Skip to main navigation menu Skip to main content Skip to site footer

Special issue on Int Conf Spices

Vol. 11 No. sp3 (2024): International Seminar on Spices KAU - 2024

Characterization of bacterial endophytes of King chilli for biocontrol potential and plant growth promotion

DOI
https://doi.org/10.14719/pst.4929
Submitted
2 September 2024
Published
25-12-2024 — Updated on 09-09-2025
Versions

Abstract

Bacterial endophytes associated with host plants provide various beneficial effects. This study assessed the diversity of bacterial endophytes in King chilli, focusing on their biocontrol potential and plant growth-promoting (PGP) activities. The survey was carried out in King chilli-growing regions and identified anthracnose and fruit rot diseases as significant contributors to economic yield loss. A total of 20 bacterial endophytic isolates were obtained using the sterility check method and identified as Pseudomonas through 16S rRNA gene sequencing. In in-vitro studies, isolates P. fluorescens KEB15, P. putida KEB5, and P. putida KEB7 exhibited notable mycelial growth inhibition rates of 66.67 %, 69.26 % and 66.30 % against Pythium, Fusarium, and Colletotrichum, respectively. Of the 20 isolates, 5, 16 and 17 isolates demonstrated positive production of hydrogen cyanide (HCN), ammonia (NH3), and indole-3-acetic acid (IAA), respectively. The efficacy of crude antibiotics from the best-performing antagonistic endophytes was tested against the linear growth of Fusarium, with KEB11 showing the largest inhibition area of 35.14 mm. Sequence analysis using the maximum likelihood method revealed close relationships among the potent Pseudomonas isolates, identifying KEB5 and KEB7 as P. putida and KEB15 as P. fluorescens. Field evaluations indicated that KEB7 was most effective in controlling bacterial wilt, anthracnose, and dieback diseases, achieving a maximum plant height of 85.10 cm and a yield of 3683.67 kg/ha. This study demonstrates that bacterial endophytes can effectively exhibit antifungal activity and promote plant growth in King chilli.

