Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Geostatistical assessment and mapping of soil spatial variability in Sirumugai, Western Ghats

DOI
https://doi.org/10.14719/pst.5678
Submitted
9 October 2024
Published
27-12-2024
Versions

Abstract

This study examines the spatial variability of soil properties and classifies the soil in the Sirumugai Reserved Forest range, located in the Western Ghats, India. A systematic soil survey and profile studies were conducted, using landforms as the basis for investigation within the study area. Horizon-wise soil samples were analysed for key soil parameters, including pH, electrical conductivity (EC), soil organic carbon, phosphorus, and potassium. The results revealed significant variations in soil properties across different locations, primarily influenced by elevation. The coefficient of variation for phosphorus was 0.87, while for potassium, it was 0.48. The analysis also encompassed assessments of skewness and kurtosis. pH (0.15) and phosphorus (0.75) exhibited kurtosis values close to 1, indicating relatively normal and flatter distributions. Conversely, sodium (27.10), elevation (3.91), and calcium demonstrated high kurtosis. Most soil properties were found to be right-skewed, while bulk density (0.09) was left-skewed. Geostatistical analysis in the Sirumugai Reserved Forest revealed considerable spatial variability in soil properties, particularly in EC and organic carbon. Elevation emerged as a strong influencing factor for soil properties, coupled with soil depth and nutrient leaching, which were prominent at higher altitudes. Ordinary kriging provided accurate spatial predictions, offering valuable insights for land management and conservation strategies tailored to the region.

