Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 1 (2025)

Nutritional, medicinal and biological activities of Ferocactus species: Recent findings and research opportunities

DOI
https://doi.org/10.14719/pst.5157
Submitted
19 September 2024
Published
12-02-2025 — Updated on 22-02-2025
Versions

Abstract

Ferocactus is a genus of the family Cactaceae found in the arid and semi-arid regions of the American continent, especially in Mexico. The species serve various purposes such as food, cosmetics, fodder and for relief from certain ailments. The fruits of Ferocactus species such as Ferocactus herrerae and Ferocactus glaucescens have valuable amounts of macronutrients, micronutrients and bioactive components which make them nutrient-dense. They are also a potential raw material for new product development in the food and cosmetic industries, industrial extraction and production of antimicrobials and antioxidants. However, many of the species are understudied, underproduced, underutilized or overexploited, resulting in a significant waste or risk of extinction due to overexploitation. Therefore, the objective of this review was to discuss and provide an in-depth and recent overview of the description, morphology, ethnobotanical uses, nutritional composition, bioactive composition and biological activities of different species of Ferocactus reported in the literature from different databases such as Google Scholar, ResearchGate and Scopus. Proper exploration and maximization of these species of cactus can provide huge economic, technological and nutritional benefits for all. Moreover, the challenges, possible solutions and future directions for maximum production and utilization of these species have also been discussed.

References

  1. Perumal R, Prabhu M, Kannan M, Srinivasan S. Taxonomy and grafting of ornamental cacti: a review. Agric Rev. 2021;42:445-49. https://doi.org/10.18805/ag.r-2053
  2. Rodríguez-Ruíz ER, Poot-poot WA. Morphometry of fruit and seed of populations of Ferocactus pilosus from the Highlands of Tamaulipas. 2023;14:1. https://doi.org/10.29312/remexca.v14i1.2924
  3. Mascot-Gómez E, Flores J, López-Lozano NE, Yáñez-Espinosa L. Seed germination of Southern Chihuahuan desert cacti: Effect of mucilage, light and phytohormones. Flora: M, D, F Eco of Plants. 2020;263. https://doi.org/10.1016/j.flora.2019.151528
  4. Cardoso PdaS, da Silva I NB, Ferreira-Ribeiro CD, Murowaniecki OD. Nutritional and technological potential of cactus fruits for insertion in human food. C. Reviews in Food Sci and Nut. 2023;63(19):4053-69. https://doi.org/10.1080/10408398.2021.1997906
  5. Mascot-Gómez E, Flores J, López-Lozano NE. The seed-associated microbiome of four cactus species from Southern Chihuahuan Desert. J Arid Env. 2021;190(May). https://doi.org/10.1016/j.jaridenv.2021.104531
  6. Piedra-Malagón EM, Sosa V, Angulo DF, Díaz-Toribio MH. Edible native plants of the Gulf of Mexico Province. Bio Data J. 2022;10. https://doi.org/10.3897/BDJ.10.e80565
  7. El-Hawary SS, Ibrahim RM, Hamed AR, El-Halawany AM. Nutritional evaluation, chemical investigation of phenolic content and antioxidant activity of Ferocactus glaucescens ripe fruits. Egypt J Chm. 2020;63(7):2435-44. https://doi.org/10.21608/ejchem.2019.20296.2216
