Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies

Authors

  • Sadam Hussain Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
  • Saddam Hussain Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
  • Tauqeer Qadir Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
  • Abdul Khaliq Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
  • Umair Ashraf Department of Botany, University of Education, Faisalabad-campus, Pakistan
  • Abida Parveen Department of Botany, Government College University Faisalabad, Pakistan
  • Muhammad Saqib Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
  • Muhammad Rafiq Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan

DOI:

https://doi.org/10.14719/pst.2019.6.4.578

Keywords:

antioxidants, drought, seed germination, photosynthesis, crop yield

Abstract

Drought is considered as one of the major limiting factors affecting growth and productivity of crop plants. It severely affects the morphological and physiological activities of the plants and hampers the seed germination, root proliferation, biomass accumulation and final yield of field crops. Drought stress disrupts the biosynthesis of chlorophyll contents, carotene and decreases photosynthesis in plants. It gradually reduces CO2 assimilation rates owing to decrease in stomatal conductance. In addition, drought affects cell membrane stability and disrupts water relations of a plant by reducing water use efficiency. To cope with these situations, plants adopt different mechanisms such as drought tolerance, avoidance and escape. In this review, we discussed about the effects of drought on morphological and physiological characteristics of plants and suggested the different agronomic practices to overcome the deleterious effects of drought stress.

Downloads

Download data is not yet available.

Author Biography

Saddam Hussain, Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan

Assistant Professor at Department of Agronomy, University of Agriculture Faisalabad, Pakistan. More details at https://www.researchgate.net/profile/Saddam_Hussain6

References

1. Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S and Wang L. Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front. Plant Sci. 2018; 9:393. https://doi.org/10.3389/fpls.2018.00393

2. Alghabari F, Ihsan MZ, Khaliq A, Hussain S., Daur I, Nasim W. Gibberellin-sensitive Rht alleles confer tolerance to heat and drought stresses in wheat at booting stage. J. Cereal Sci. 2016; 70:72-78. https://doi.org/10.1016/j.jcs.2016.05.016

3. Burke EJ, Brown SJ, Christidis N. Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J Hydrometeorol. 2006;7(5):1113-25. https://doi.org/10.1175/JHM544.1

4. Harris D, Tripathi RS, Joshi A. On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. In: Pandey S, Mortimer M, Wade L, Tuong TP, Lopes K, Hardy B editors. Direct seeding: Research Strategies and Opportunities, International Research Institute, Manila, Philippines: 2002. p. 231-40.

5. Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Sridharan R, Panneerselvam R. Changes in antioxidant metabolism of Vigna unguiculata L. Walp. by propiconazole under water de?cit stress. Colloids Surf B: Biointerf. 2007;57:69-74. https://doi.org/10.1016/j.colsurfb.2007.01.004

6. Challinor AJ, Wheeler TR, Slingo JM, Craufurd PQ, Grimes DIF. Design and optimisation of a large-area process-based model for annual crops. Agr. Forest Meteorol. 2004;124:99-120. https://doi.org/10.1016/j.agrformet.2004.01.002

7. Akram, HM, Ali A, Sattar A, Rehman HSU, Bibi A. Impact of water deficit stress on various physiological and agronomic traits of three basmati rice (Oryza sativa L.) cultivars. J Anim Plant Sci. 2013;23(5):1415-23. Available in: http://www.thejaps.org.pk/.../30.pdf

8. Kaur V, Behl RK, Shinano T, Osaki M. Interacting effects of high temperature and drought stresses in wheat genotypes under semiarid tropics-an appraisal. Tropics. 2008;17:230-38. https://doi.org/10.3759/tropics.17.225

9. Praba ML, Cairns JE, Babu RC, Lafitte HR. Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J Agron Crop Sci. 2009;195:30-46.https://doi.org/10.1111/j.1439-037X.2008.00341.x

10. Anjum SA, Tanveer M, Ashraf U, Hussain S, Shahzad B, Khan I, Wang L. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environ. Sci. Pollut. Res. 2016; 23:17132–14. https://doi.org/10.1007/s11356-016-6894-8

