Comparative metabolic profiling of resistant and susceptible mungbean (Vigna radiata L. Wilczek) genotypes to elucidate the defense response against mungbean yellow mosaic virus (MYMV) disease

Authors

DOI:

https://doi.org/10.14719/pst.4858

Keywords:

biomarkers, GC- MS, metabolomics, mungbean, MYMV resistance

Abstract

Mungbean Yellow Mosaic Virus (MYMV) disease significantly impacts mungbean crop productivity, with the losses ranging from 10 to 100 percent. Developing host plant resistance offers a sustainable solution to mitigate this challenge. The metabolic changes underlying resistance to MYMV remain primarily unexplored in mungbean. The present study used nontargeted metabolomic profiling to analyze the comparative metabolic changes in resistant and susceptible genotypes upon disease incidence. The methanol extract of leaf samples collected from MYMV disease resistant (GAM 5) and susceptible (ADT 3) genotypes upon occurrence of MYMV disease were subjected to gas chromatography – mass spectrophotometry (GC-MS) analysis. Metabolic profiling resulted in the identification of 40 and 49 metabolites in resistant and susceptible genotypes, respectively. The fold change analysis revealed that 12 metabolites showed significant differences in the abundance level between resistant and susceptible genotypes. Out of 12, nine metabolites were significantly up-regulated in the resistant genotype compared to the susceptible genotype. For all the up-regulated metabolites except Erythrodiol, their role in plant-pathogen interaction was identified as either antimicrobial (ethylene glycol, chlorogenic acid, trifolin), antiviral activity (diphenyl sulfone, 2-amino oxazole), antifeedant (betulin), changes in the specific biochemical and structural property (xylose) or involvement in signaling cascade (oleic acid). These metabolites act as a metabolic biomarker; their interaction with specific molecular targets associated with MYMV infection can be further examined and utilized to rapidly develop MYMV-resistant cultivars in mungbean.

Downloads

References

Bhardwaj R, Gayacharan, Gawade BH, Pathania P, Talukdar A, Kumar P, et al. Identification of heat-tolerant mungbean genotypes through morpho-physiological evaluation and key gene expression analysis. Front Genet. 2024;15:1482956. https://doi.org/10.3389/fgene.2024.1482956

Diatta AA, Abaye O, Battaglia ML, Leme JF, Seleiman M, Babur E, et al. Mungbean [Vigna radiata (L.) Wilczek] and its potential for crop diversification and sustainable food production in Sub-Saharan Africa: A review. Technol Agron. 2024;4:e031. https://doi:10.48130/tia-0024-0030

Shanthala J, Savithramma DL, Gazala P, Jambagi BK, Desai SKP. Genomics-assisted breeding green gram (Vigna radiata (L.) Wilczek) for accelerating genetic gain. In: Gosal SS, Wani SH, editors. Accelerated plant breeding, Volume 3. Cham: Springer; 2020. p. 143-71. https://doi.org/10.1007/978-3-030-47306-8_5

Balasubramaniam M, Thangavel T, Aiyanathan KEA, Rathnasamy SA, Rajagopalan VR, Subbarayalu M, et al. Unveiling mungbean yellow mosaic virus: Molecular insights and infectivity validation in mung bean (Vigna radiata) via infectious clones. Front Plant Sci. 2024;15:1401526. https://doi.org/10.3389/fpls.2024.1401526

Sen Gupta D, Kumar J, Lamichaney A, Parihar AK, Das SP, Kumar A, et al. Genetics for seed traits and Mungbean Yellow Mosaic India Virus reaction in urdbean (Vigna mungo L. Hepper). Legum sci. 2023;e180. https://doi.org/10.1002/leg3.180

Karthikeyan A, Shobhana VG, Sudha M, Raveendran M, Senthil N, Pandiyan M, et al. Mungbean yellow mosaic virus (MYMV): A threat to green gram (Vigna radiata) production in Asia. Int J Pest Manag. 2014;60(4):314-24. https://doi.org/10.1080/09670874.2014.982230

Shulaev V, Cortes D, Miller G, Mittler R. Metabolomics for plant stress response. Physiol Plant. 2008;132(2):199-208. https://doi.org/10.1111/j.1399-3054.2007.01025.x

Mayee CD, Datar VV. Phytopathometry (Technical Bulletin No. 1). Parbhani: Marathwada Agricultural University; 1985.