  8. Magalhães ALR, Teodoro AL, Gois GC, Campos FS, Souza JSR, De Andrade AP, et al. Chemical and mineral composition, kinetics of degradation and in vitro gas production of native cactus. J Agric Stud. 2019;7(2):119. https://doi.org/10.5296/jas.v7i4.15315
  9. da Silveira Agostini-Costa T. Bioactive compounds and health benefits of Pereskioideae and Cactoideae: a review. Food Chm. 2020 January;327.https://doi.org/10.1016/j.foodchem.2020.126961
  10. Elansary HO, Szopa A, Klimek-szczykutowicz M, El-ansary DO. Mammillaria sp.—polyphenols studies and anti-cancer, antioxidant and anti-bacterial activities. Molecules. 2020;25:131 https://doi:10.3390/molecules25010131
  11. Rodríguez-Mendoza CA, González Campos RE, Lorenzo-Leal AC, Bautista Rodríguez E, Paredes Juárez GA, El Kassis EG, et al. Phytochemical screening and bioactivities of Cactaceae family members endemic to Mexico. Plants. 2022;11:21. https://doi.org/10.3390/plants11212856
  12. Ramírez-Rodríguez Y, Martinez-Huélamo M, Pedraza-Chaverri J, Ramírez V, Martínez-Tagüeña N, Trujillo J. Ethnobotanical, nutritional and medicinal properties of Mexican drylands Cactaceae fruits: Recent findings and research opportunities. Food Chm. 2020;312:126073. https://doi.org/10.1016/j.foodchem.2019.126073
  13. Bhushan B. Bioinspired water harvesting, purification and oil-water separation. Springer. USA. 2020;Vol. 299. http://link.springer.com/10.1007/978-3-030-42132-8
  14. Gurera D, Bhushan B. Passive water harvesting by desert plants and animals: Lessons from nature. Philosophical transactions of the Royal Soc. A: Mathematical, Physical and Engineering Sciences. 2020;378:2167. https://doi.org/10.1098/rsta.2019.0444
  15. Abdel-Baki PM, Ibrahim RM, Mahdy NE. Ferocactus herrerae fruits: nutritional significance, phytochemical profiling and biological potentials. Plant Foods for Hum Nut. 2022;77(4):545-51. https://doi.org/10.1007/s11130-022-01007-9
  16. Rojas-Aréchiga M, García-Morales E. Dormancy and viability of Ferocactus peninsulae (Cactaceae) seeds. Plt Sp Bio. 2022;37(2):173-81. https://doi.org/10.1111/1442-1984.12365
  17. Vargas-licona G. Acitron, sweet made with species at risk of extinction. UNO Sapiens Scientific Bull of the Prep Schl. 2021;4(1):1-5.
  18. Córdova-Acosta E, Zavala-Hurtado JA, Golubov J, Casas A. Reproductive biology of Ferocactus recurvus (Mill.) Borg subsp. recurvus (Cactaceae) in the Tehuacán-Cuicatlán Valley, Mexico. Plant Bio. 2017;19(5):798-805. https://doi.org/10.1111/plb.12585
  19. Parks T, Commission B, Rangel A, Alfredo W, Poot P, Huerta HV. Conservation of the biznaga cabuchera (Ferocactus pilosus) in Tamaulipas. Sixth National Report of Mexico to the cbd. 2019;868-71.
  20. IUCN. International Union for Conservation of Nature. Red List of Threatened Species. 2017. https://www.iucnredlist.org/
  21. O’Shea B, Vanderplank S, Talley D, Flores-Rentería L. Edaphic preference determines the distribution of the island endemic Ferocactus gatesii (Cactaceae) in Bahía de los Ángeles, Mexico. J Arid Env. 2022;198:104691. https://doi.org/10.1016/j.jaridenv.2021.104691