References

  1. 1. Surendran U, Raja P, Liu K, Bilotto F, Sridevi G. Comparative analysis of soil organic carbon and soil properties in landscapes of Kerala: Insights from the Western Ghats of India. Environ Monit Assess. 2024;196(9):838.
  2. 2. Prietzel J, Christophel D, Traub C, Kolb E, Schubert A. Regional and site-related patterns of soil nitrogen, phosphorus and potassium stocks and Norway spruce nutrition in mountain forests of the Bavarian Alps. Plant Soil. 2015;386:151-69. https://doi.org/10.1007/s11104-014-2248-9
  3. 3. Bhattacharyya T, Pal D, Chandran P, Ray S. Landuse, clay mineral type and organic carbon content in two millisols-alfisols -vertisols catenary sequences of tropical India. Clay Res. 2005;24(2):105-22.
  4. 4. Lathrop Jr RG, Aber JD, Bognar JA. Spatial variability of digital soil maps and its impact on regional ecosystem modeling. Ecol Model. 1995;82(1):1-10. https://doi.org/10.1016/0304-3800(94)00068-S
  5. 5. John K, Afu S, Isong I, Aki E, Kebonye N, Ayito E, et al. Mapping soil properties with soil-environmental covariates using geostatistics and multivariate statistics. Int J Environ Sci Technol. 2021;1-16. https://doi.org/10.1007/s13762-020-03089-x
  6. 6. Maliva RG, Maliva RG. Geostatistical methods and applications. Aquifer Characterization Techniques: Schlumberger Methods in Water Resources Evaluation Series No 4. 2016;595-617. https://doi.org/10.1007/978-3-319-32137-0_20
  7. 7. Curran PJ. The semivariogram in remote sensing: An introduction. Remote Sens Environ. 1988;24(3):493-507. https://doi.org/10.1016/0034-4257(88)90021-1
  8. 8. Soil Survey Staff. Keys to soil taxonomy. 13th Edition. USDA Natural Resources Conservation Service. 2022.
  9. 9. Jackson W, Flesher D, Hageman R. Nitrate uptake by darkgrown corn seedlings: Some characteristics of apparent
  10. induction. Plant Physiol. 1973;51(1):120-27. https://doi.org/10.1104/pp.51.1.120
  11. 10. Olsen SR. Estimation of available phosphorus in soils by extraction with sodium bicarbonate: US Department of
  12. Agriculture; 1954.
  13. 11. Stanford G, English L. Use of the flame photometer in rapid soil tests for K and Ca. Agronomy. 1949;41(9):446-47. https://doi.org/10.2134/agronj1949.00021962004100090012x
  14. 12. Chapman C. Exact and approximate generalized ray theory in vertically inhomogeneous media. Geophys J Int. 1976;46(2):201-33. https://doi.org/10.1111/j.1365-246X.1976.tb04154.x
  15. 13. Dakshinamurti CaG. Practicals in soil physics. I. A. R. I. New Delhi; 1968.
  16. 14. Black Wa. An examination of the different methods for determining soil organic matter and the proposed modification of the chromic acid wet titration method. Soil Sci Am J. 1934;37:29-38. https://doi.org/10.1097/00010694-193401000-00003
  17. 15. Vasu D, Singh S, Sahu N, Tiwary P, Chandran P, Duraisami V, et al. Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil Tillage Res. 2017;169:25-34. https://doi.org/10.1016/j.still.2017.01.006
  18. 16. Khan M, Islam M, Amin MS, Bhuiyan M. Spatial variability and geostatistical analysis of selected soil. Bangladesh JSIR. 2019;54(1):55-66. https://doi.org/10.3329/bjsir.v54i1.40731
  19. 17. Cambardella C, Karlen D. Spatial analysis of soil fertility parameters. PA. 1999;1(1):5-14. https://doi.org/10.1023/
  20. A:1009925919134
  21. 18. Wilding L, Flach K. Micropedology and soil taxonomy. Soil Micromorphology and Soil Classification. 1985;15:1-16. https://doi.org/10.2136/sssaspecpub15.c1
  22. 19. Schulte A, Ruhiyat D. Soils of tropical forest ecosystems: Characteristics, ecology and management. Springer Science and Business Media; 2013.
  23. 20. Bhunia GS, Shit PK, Chattopadhyay R. Assessment of spatial variability of soil properties using geostatistical approach of lateritic soil (West Bengal, India). Ann Agrar Sci. 2018;16(4):436-43. https://doi.org/10.1016/j.aasci.2018.06.003
  24. 21. Kannan P, Natarajan S, Sivasamy R, Kumaraperumal R. Soil resource information and alternative crop planning for Cauvery delta region of Tiruvarur district, Tamil Nadu. J Indian Soc Soil Sci. 2011;59(2):109-20.
  25. 22. Hazelton P, Murphy B. Interpreting soil test results: What do all the numbers mean? CSIRO Publishing; 2016. https://doi.org/10.1071/9781486303977
  26. 23. Vishnu P, Sandeep S, Kumar KA. Taxonomy and genesis of soils in contrasting ecosystems of Southern Western Ghats, India. Catena. 2023;231:107325. https://doi.org/10.1016/j.catena.2023.107325
  27. 24. Bel J, Legout A, Saint-André L, Hall SJ, Löfgren S, Laclau JP, et al. Conventional analysis methods underestimate the plant available pools of calcium, magnesium and potassium in forest soils. Sci Rep. 2020;10(1):15703. https://doi.org/10.1038/s41598-020-72741-w
  28. 25. Yimer F, Ledin S, Abdelkadir A. Soil property variations in relation to topographic aspect and vegetation community in the south-eastern highlands of Ethiopia. For Ecol Manage. 2006;232(1-3):90-99. https://doi.org/10.1016/j.foreco.2006.05.055