11. Earl H, Davis RF. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron J. 2003;95:688-96. https://doi.org/10.2134/agronj2003.6880

12. Saud S, Chen Y, Fahad S, Hussain S, Li N, Li X, Al-hussien SAFE. Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery. Environ. Sci. Pollut. Res. 2016; 23: 17647-55. https://doi.org/10.1007/s11356-016-6957-x

13. Duan B, Yang Y, Lu Y, Korpelainen H, Berninger F, Li C, et al. Interactions between drought stress, ABA and genotypes in Picea asperata. J Exp Bot. 2007;58:3025-36. https://doi.org/10.1093/jxb/erm160

14. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev. 2009;29:185-212. https://doi.org/10.1007/978-90-481-2666-8_12

15. Kaya MD, Okcu G, Atak M, Cikili Y, Kolsarici O. Seed treatments to overcome salt and drought stress during germination in sun?ower (Helianthus annuus L.). Eur J Agron. 2006;24:291-95. https://doi.org/10.1016/j.eja.2005.08.001

16. Okcu G, Kaya MD, Atak M. E?ects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turk J Agr For. 2005;29:237-42.

17. Tripathy JN, Zhang J, Robin S, Nguyen TT, Nguyen HT. QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theor Appl Genet. 2000;100:1197-1202. https://doi.org/10.1007/s001220051424

18. Manickavelu A, Nadarajan N, Ganesh SK, Gnanamalar RP, Chandra BR. Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regul. 2006;50:121-38.https://doi.org/10.1007/s10725-006-9109-3

19. Zeid IM, Shedeed ZA. Response of alfalfa to putrescine treatment under drought stress. Biol Plant. 2006;50:635-40. https://doi.org/10.1007/s10535-006-0099-9

20. Sacks MM, Silk WK, Burman P. Effect of water stress on cortical cell division rates within the apical meristem of primary roots of maize. Plant Physiol. 1997;114:519-27. https://doi.org/10.1104/pp.114.2.519

21. Jaleel CA, Gopi R, Sankar B, Gomathinayagam M, Panneerselvam R. Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. Comp Rend Biol. 2008;331:42-47. https://doi.org/10.1016/j.crvi.2007.11.003

22. Tahir MHN, Imran M, Hussain MK. Evaluation of sunflower (Helianthus annuus L.) inbred lines for drought tolerance. Int J Agric Biol. 2002;3:398-400. Available in: http://www.ijab.org

23. Wullschleger SD, Yin TM, DiFazio SP, Tschaplinski TJ, Gunter LE, Davis MF, et al. Phenotypic variation in growth and biomass distribution for two advanced-generation pedigrees of hybrid poplar. Canadian J For Res. 2005;35:1779-89.https://doi.org/10.1139/x05-101

24. Mohammadian R, Moghaddam M, Rahimian H, Sadeghian SY. Effect of early season drought stress on growth characteristics of sugar beet genotypes. Turk J Agric For. 2005;29(5):357-568. http://journals.tubitak.gov.tr/agriculture/abstract.htm?id=7880

25. Wu Y, Cosgrove DJ. Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J Exp Bot. 2000;51:1543-53. https://doi.org/10.1093/jexbot/51.350.1543

26. Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, et al. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci. 2017;8:1147. https://doi.org/10.3389/fpls.2017.01147

27. Rucker KS, Kvien CK, Holbrook CC, Hook JE. Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci. 1995;24:14-18. https://doi.org/10.3146/pnut.22.1.0003

28. Jaleel CA, Manivannan PA, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram RA, Panneerselvam R. Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol. 2009;11(1):100-05.

29. Khan MB, Hussain M, Raza A, Farooq S, Jabran K. Seed priming with CaCl2 and ridge planting for improved drought resistance in maize. Turk J Agric For. 2015;39:193-203. https://doi.org/10.3906/tar-1405-39 .

30. Nahar S, Kalita J, Sahoo L, Tanti B. Morpho physiological and molecular effects of drought stress in rice. Ann Plant Sci. 2016;5(09):1409-16.

