro-020518-115546
Joshi V, Agurto C, Barriga S, Nemeth S, Soliz P, MacCormick JL, et al. Automated detection of malarial retinopathy in digital fundus images for improved diagnosis in Malawian children with clinically defined cerebral malaria. Sci Rep. 2017;7:42703. https:// doi.org/10.1038/srep42703
Suresh KP. An overview of randomization techniques: an unbiased assessment of outcome in clinical research. J Hum Reprod Sci. 2011;4(1):8-11. https://doi.org/10.4103/0974-1208.82352
Rani A, Nagpal BN, Singh H, Mehta SS, Srivastava A, Saxena R. Potential role of Anopheles subpictus as a malaria vector in Ghaziabad district, Uttar Pradesh, India. Int J Trop Insect Sci. 2021;41:1107-17. https://doi.org/10.1007/s42690-020-00296-4
Sati P, van Gelderen P, Silva AC, Reich DS, Merkle H, de Zwart JA, Duyn JH. Micro-compartment specific T2* relaxation in the brain. Neuroimage. 2013;77:268-78. https://doi.org/10.1016/ j.neuroimage.2013.03.005
Stappen I, Wanner J, Tabanca N, Wedge DE, Ali A, Khan IA, et al. Chemical composition and biological effects of Artemisia maritima and Artemisia nilagirica essential oils from wild plants of western Himalaya. Planta Med. 2014;80(13):1079-87. https:// doi.org/10.1055/s-0034-1382957
Valecha N, Biswas S, Badoni V, Bhandari KS, Sati OP. Antimalarial activity of Artemisia japonica, Artemisia maritima and Artemisia nilegarica. Indian J Pharmacol. 1994;26(2):144-46.
Sulekha MP, Reddy G, Muthuvel A. Physicochemical and phytochemical standardization of polyherbal Siddha formulation 'Karisalai Chooranam'. Indian J Tradit Knowl. 2017;16(2):263-69.
Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193(4254):673-75. https://doi.org/10.1126/ science.781840
Kalra BS, Chawla S, Gupta P, Valecha N. Screening of antimalarial drugs: an overview. Indian J Pharmacol. 2006;38(1):5-12.
Kwansa-Bentum B, Agyeman K, Larbi-Akor J, Anyigba C, Appiah- Opong R. In vitro assessment of antiplasmodial activity and cytotoxicity of Polyalthia longifolia leaf extracts on Plasmodium falciparum strain NF54. Malar Res Treat. 2019;2019:6976298. https:// doi.org/10.1155/2019/6976298
White NJ. The role of antimalarial drugs in eliminating malaria. Malar J. 2008;7:1-6. https://doi.org/10.1186/1475-2875-7-S1-S8
Habibi P, Shi Y, Fatima GM, Khan I. Plants as sources of natural and recombinant antimalaria agents. Mol Biotechnol. 2022;64(11):1177- 97. https://doi.org/10.1007/s12033-022-00499-9
Ahmed MA, Ameyaw EO, Ackah-Armah F, Acheampong DO, Amoani B, Ampomah P, et al. In vitro and in vivo antimalarial activities of Avicennia africana P. Beauv. (Avicenniaceae) ethanolic leaf extract. J Tradit Complement Med. 2021;12(4):391-401. https:// doi.org/10.1016/j.jtcme.2021.11.004
Sidiki NNA, Nadia NAC, Cedric Y, Azizi MA, Kevin TDA, Guy-Armand GN, et al. In vitro antiplasmodial, antioxidant and cytotoxicity activity of Terminalia macroptera traditionally used in Cameroon against malaria. J Herb Med. 2023;41:100723. https:// doi.org/10.1016/j.hermed.2023.100723
Wahyuni DK, Wacharasindhu S, Bankeeree W, Wahyuningsih SPA, Ekasari W, Purnobasuki H, et al. In vitro and in vivo antiplasmodial activities of leaf extracts from Sonchus arvensis L. BMC Complement Med Ther. 2023;23(47):1-12. https://doi.org/10.1186/s12906-023-03871-7
Nwonuma CO, Balogun EA, Gyebi GA. Evaluation of antimalarial activity of ethanolic extract of Annona muricata L.: an in vivo and an in silico approach. J Evid Based Integr Med. 2023;28:2515690X231165104. https://doi.org/10.1177/2515690x231165104
Oladeji OS, Abimbola PO, Adewumi OD. In vivo antiplasmodial activity and phytochemical composition of Landolphia dulcis (Sabine ex G. Don) Pichon bark and leaf extracts. S Afr J Bot. 2023;159:43-50. https://doi.org/10.1016/j.sajb.2023.05.031
Chaniad P, Phuwajaroanpong A, Techarang T, Viriyavejakul P, Chukaew A, Punsawad C. Antiplasmodial activity and cytotoxicity of plant extracts from the Asteraceae and Rubiaceae families. Heliyon. 2022;8(1):e08848. https://doi.org/10.1016/j.heliyon.2022.e08848
Ejigu YW, Endalifer BL. In vitro anti-plasmodial activity of three selected medicinal plants that are used in local traditional medicine in Amhara region of Ethiopia. BMC Pharmacol Toxicol. 2023;24 (1):30. https://doi.org/10.1186/s40360-023-00672-z
Somsak V, Borkaew P, Klubsri C, Dondee K, Bootprom P, Saiphet B. Antimalarial properties of aqueous crude extracts of Gynostemma pentaphyllum and Moringa oleifera leaves in combination with artesunate in Plasmodium berghei-infected mice. J Trop Med. 2016;8031392. https://doi.org/10.1155/2016/8031392
Boampong NJ, Ameyaw E, Kyei S. In vivo antimalarial activity of stem bark extracts of Plumeria alba against Plasmodium berghei in imprinting control region mice. Rep Parasitol. 2013;3:19-25. https:// doi.org/10.2147/rip.s45492
Chaniad P, Phuwajaroanpong A, Plirat W, Konyanee A, Septama AW, Punsawad C. Assessment of antimalarial activity of crude extract of Chan-Ta-Lee-La and Pra-Sa-Chan-Dang formulations and their plant ingredients for new drug candidates of malaria treatment: In vitro and in vivo experiments. PLoS One. 2024;19(1):e0296756. https://doi.org/10.1371/journal.pone.0296756
Moyo P, Mugumbate G, Eloff JN, Louw AI, Maharaj VJ, Birkholtz LM. Natural products: A potential source of malaria transmission blocking drugs?. Pharmaceuticals (Basel). 2020;13(9):251. https:// doi.org/doi:10.3390/ph13090251
Bairy A, Anumula V, Sujatha D, Veera S, Jyothi P, Allini VR, Thammidala CR. GC–MS analysis of phytocomponents from the leaf, stem and root methanolic extracts of Artemisia nilagirica (C.B. Clarke) Pamp. J Adv Zool. 2024;45(2):1810-19. https:// doi.org/10.53555/jaz.v45i2.4773
Shukla V, Pala Z, Alok A, Desai N. Screening of different artemisia spp. from western ghats of Maharashtra for an antimalarial compound-artemisinin. Am J Plant Sci. 2015;6:1619-32. https:// doi.org/10.4236/ajps.2015.69162

Downloads
Published
Versions
- 22-02-2025 (2)
- 17-02-2025 (1)
How to Cite
Issue
Section
License
Copyright (c) 2025 S Panda, S L Sahoo, M Ranjit, J R Rout

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).