Fiehn O. Combining genomics, metabolome analysis and biochemical modelling to understand metabolic networks. Comp Funct Genomics. 2001;2(3):155-68. https://doi.org/10.1002/cfg.82

Oliveros JC. Venny: An interactive tool for comparing lists with Venn’s diagrams [Internet]. 2007-2015 [cited 2024 Dec 2]. Available from: https://bioinfogp.cnb.csic.es/tools/venny/index.html

Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46(W1,2):W486-W94. https://doi.org/10.1093/nar/gky310

Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci. 2014;5:17. https://doi.org/10.3389/fpls.2014.00017

Moghayedi M, Ahmadzadeh H, Ghazvini K, Goharshadi E. Neglected antibacterial activity of ethylene glycol as a common solvent. Microb Pathog. 2017;107:457-61. https://doi.org/10.1016/j.micpath.2017.04.022

Rajaprakasam S, Shanmugavel P, Chockalingam V, Jegadeesan S, Latha TKS, Ananthan SN, et al. Comparative metabolomic profiling of horse gram (Macrotyloma uniflorum (Lam.) Verdc.) genotypes for horse gram yellow mosaic virus resistance. Metabolites. 2023;13(2):165. https://doi.org/10.3390/metabo13020165

Niggeweg R, Michael AJ, Martin C. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol. 2004;22(6):746-54. https://doi.org/10.1038/nbt966

Wojciechowska E, Weinert CH, Egert B, Trierweiler B, Schmidt-Heydt M, Horneburg B, et al. Chlorogenic acid, a metabolite identified by untargeted metabolome analysis in resistant tomatoes, inhibits the colonization by Alternaria alternata by inhibiting alternariol biosynthesis. Eur J Plant Pathol. 2014;139:735-47. https://doi.org/10.1007/s10658-014-0428-3

D’Orso F, Hill L, Appelhagen I, Lawrenson T, Possenti M, Li J, et al. Exploring the metabolic and physiological roles of HQT in S. lycopersicum by gene editing. Front Plant Sci. 2023;14:1124959. https://doi.org/10.3389/fpls.2023.1124959

Haque S, Nawrot DA, Alakurtti S, Ghemtio L, Yli-Kauhaluoma J, Tammela P. Screening and characterisation of antimicrobial properties of semisynthetic betulin derivatives. PLoS One. 2014;9(7):e102696. https://doi.org/10.1371/journal.pone.0102696

Sivaramakrishnan NK, Kothandaraman SV, Perumal R, Ganesan MV, Nallusamy SKT. Deciphering temporal metabolome dynamics in response to MYMV: Contrasting patterns in resistant and susceptible blackgram (Vigna mungo L. Hepper) cultivars. J Agric Food Chem. 2024;72(46):25620-37. https://doi.org/10.1021/acs.jafc.4c06400

Madhavi M, Babu RG, Srinivas V. Morphological abnormalities of betulinic acid from Ziziphus Jujuba against the Callasobruchus chinensis (Coleoptera: Bruchidae). Biosci Biotechnol Res Asia. 2019;16(2):411-16. http://dx.doi.org/10.13005/bbra/2756

Bauer K, Nayem S, Lehmann M, Wenig M, Shu L-J, Ranf S, et al. Beta-D-xylosidase 4 modulates systemic immune signalling in Arabidopsis thaliana. Front Plant Sci. 2023;13:1096800. https://doi.org/10.3389/fpls.2022.1096800

Wan J, He M, Hou Q, Zou L, Yang Y, Wei Y, et al. Cell wall associated immunity in plants. Stress biol. 2021;1:3. https://doi.org/10.1007/s44154-021-00003-4

Mandal MK, Chandra-Shekara AC, Jeong R-D, Yu K, Zhu S, Chanda B, et al. Oleic acid–dependent modulation of nitric oxide associated 1 protein levels regulate nitric oxide–mediated defense signalling in Arabidopsis. Plant Cell. 2012;24(4):1654-74. https://doi.org/10.1105/tpc.112.096768

Jin C, Li D, Gao C, Liu K, Qi S, Duan S, et al. Conserved function of acyl–acyl carrier protein desaturase 5 on seed oil and oleic acid biosynthesis between Arabidopsis thaliana and Brassica napus. Front Plant Sci. 2017;8:1319. https://doi.org/10.3389/fpls.2017.01319

Kachroo A, Fu D-Q, Havens W, Navarre D, Kachroo P, Ghabrial SA. An oleic acid–mediated pathway induces constitutive defense signaling and enhanced resistance to multiple pathogens in soybean. Mol Plant Microbe Interact. 2008;21(5):564-75. https://doi:10.1094/ MPMI -21-5-0564

Siriwan W, Vannatim N, Chaowongdee S, Roytrakul S, Charoenlappanit S, Pongpamorn P, et al. Integrated proteomic and metabolomic analysis of Cassava cv. Kasetsart 50 infected with Sri Lankan cassava mosaic virus. Agron. 2023;13(3):945. https://doi.org/10.3390/agronomy13030945

Li S, Zhang Z, Cain A, Wang B, Long M, Taylor J. Antifungal activity of camptothecin, trifolin and hyperoside isolated from Camptotheca acuminata. J Agric Food Chem. 2005;53(1):32-37. https://doi.org/10.1021/jf0484780

Published

22-02-2025 — Updated on 28-02-2025

Versions

How to Cite

1.
Nivethitha T, Babu C, Jayamani P. Comparative metabolic profiling of resistant and susceptible mungbean (Vigna radiata L. Wilczek) genotypes to elucidate the defense response against mungbean yellow mosaic virus (MYMV) disease. Plant Sci. Today [Internet]. 2025 Feb. 28 [cited 2025 Mar. 30];12(1). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/4858

Issue

Section

Research Articles