  29. 26. Moser G, Röderstein M, Soethe N, Hertel D, Leuschner C. Altitudinal changes in stand structure and biomass allocation of tropical mountain forests in relation to microclimate and soil chemistry. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R, editors. Gradients in a Tropical Mountain Ecosystem of Ecuador. 2008; p. 229-42. https://doi.org/10.1007/978-3-540-73526-7_22
  30. 27. Nketia K, Asabere S, Ramcharan A, Herbold S, Erasmi S, Sauer D. Spatio-temporal mapping of soil water storage in a semi-arid landscape of northern Ghana–A multi-tasked ensemble machine-learning approach. Geoderma. 2022;410:115691. https://doi.org/10.1016/j.geoderma.2021.115691
  31. 28. Chinevu NC, Unanaonwi EO, Amonum IJ. Physical and chemical characteristics of forest soil in southern Guinea savanna of Nigeria. Agriculture, Forestry and Fisheries. 2013;2(6):229-34. https://doi.org/10.11648/j.aff.20130206.15
  32. 29. Bueis T, Bravo F, Pando V, Turrión MB. Relationship between environmental parameters and Pinus sylvestris L. site index in forest plantations in northern Spain acidic plateau. IFOREST. 2016;9(3):394. https://doi.org/10.3832/ifor1600-008
  33. 30. He X, Yang L, Li A, Zhang L, Shen F, Cai Y, et al. Soil organic carbon prediction using phenological parameters and remote sensing variables generated from Sentinel-2 images. Catena. 2021;205:105442. https://doi.org/10.1016/j.catena.2021.105442
  34. 31. Dharumarajan S, Kalaiselvi B, Lalitha M, Vasundhara R, Kumar K, Hegde R. Predictive soil mapping of key soil properties in Western Ghats, India. J Indian Soc Soil Sci. 2022;70(3):266-78. https://doi.org/10.5958/0974-0228.2022.00032.9
  35. 32. James J, Harrison R. The effect of harvest on forest soil carbon: A meta-analysis. Forests. 2016;7(12):308. https://
  36. doi.org/10.3390/f7120308
  37. 33. Tsui CC, Chen ZS, Hsieh CF. Relationships between soil properties and slope position in a lowland rain forest of
  38. southern Taiwan. Geoderma. 2004;123(1-2):131-42. https://doi.org/10.1016/j.geoderma.2004.01.031
  39. 34. Verma S, Singh D, Singh AK, Jayakumar S. Post-fire soil nutrient dynamics in a tropical dry deciduous forest of Western Ghats, India. For Ecosyst. 2019;6(1):6. https://doi.org/10.1186/s40663-019-0168-0
  40. 35. Bhatt H, Gopakumar S, Bhindhu P, Vishnu B, Jugran HP. Woody vegetation and soil composition of tropical forest along an altitudinal gradient in Western Ghats, India. Asian Journal of Forestry. 2024;8(1). https://doi.org/10.13057/asianjfor/r080105
  41. 36. Bacaro G, Rocchini D, Bonini I, Marignani M, Maccherini S, Chiarucci A. The role of regional and local scale predictors for plant species richness in Mediterranean forests. Plant Biosyst. 2008;142(3):630-34. https://doi.org/10.1080/11263500802411064
  42. 37. Binkley D, Fisher RF. Ecology and management of forest soils. John Wiley and Sons; 2019. https://doi.org/10.1002/9781119455745
  43. 38. Nayak R, Karanth KK, Dutta T, Defries R, Karanth KU, Vaidyanathan S. Bits and pieces: Forest fragmentation by linear intrusions in India. Land Use Policy. 2020;99:104619. https://doi.org/10.1016/j.landusepol.2020.104619
  44. 39. Xu S, Yang Y, Sun G, Zhang Q, Wang Y, Zeng H, et al. Aridity affects soil organic carbon concentration and chemical stability by different forest types and soil processes across Chinese natural forests. Sci Total Environ. 2024;944:174002. https://doi.org/10.1016/j.scitotenv.2024.174002
  45. 40. Akburak S, Son Y, Makineci E, Çakir M. Impacts of low-intensity prescribed fire on microbial and chemical soil properties in a Quercus frainetto forest. J For Res. 2018;29:687-96. https://doi.org/10.1007/s11676-017-0486-4
  46. 41. Yang J, Masoudi A, Li H, Gu Y, Wang C, Wang M, et al. Soil total nitrogen mediated the impact of climatic factors on Urban soil organic matter under different land uses. J Soil Sci Plant Nutr. 2024;(24):5487-5504. https://doi.org/10.1007/s42729-024-01921-8
  47. 42. Cleveland D, Hinck JE, Lankton JS. Elemental and radionuclide exposures and uptakes by small rodents, invertebrates and vegetation at active and post-production uranium mines in the Grand Canyon watershed. Chemosphere. 2021;263:127908. https://doi.org/10.1016/j.chemosphere.2020.127908
  48. 43. Uhlig D, Amelung W, Von Blanckenburg F. Mineral nutrients sourced in deep regolith sustain long-term nutrition of mountainous temperate forest ecosystems. Global Biogeochem Cycles. 2020;34(9):e2019GB006513. https://doi.org/10.1029/2019GB006513
  49. 44. Erdem R, Çetin M, Arıcak B, Sevik H. The change of the concentrations of boron and sodium in some forest soils
  50. depending on plant species. Forestist. 2023;73(2):207-12. https://doi.org/10.5152/forestist.2022.22061
  51. 45. Solly EF, Weber V, Zimmermann S, Walthert L, Hagedorn F, Schmidt MW. A critical evaluation of the relationship between the effective cation exchange capacity and soil organic carbon content in Swiss forest soils. Front For Glob Change. 2020;3:98. https://doi.org/10.3389/ffgc.2020.00098
  52. 46. Katuwal S, Knadel M, Norgaard T, Moldrup P, Greve MH, de Jonge LW. Predicting the dry bulk density of soils across Denmark: Comparison of single-parameter, multi-parameter and vis–NIR based models. Geoderma. 2020;361:114080. https://doi.org/10.1016/j.geoderma.2019.114080

Downloads

Download data is not yet available.