References

  1. 1. Bosland PW, Baral JB. ‘Bhut Jolokia’ the world’s hottest known chile pepper is a putative naturally occurring inter-specific hybrid. HortScience. 2007;42:222–4. https://doi.org/10.21273/hortsci.42.2.222
  2. 2. Sanatombi K, Sen-Mandi S, Sharma G. DNA profiling of Capsi-cum landraces of Manipur. Sci Hortic. 2010;124:405–8. https://doi.org/10.1016/j.scienta.2010.01.006
  3. 3. Bhagowati RR, Changkija S. Genetic variability and tradition-al practices in Naga King Chili landraces of Nagaland. Asian Agri-Hist. 2009;13:171–80.
  4. 4. Sanatombi K, Sharma G. In-vitro propagation of Capsicum chinense Jacq. Biol Plant. 2008;52:517–20. https://doi.org/10.1007/s10535-008-0100-x
  5. 5. Kumar S, Kumar R, Kumar S, Kumar Singh A, Singh M, Baha-dur Rai A, et al. Incidence of leaf curl disease on Capsicum germplasm under field conditions. Indian J Agric Sci. 2011;81:187.
  6. 6. Verma PK, Rawat KK, Das N, Pradhan B. A botanical enigma of India’s hottest chilli Bhoot Jolokia (Capsicum chinense Jacq). N Y Sci J. 2013;6:49–51.
  7. 7. Liu Y, Nair MG. Capsaicinoids in the hottest pepper Bhut Jolo-kia and its antioxidant and anti-inflammatory activities. Nat Prod Commun. https://doi.org/10.1177/1934578x1000500122
  8. 8. Sarwa KK, Mazumder B, Rudrapal M, Debnath M, Kumar A, Verma VK, et al. Capsaicinoids content of some indigenous capsicum varieties of Assam, India. J Nat Sci Res. 2013;3:112–6.
  9. 9. Purkayastha J, Alam S, Gogoi H, Singh L, Veer V. Molecular characterization of ‘Bhut Jolokia’ the hottest chilli. J Biosci. 2012;37:757–68. https://doi.org/10.1007/s12038-012-9249-8
  10. 10. Bosland PW, Votava EJ, Votava EM. Peppers: vegetable and spice capsicums. Wallingford (UK): CABI; 2012. https://doi.org/10.1079/9781845938253.0000
  11. 11. Kempaiah R, Manjunatha H, Srinivasan K. Protective effect of dietary capsaicin on induced oxidation of low-density lipo-protein in rats. Mol Cell Biochem. 2005;275:7–13. https://doi.org/10.1007/s11010-005-7643-3
  12. 12. Fisher P, Petrini O. Location of fungal endophytes in tissues of Suaeda fruticosa: a preliminary study. Trans Br Mycol Soc. 1987;89:246–9. https://doi.org/10.1016/s0007-1536(87)80161-4
  13. 13. Strobel GA. Endophytes as sources of bioactive products. Microbes Infect. 2003;5:535–44. https://doi.org/10.1016/s1286-4579(03)00073-x
  14. 14. Berg G, Hallmann J. Control of plant pathogenic fungi with bacterial endophytes. In: Schulz B, Boyle C, Sieber T, editors. Microbial root endophytes. Berlin: Springer; 2006. p. 53–69. https://doi.org/10.1007/3-540-33526-9_4
  15. 15. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW. Bacterial endophytes in agricultural crops. Can J Microbiol. 1997;43:895–914. https://doi.org/10.1139/m97-131
  16. 16. Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot. 2001;20:1–11. https://doi.org/10.1016/s0261-2194(00)00056-9
  17. 17. Sturz A, Matheson B. Populations of endophytic bacteria which influence host-resistance to Erwinia-induced bacterial soft rot in potato tubers. Plant Soil. 1996;184:265–71. https://doi.org/10.1007/bf00010455
  18. 18. Duijff BJ, Gianinazzi-Pearson V, Lemanceau P. Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol. 1997;135:325–34. https://doi.org/10.1046/j.1469-8137.1997.00646.x
  19. 19. Krishnamurthy K, Gnanamanickam SS. Biological control of sheath blight of rice: Induction of systemic resistance in rice by plant-associated Pseudomonas spp. Curr Sci. 1997;73:331–4.
  20. 20. Hallmann J, Quadt-Hallmann A, Rodríguez-Kabana R, Kloepper JW. Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol Biochem. 1998;30:925–37. https://doi.org/10.1016/s0038-0717(97)00183-1
  21. 21. Azevedo JL, Maccheroni Jr W, Pereira JO, De Araujo WL. En-dophytic microorganisms: A review on insect control and recent advances on tropical plants. Electron J Biotechnol. 2000;3:15–16. https://doi.org/10.2225/vol3-issue1-fulltext-4
  22. 22. Chanway C. Inoculation of tree roots with plant growth pro-moting soil bacteria: An emerging technology for reforesta-tion. For Sci. 1997;43:99–112. https://doi.org/10.1093/forestscience/43.1.99
  23. 23. Bent E, Chanway CP. The growth-promoting effects of a bac-terial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Can J Microbiol. 1998;44:980–8. https://doi.org/10.1139/w98-097
  24. 24. Opoku I, Assuah M, Aneani F. Management of black pod dis-ease of cocoa with reduced number of fungicide application and crop sanitation. Afr J Agric Res. 2007;2:601–4.
  25. 25. Rangaswami G. An agar block technique for isolating soil microorganisms with special reference to Pythiaceous fungi. Sci Cult. 1958;24:85.
  26. 26. Rangaswami G, Mahadevan A. Diseases of Crop Plants in India. New Delhi: PHI Learning Pvt. Ltd.; 1998.