  22. Arceo-Gómez TM, Robles-Díaz E, Manrique-Ortega MD, Martínez-Campos ÁR, Aragón-Gastélum JL, Aguirre-Crespo FJ, et al. Pre-germinative treatments and morphophysiological traits in Enterolobium cyclocarpum and Piscidia piscipula (Fabaceae) from the Yucatan Peninsula, Mexico. Plts. 2022;11(21):1-14. https://doi.org/10.3390/plants11212844
  23. Hultine KR, Hernández-Hernández T, Williams DG, Albeke SE, Tran N, Puente R, et al. Global change impacts on cacti (Cactaceae): current threats, challenges and conservation solutions. Annals of Bot. 2023;671-83. https://doi.org/10.1093/aob/mcad040
  24. Benavides E, Breceda A, Anadón JD. Winners and losers in the predicted impact of climate change on cacti species in Baja California. Plant Ecol. 2021;222:29-44. https://doi.org/10.1007/s11258-020-01085-2
  25. Larios E, González EJ, Rosen PC, Pate A, Holm P. Population projections of an endangered cactus suggest little impact of climate change. Oecologia. 2020;192:439-48. https://doi.org/10.1007/s00442-020-04595-y
  26. Becker R, Báez OP, Singer RF, Singer RB. Contrasting pollination strategies and breeding systems in two native useful cacti from Southern Brazil. Plants. 2023;12:6. https://doi.org/10.3390/plants12061298
  27. Rangel-Landa S, Casas A, Rivera-Lozoya E, Torres-García I, Vallejo-Ramos M. Ixcatec ethnoecology: plant management and biocultural heritage in Oaxaca, Mexico. J Ethnobiol and Ethnomed. 2016;12(1). https://doi.org/10.1186/s13002-016-0101-3
  28. Maceda A, Reyes-Rivera J, Soto-Hernández M, Terrazas T. Distribution and chemical composition of lignin in secondary xylem of Cactaceae. Chem and Biod. 2021;18:10. https://doi.org/10.1002/cbdv.202100431
  29. Crofts SB, Anderson PSL. The influence of cactus spine surface structure on puncture performance and anchoring ability is tuned for ecology. Proceedings of the Royal Soc B: Biol Sci. 2018;285:1891. https://doi.org/10.1098/rspb.2018.2280
  30. Drezner TD. Variations in Saguaro cactus (Carnegiea gigantea) spine length in wet and dry portions of their range. Madroño California Bot Soc. 2017;64(3):93-98. https://doi.org/10.3120/0024-9637-64.3.93
  31. Aliscioni NL, Delbón NE, Gurvich DE. Spine function in Cactaceae, a review. J of Professional Ass for Cactus Devt. 2021;23:1-11. https://doi.org/10.56890/jpacd.v23i.325
  32. Gioanetto F. Usos medicinales de las Cactaceas en México poblaciones indigenas del suroeste de USA. Diaz. 1978.
  33. Soares LMN, Silva GM, Alonso Buriti FC, Alves HS. Cereus jamacaru D.C. (Mandacaru): a promising native Brazilian fruit as a source of nutrients and bioactives derived from its pulp and skin. Plant Foods for Hum Nut. 2021;76(2):170-78. https://doi.org/10.1007/s11130-021-00885-9
  34. Silva SDM, Rodrigues TDL, De Sousa ASB, Da Silva MCA, Nascimento RDS, Da Mota Sousa FD. Quality, antioxidant and enzymatic activities of facheiro (Pilosocereus pachycladus Ritter) fruits during maturation. Revista Caat. 2019;32(4):1092-103. https://doi.org/10.1590/1983-21252019v32n426rc