31. Den?i? S, Kastori R, Kobiljski B, Duggan B. Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica. 2000;113(1):43-52. https://doi.org/10.1023/A:1003997700865

32. Zhang M, Duan L, Zhai Z, Li J, Tian X, Wang B, et al. Effects of plant growth regulators on water deficit-induced yield loss in soybean. In: Proceedings of the 4th international crop science congress, Brisbane, Australia: 2004. p. 252-56. Available in: http://www.regional.org.au/au/asa/2004/poster/1/3/4/575_zhangmc.htm

33. Hsiao TC, O’Toole JC, Yambao EB, Turner NC. Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oryza sativa L.). Plant Physiol. 1984;75:338-41. https://doi.org/10.1104/pp.75.2.338

34. Toole JC, Cruz RT, Singh TN. Leaf rolling and transpiration. Plant Sci Lett. 1979;16:111-14. https://doi.org/10.1016/0304-4211(79)90015-4

35. Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA. Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sun?ower. J Agron Crop Sci. 2008;194:193-99.https://doi.org/10.1111/j.1439-037X.2008.00305.x

36. Kiliç H, Ya?basanlar T. The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Not Bot Hort Agrobot Cluj. 2010;38:164-70.https://doi.org/10.15835/nbha3814274

37. Anjum SA, U Ashraf, M Tanveer, I Khan, S Hussain, B Shahzad, A Zohaib et al. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front. Plant Sci. 2017; https://doi.org/10.3389/fpls.2017.00069

38. Kabay T, Erdinc C, Sensoy S. Effects of drought stress on plant growth parameters, membrane damage index and nutrient content in common bean genotypes. J Anim Plant Sci. 2007;27(3):940-52. Available in: http://www.thejaps.org.pk/.../31.pdf

39. Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, et al. Soybean response to water. Crop Sci. 2001;41(2):493-509. https://doi.org/doi:10.2135/cropsci2001.412493x

40. Wu QS, Xia RX, Zou YN. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol. 2008;44:122-28. https://doi.org/10.1016/j.ejsobi.2007.10.001

41. Bhatt RM, Srinivasa Rao NK. Influence of pod load response of okra to water stress. Indian J Plant Physiol. 2005;10:54-59. Available in: https://www.samviti.com/img/1341/society/publication/ijpp-10-1-009.pdf

42. Zhao TJ, Sun S, Liu Y, Liu JM, Liu Q, Yan YB, et al. Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and transinactive DRE binding factors in Brassica napus. J Biol Chem. 2006;281:10752-59. Available in: http://www.jbc.org/content/283/10/6261.full

43. Kamara AY, Menkir A, Badu–Apraku B, Ibikunle O. The in?uence of drought stress on growth, yield and yield components of selected maize genotypes. J Agr Sci. 2003;141:43-50.https://doi.org/10.1017/S0021859603003423

44. Hussain HA, Men S, Hussain S, Chen Y, Ali S, Zhang S, Zhang K, Li Y, Xu Q, Liao C, Wang L. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci. Rep. 2019; 9:3890. https://doi.org/10.1038/s41598-019-40362-7

45. Nayyar H, Kaur S, Singh S, Upadhyaya HD. Di?erential sensitivity of Desi (small-seeded) and Kabuli (large-seeded) chickpea genotypes to water stress during seed ?lling: e?ects on accumulation of seed reserves and yield. J Sci Food Agr. 2006;86:2076-2082. https://doi.org/10.1002/jsfa.2574

46. Petropoulos SA, Daferera D, Polissiou MG, Passam HC. The effect of water deficit stress on the growth, yield and composition of essential oils of parsley. Sci Hortic. 2008;115(4):393-97. https://doi.org/10.1016/j.scienta.2007.10.008

47. Alghabari F, Ihsan MZ, Hussain S, Aishia G, Daur I. Effect of Rht alleles on wheat grain yield and quality under high temperature and drought stress during booting and anthesis. Environ. Sci. Pollut. Res. 2015; 20:15506-15 https://doi.org/10.1007/s11356-015-4724-z