  27. 27. Pleban S, Ingel F, Chet I. Control of Rhizoctonia solani and Sclerotium rolfsii in the greenhouse using endophytic Bacil-lus spp. Eur J. Plant Pathol. 1995;101:665–672. https://doi.org/10.1007/bf01874870
  28. 28. Shi Y, Lou K, Li C. Isolation, quantity distribution and charac-terization of endophytic microorganisms within sugar beet. Afr. J. Biotechnol. 2009;8. https://doi.org/10.5897/ajb12.1403
  29. 29. McInroy JA, Kloepper JW. Population dynamics of endophyt-ic bacteria in field-grown sweet corn and cotton. Can. J. Mi-crobiol. 1995;41:895–901.
  30. 30. Sudhir A, Kumar NP, Audipudi AV, et al. Isolation, biochemi-cal and PGP characterization of endophytic Pseudomonas aeruginosa isolated from chilli red fruit antagonistic against chilli anthracnose disease. Int. J. Curr. Microbiol. Appl. Sci. 2014;3:318–329.
  31. 31. Knapp JE, Chandlee JM. RNA/DNA mini-prep from a single sample of orchid tissue. Biotechniques. 1996;21:54–6. https://doi.org/10.2144/96211bm11
  32. 32. Melody SC. Plant molecular biology: A laboratory manual. Springer-Verlag, New York. 1997;121–54. https://doi.org/10.1007/bf02752266
  33. 33. Kumar NR, Arasu VT, Gunasekaran P. Genotyping of antifun-gal compounds producing plant growth-promoting rhizobac-teria, Pseudomonas fluorescens. Curr Sci. 2002;83(12):1463–1466.
  34. 34. Vicente MRS, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot. 2011;62(10):3321-38. https://doi.org/10.1093/jxb/err031
  35. 35. Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Envi-ron Microbiol. 2002;68(8):3795-801. https://doi.org/10.1128/aem.68.8.3795-3801.2002
  36. 36. Miller R, Higgins VJ. Association of cyanide with infection of birdsfoot trefoil by Stemphylium loti. Phytopathology. 1970;60:104–10. https://doi.org/10.1094/phyto-60-104
  37. 37. Cappuccino J, Sherman N. Biochemical activities of microor-ganisms. In: Microbiology: A Laboratory Manual. Benjamin/Cummings Publishing Co; 1992. p. 188–247.
  38. 38. Ramarathnam R, Bo S, Chen Y, Fernando WD, Xuewen G, De Kievit T. Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol. 2007;53:901–911. https://doi.org/10.1139/w07-049
  39. 39. Smania Jr A, Monache FD, Smania EFA, Cuneo RS. Antibacte-rial activity of steroidal compounds isolated from Ganoder-ma applanatum (Pers.) Pat. (Aphyllophoromycetideae) fruit body. Int J Med Mushrooms. 1999;1(4). https://doi.org/10.1615/intjmedmushr.v1.i4.40
  40. 40. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molec-ular evolutionary genetics analysis across computing plat-forms. Mol Biol Evol. 2018;35(6):1547–1549. https://doi.org/10.1093/molbev/msy096
  41. 41. Montri PP, Taylor PWJ, Mongkolporn O. Pathotypes of Colle-totrichum capsici the causal agent of chili anthracnose in Thailand. Plant Dis. 2009;93(1):17–20. http://dx.doi.org/10.1094/PDIS-93-1-0017
  42. 42. Gomez KA, Gomez AA. Statistical Procedures for Agricultural Research. John Wiley & Sons; 1984.
  43. 43. Rajesha G, Bendangsenla, Deka BC, Ngachan SV. Isolation and screening of bacterial endophytes against the fungal pathogens of Naga King Chilli. In: National Seminar on Sus-taining Hill Agriculture in Changing Climate: A Compendium of Seminar Papers. Agartala, Tripura, India; December 5-7, 2015. p. 254–255.
  44. 44. Talukdar J, Saikia A, Borah P, et al. Survey and detection of the diseases of Bhut Jolokia (Capsicum chinense Jacq.) in Assam. Journal of Crop and Weed. 2015;11:186–192.
  45. 45. Dowarah B, Agarwal H, Krishnatreya DB, Sharma PL, Kalita N, Agarwala N. Evaluation of seed associated endophytic bacte-ria from tolerant chilli cv. Firingi Jolokia for their biocontrol potential against bacterial wilt disease. Microbiol Res. 2021;248:126751. https://doi.org/10.1016/j.micres.2021.126751
  46. 46. maresan N, Jayakumar V, Thajuddin N. Isolation and charac-terization of endophytic bacteria associated with chilli (Capsicum annuum) grown in coastal agricultural ecosystem. Indian J Biotechnol. 2014;1:123–130.
  47. 47. Melnick RL, Zidack NK, Bailey BA, Maximova SN, Guiltinan M, Backman PA. Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biol Control. 2008;46(1):46–56. https://doi.org/10.1016/j.biocontrol.2008.01.022
  48. 48. Mmbaga M, Gurung MA, Maheshwari A. Screening of plant endophytes as biological control agents against root rot pathogens of pepper (Capsicum annum L.). J Plant Pathol Microbiol. 2018;9:1000416. https://doi.org/10.4172/2157-7471.1000435
  49. 49. Allu S, Kumar NP, Audipudi AV. Isolation, biochemical and PGP characterization of endophytic Pseudomonas aerugino-sa isolated from chilli red fruit antagonistic against chilli anthracnose disease. Int J Curr Microbiol Appl Sci. 2014;3(2):318-29.