  35. Otero D, Antunes B, Bohmer B, Jansen C, Crizel M, Lorini A, et al. Bioactive compounds in fruits from different regions of Brazil. Revista Chilena de Nut. 2020;47(1):31-40. https://doi.org/10.4067/S0717-75182020000100031
  36. Awuchi CG, Igwe VS, Amagwula IO, Echeta CK. Health benefits of micronutrients (vitamins and minerals) and their associated deficiency diseases: a systematic review. Int J Food Sci. 2020;3(1):1-32. https://doi.org/10.47604/ijf.1024
  37. Khoshbin MR, Vakili R, Tahmasbi A. Manganese – methionine chelate improves antioxidant activity, immune system and egg manganese enrichment in the aged laying hens. Vet Med Sci. 2023;9:217-25. https://doi.org/10.1002/vms3.1008
  38. Zhang Q, Lu XM, Zhang M, Yang CY, Lv SY, Li SF, et al. Adverse effects of iron deficiency anemia on pregnancy outcome and offspring development and intervention of three iron supplements. Sci Rpt. 2021;1-11. https://doi.org/10.1038/s41598-020-79971-y
  39. Das G, Lim KJ, Tantengco OA, Carag HM, Gonçalves S, Romano A, et al. Cactus: chemical, nutraceutical composition and potential bio-pharmacological properties. Phytotherapy Res. 2021;35(3):1248-83. https://doi.org/10.1002/ptr.6889
  40. Di Mauro MD, Fava G, Spampinato M, Aleo D, Melilli B, Saita MG, et al. Polyphenolic fraction from olive mill wastewater: Scale-up and in vitro studies for ophthalmic nutraceutical applications. Antioxid. 2019;8:10. https://doi.org/10.3390/antiox8100462
  41. Elansary HO. Tree bark phenols regulate the physiological and biochemical performance of gladiolus flowers. Proc. 2020;8(1):1-17. https://doi.org/10.3390/pr8010071
  42. Elansary HO, Szopa A, Klimek-szczykutowicz M, Ekiert H, Barakat AA, Al-mana FA. Activities of polyphenol extracts from Ferocactus sp. Proc. 2020;8(138):1-11. https://doi.org/10.3390/pr8020138
  43. Laguna BC, Flores Gallegos AC, Ascacio Valdés JA, Iliná A, Galindo AS, Castañeda Facio AO, et al. Physicochemical and functional properties of the undervalued fruits of cactus Cylindropuntia imbricate (“xoconostle”) and antioxidant potential. Biocatalysis and Agric Biotech. 2022;39 (September 2021). https://doi.org/10.1016/j.bcab.2021.102245
  44. Ugwuo CF, Ajayi TO, Odoh EU, Elujoba AA. Phytochemical composition, anti-fungal activity of Mucuna pruriens (L.) DC. (Fabaceae) seed extract and acute toxicity testing of formulated herbal ointment. Arch Bas App Med. 2023;11:54-60. www.archivesbamui.com; www.ojshostng.com/index.php/abam
  45. Lianah L, Khasanah RA, Pranatami DA, Krisantini K. Phytochemical screening and cytotoxic evaluation of Bauhinia scandens leaf extracts using HeLa and T47D cell lines. Biod. 2021;22(2):913-19. https://doi.org/10.13057/biodiv/d220247
  46. Cassels BK. Alkaloids of the Cactaceae? The Classics Natural Prod Com. 2019;14(1):85-90. https://doi.org/10.1177/1934578X1901400123
  47. Hamed AR, El-Hawary SS, Ibrahim RM, Abdelmohsen UR, El-Halawany AM. Identification of chemopreventive components from halophytes belonging to Aizoaceae and Cactaceae through LC/MS - Bioassay guided approach. J Chrom Sci. 2021;59(7):618-26. https://doi.org/10.1093/chromsci/bmaa112
  48. Bárcenas RT. Effect of ripening stage at harvest on phytochemical composition of ‘huamiche’ (Ferocactus histrix) fruit. 2011;44(07):2318.