  50. 50. Ribeiro VP, Marriel IE, Sousa SM de, Lana UG de P, Mattos BB, Oliveira CA, et al. Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Braz J Micro-biol. 2018;49:40-6. https://doi.org/10.1016/j.bjm.2018.06.005
  51. 51. Kushwaha P, Kashyap PL, Bhardwaj AK, Kuppusamy P, Sri-vastava AK, Tiwari RK. Bacterial endophyte mediated plant tolerance to salinity: growth responses and mechanisms of action. World J Microbiol Biotechnol. 2020;36:26. https://doi.org/10.1007/s11274-020-2804-9
  52. 52. Shi Y, Lou K, Li C. Isolation, quantity distribution and charac-terization of endophytic microorganisms within sugar beet. Afr J Biotechnol. 2009b;8
  53. 53. Khan Z, Doty SL. Characterization of bacterial endophytes of sweet potato plants. Plant and Soil. 2009;322:197–207. https://doi.org/10.1007/s11104-009-9908-1
  54. 54. Ladha JK, Reddy PM. Steps towards nitrogen fixation in rice. In: Ladha JK, Hauggaard-Nielsen H, editors. The quest for nitrogen fixation in rice. 2000. p. 33–46.
  55. 55. Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK. Endophytic colonization of rice by a dia-zotrophic strain of Serratia marcescens. J Bacteriol. 2001;183:2634–45. https://doi.org/10.1128/jb.183.8.2634-2645.2001
  56. 56. Rosenblueth M, Martínez-Romero E. Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact. 2006;19:827–37. https://doi.org/10.1094/mpmi-19-0827
  57. 57. Jasim B, Jimtha CJ, Jyothis M, Radhakrishnan E. Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regul. 2013;71:1–11. https://doi.org/10.1007/s10725-013-9802-y
  58. 58. Khan MS, Gao J, Chen X, Zhang M, Yang F, Du Y, Munir I, Xue J, Zhang X, et al. Isolation and characterization of plant growth-promoting endophytic bacteria Paenibacillus polymyxa SK1 from Lilium lancifolium. Biomed Res Int. 2020;2020:8650957. https://doi.org/10.1155/2020/8650957
  59. 59. Deepa C, Dastager SG, Pandey A. Isolation and characteriza-tion of plant growth promoting bacteria from non-rhizospheric soil andDeepa C, Dastager SG, Pandey A. Isola-tion and characterization of plant growth promoting bacteria from non-rhizospheric soil and their effect on cowpea (Vigna unguiculata (L.) Walp.) seedling growth. World J Microbiol Biotechnol. 2010;26:1233–40. https://doi.org/10.1007/s11274-009-0293-y
  60. 60. Hassan SE-D. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teu-crium polium L. J Adv Res. 2017;8:687–95. https://doi.org/10.1016/j.jare.2017.09.001
  61. 61. Saharan B, Nehra V. Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res. 2011;21:30. https://doi.org/25 December 202410.4172/2157-7471.1000266
  62. 62. Ghodsalavi B, Ahmadzadeh M, Soleimani M, Madloo PB, Taghizad-Farid R. Isolation and characterization of rhizobac-teria and their effects on root extracts of Valeriana officinalis. Aust J Crop Sci. 2013;7:338–44.
  63. 63. Saikkonen K, Wäli P, Helander M, Faeth SH. Evolution of en-dophyte–plant symbioses. Trends Plant Sci. 2004;9:275–80. https://doi.org/10.1016/j.tplants.2004.04.005
  64. 64. Christina A, Christapher V, Bhore SJ. Endophytic bacteria as a source of novel antibiotics: An overview. Pharmacogn Rev. 2013;7:11. https://doi.org/10.4103/0973-7847.112833
  65. 65. Mohamad OA, Li L, Ma JB, Hatab S, Xu L, Guo JW, et al. Evalu-ation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Front Microbiol. 2018;9:924. https://doi.org/10.3389/fmicb.2018.00924
  66. 66. Rebotiloe FM, Eunice UJ, Mahloro HSD. Isolation and identifi-cation of bacterial endophytes from Crinum macowanii Baker. Afr J Biotechnol. 2018;17:1040–7. https://doi.org/10.5897/AJB2017.16350
  67. 67. Lally RD, Galbally P, Moreira AS, Spink J, Ryan D, Germaine KJ, Dowling DN. Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions. Front Plant Sci. 2017;8:2193. https://doi.org/10.1007/s10535-008-0100-x
  68. 68. Singh R, Ao NT, Kangjam V, Rajesha G, Banik S. Plant growth promoting microbial consortia against late blight disease of tomato under natural epiphytotic conditions. Indian Phyto-pathol. 2022;75:527–39. https://doi.org/10.1007/s42360-022-00464-1
  69. 69. Compant S, Duffy B, Nowak J, Clement C, Barka EA. Use of plant growth-promoting bacteria for biocontrol of plant dis-eases: principles, mechanisms of action, and future pro-spects. Appl Environ Microbiol. 2005;71:4951–9. https://doi.org/10.52783/eel.v14i2.1549
  70. 70. Sheoran N, Nadakkakath AV, Munjal V, Kundu A, Subaharan K, Venugopal V, et al. Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimi-crobial volatile organic compounds. Microbiol Res. 2015;173:66–78. https://doi.org/10.21273/hortsci.42.2.222
  71. 71. Boddey RM, Urquiaga S, Alves BJ, Reis V. Endophytic nitrogen fixation in sugarcane: present knowledge and future applica-tions. Plant Soil. 2003;252:139–49. https://doi.org/10.1023/a:1024152126541

Downloads

Download data is not yet available.