  49. Bouarab-Chibane L, Forquet V, Lantéri P, Clément Y, Léonard-Akkari L, Oulahal N, et al. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structure-activity relationship) models. Frontiers in Microbiol. 2019;10(APR). https://doi.org/10.3389/fmicb.2019.00829
  50. Górniak I, Bartoszewski R, Króliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. In Phytochem Rev. 2019;18(1). https://doi.org/10.1007/s11101-018-9591-z
  51. Oliveira VM, Carraro E, Auler ME, Khalil NM. Quercetina e rutina: Potenciais agentes para terapia antifúngica. Brazilian J of Biol. 2016;76(4):1029-34. https://doi.org/10.1590/1519-6984.07415
  52. Amin MU, Khurram M, Khattak B, Khan J. Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus. BMC Complementary and Alternative Med. 2015;15(1):1-12. https://doi.org/10.1186/s12906-015-0580-0
  53. De Souza Rosa L, Jordão NA, Da Costa Pereira Soares N, De Mesquita JF, Monteiro M, Teodoro AJ. Pharmacokinetic, antiproliferative and apoptotic effects of phenolic acids in human colon adenocarcinoma cells using in vitro and in silico approaches. Mol. 2018;23(10). https://doi.org/10.3390/molecules23102569
  54. Lin HH, Chen JH, Huang CC, Wang CJ. Apoptotic effect of 3,4-dihydroxybenzoic acid on human gastric carcinoma cells involving JNK/p38 MAPK signaling activation. Int J of Cancer. 2007;120(11):2306-16. https://doi.org/10.1002/ijc.22571
  55. Ganeshpurkar A, Saluja AK. The pharmacological potential of rutin. Saudi Pharm J. 2017;25(2):149-64. https://doi.org/10.1016/j.jsps.2016.04.025
  56. Saleh A, ElFayoumi HM, Youns M, Barakat W. Rutin and orlistat produce antitumor effects via antioxidant and apoptotic actions. Naunyn-Schmiedeberg’s Archives of Pharm. 2019;392(2):165-75. https://doi.org/10.1007/s00210-018-1579-0
  57. Chen H, Miao Q, Geng M, Liu J, Hu Y, Tian L, et al. Anti-tumor effect of rutin on human neuroblastoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis. The Scientific World J. 2013. https://doi.org/10.1155/2013/269165
  58. Hashemzaei M, Far AD, Yari A, Heravi RE, Tabrizian K, Taghdisi SM, et al. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncology Reports. 2017;38(2):819-28. https://doi.org/10.3892/or.2017.5766
  59. Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants - an overview on their chemistry and influences on health status. Eur J Med Chem. 2021;112891. https://doi.org/10.1016/j.ejmech.2020.112891
  60. Din MI, Raza M, Hussain Z, Mehmood HA. Fabrication of magnetite nanoparticles (Fe3O4-NPs) for catalytic pyrolysis of nutshells biomass. Soft Mat. 2019;17(1):24-31. https://doi.org/10.1080/1539445X.2018.1542315
  61. Verona-Ruiz A, Urcia-Cerna J, Paucar-Menacho LM. Pitahaya (Hylocereus spp.): Culture, physicochemical characteristics, nutritional composition and bioactive compounds. Sci Agropecu. 2020;11(3):439-53. https://doi.org/10.17268/sci.agropecu.2020.03.16
  62. Cunha LB, Lepore ED, Medeiros CCB, Sorrechia R, Pietro RCLR, Corr MA. Can gentisic acid serve as a high-performance antioxidant with lower toxicity for a promising new topical application? Life. 2024;(14):1022. https://doi.org/10.3390/life14081022
  63. Magdalena W, Feldo M, Borowski G, Kubrak T, P?achno BJ, Sowa I. Antioxidant potential of diosmin and diosmetin against oxidative stress in endothelial cells. Mol. 2022;(27):1-10. https://doi.org/10.3390/molecules27238232
  64. Mary K, Mamattah M, Adomako AK, Mensah CN, Borquaye LS. Antibiofilm activities of essential oils of Plumeria alba (forget- me-not). Biochm Res Int. 2023;1040478:10. https://doi.org/10.1155/2023/1040478
  65. Bar S, Kara M. Linalool exerts antioxidant activity in a rat model of diabetes by increasing catalase activity without antihyperglycemic effect. Experimental and Therapeutic Med. 2024;(28):359 https://doi.org/10.3892/etm.2024.12648
  66. Pavliuk OV, Baran MM, Sheludko YV, Bogomolov YI. Heterocyclic inhibitors of autoxidation of hydrocarbons and alcohols. Functional Materials. 2024;31(1):67-75. https://doi.org/10. 15407/fm31.01.67
  67. Khairan K, Ginting B, Sufriadi E, Amalia A, Sofyan H, Muhammad S, et al. Studies on the antioxidant activity of safrole, myristicin and terpeniol from Myristica fragrans Houtt: a review. Earth and Env Sci. 2023;1183. https://doi.org/10.1088/1755-1315/1183/1/012062
  68. Dutra JC, De Oliveira JB, Dos Santos VS, Pereira PR, Ferreira JM, Do Carmo PB. Fruiting increases total content of flavonoids and antiproliferative effects of Cereus jamacaru D.C. Cladodes in sarcoma 180 cells in vitro. Asian Pac J Trop Biomed. 2019;9(2):66-72. https://doi.org/10.4103/2221-1691.250857
  69. Perez-Gutierrez RM, Flores MMJ. Attenuation of hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats by chloroform extract of fruits of Ferocactus latispinus and Ferocactus histrix. Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas. 9(6):475-84. https://www.redalyc.org/articulo.oa?id=85615688008
  70. Hampel H, Mesulam M, Cuello C, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141:1917-33. https:// doi:10.1093/brain/awy132
  71. Wolfa D, Grothe M, Fischer FU, Heinsen H, Kilimann I, Teipel S, et al. Association of basal forebrain volumes and cognition in normal aging. Neuropsychologia. 2014;(53):54-63. https://doi.org/10.1016/j.neuropsychologia.2013.11.002
  72. Moss DE, Perez RG. Anti-neurodegenerative benefits of acetylcholinesterase inhibitors in alzheimer’s disease: Nexus of cholinergic and nerve growth factor dysfunction. Anti-neurodegenerative. 2022;18(13):1010-22. https://doi.org/10.2174/1567205018666211215150547
  73. Szwajgier D. Anticholinesterase activity of selected phenolic model solutions acids and flavonoids - interaction testing in model solutions. Annals of Agric and Env Med. 2015;22(4):680-94. https:// doi: 10.5604/12321966.1185777
  74. da Silva WMB, de Oliveira PS, Alves DR, de Menezes J, Magalhaes FEA, Silva FCO, et al. Synthesis of quercetin-metal complexes, in vitro and in silico anticholinesterase and antioxidant evaluation and in vivo toxicological and anxiolitic activities. Neurotox Res. 2020;37(4):893-903. https:// doi. org/ 10. 1007/s12640-019-00142-7
  75. Harvey RJ, Skelton-Robinson M, Rossor MN. The prevalence and causes of dementia in people under the age of 65 years. J Neurol Neurosurg Psychiatry. 2003;74(9):1206-09. https:// doi. org/ 10. 1136/ jnnp. 74.9. 1206
  76. Souza AC de, Prevedello JA. The importance of protected areas for overexploited plants: Evidence from a biodiversity hotspot. Biological Conservation. 2020 February;243:108482. https://doi.org/10.1016/j.biocon.2020.108482
  77. Manokari M, Priyadharshini S, Shekhawat MS. Synseeds for propagation and preservation of Ferocactus peninsulae (Cactaceae) and xeromorphic adaptations of seedlings. Haseltonia. 2020;27(1):81-94. https://doi.org/10.2985/026.027.0110
  78. Rodriguez SMM, Rosas GH, de los Santos GG, Garcia-Moya E, Espinosa-Hernández V, Torres CT, et al. Viability and germination of seeds of four endangered species of cacti. Caldasia. 2022;44(2):209-20. https://doi.org/10.15446/caldasia.v44n2.86192
  79. Themed S. Cacti in distress: how to enhance ex situ conservation strategies through living collections. 2020;1-11. https://doi.org/10.1017/S0030605324000012
  80. Kamali-Sarvestani S, Mostowfizadeh-Ghalamfarsa R, Salmaninezhad F, Cacciola SO. Fusarium and Neocosmospora species associated with rot of Cactaceae and other succulent plants. J Fungi. 2022;8:4. https://doi.org/10.3390/jof8040364
  81. Edel-Hermann V, Lecomte C. Current status of Fusarium oxysporum formae speciales and races. Phytopath. 2019;109(4):512-30. https://doi.org/10.1094/PHYTO-08-18-0320-RVW

Downloads

Download data is not yet available.