48. Anjum SA, Tanveer M, Hussain S, Tung SA, Samad RA, Wang L. Exogenously applied methyl jasmonate improves the drought tolerance in wheat imposed at early and late developmental stages. Acta Physiol. Plant. 2016;38: 1-11. https://doi.org/10.1007/s11738-015-2047-9

49. Edward D, Wright D. The effects of winter water-logging and summer drought on the growth and yield of winter wheat (Triticum aestivum L.). Eur J Agron. 2008;28:234-44. https://doi.org/10.1016/j.eja.2007.07.010

50. Estrada-Campuzano G, Miralles DJ, Slafer GA. Genotypic variability and response to water stress of pre- and post-anthesis phases in triticale. Eur J Agron. 2008;28:171-77. https://doi.org/10.1016/j.eja.2007.07.005

51. Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, et al. Drought tolerance improvement in crop plants: An integrative view from breeding to genomics. Field Crop Res. 2008;105:1-14. https://doi.org/10.1016/j.fcr.2007.07.004

52. Wardlaw IF, Willenbrink J. Mobilization of fructan reserves and changes in enzyme activities in wheat stems correlate with water stress during kernel ?lling. New Phytol. 2000;148:413-22. https://doi.org/10.1046/j.1469-8137.2000.00777.x

53. Taiz L, Zeiger E. Plant Physiology, 4th ed. Sinauer Associates Inc. Publishers, Massachusetts: 2006.

54. Ahmadi A, Baker DA. The e?ect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul. 2001;35:81-91.https://doi.org/10.1023/A:1013827600528

55. Rizza F, Badeck FW, Cattivelli L, Lidestri O, Di Fonzo N, Stanca AM. Use of a water stress index to identify barley genotypes adapted to rainfed and irrigated conditions. Crop Sci. 2004;44(6):2127-37. https://doi.org/10.2135/cropsci2004.2127

56. Samarah NH. Effects of drought stress on growth and yield of barley. Agron Sustain Dev. 2005;25:145-49. Available in:https://hal.archives-ouvertes.fr/hal-00886257/

57. Lafitte HR, Yongsheng G, Yan S, Li1 ZK. Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot. 2007;58:169-75. https://doi.org/10.1093/jxb/erl101

58. Sinaki JM, Heravan EM, Rad AHS, Noormohammadi G, Zarei G. The e?ects of water de?cit during growth stages of canola (Brassica napus L.). Am Euras J Agri Environ Sci. 2007;2:417-422.

59. Samarah NH, Mullen RE, Cianzio SR, Scott P. Dehydrin-like proteins in soybean seeds in response to drought stress during seed ?lling. Crop Sci. 2006;46;2141-50. https://doi.org/10.2135/cropsci2006.02.0066

60. Nam NH, Chauhan YS, Johansen C. E?ect of timing of drought stress on growth and grain yield of extra-short-duration pigeonpea lines. J Agr Sci. 2001;136:179-89. https://doi.org/10.1017/S0021859601008607

61. Ogbonnaya CI, Sarr B, Brou C, Diouf O, Diop NN, Roy-Macauley H. Selection of cowpea genotypes in hydroponics, pots, and field for drought tolerance. Crop Sci. 2003;43:1114-20. https://doi.org/10.2135/cropsci2003.1114

62. Mazahery-Laghab H, Nouri F, Abianeh HZ. Effects of the reduction of drought stress using supplementary irrigation for sunflower (Helianthus annuus) in dry farming conditions, Pajouheshva- Sazandegi. Agron Hort. 2003;59:81-86. Available in: http://agris.fao.org/agris-search/search.do?recordID=IR2011005006

63. Manivannan P, Jaleel CA, Sankar B, Kishorekumar A, Somasundaram R, Lakshmanan GA, Panneerselvam R. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces. 2007;59(2):141-49. https://doi.org/10.1016/j.colsurfb.2007.05.002

64. Guerfel M, Baccouri O, Boujnah D, Chaibi W, Zarrouk M. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci Horticult. 2009;119:257-63. https://doi.org/10.1016/j.scienta.2008.08.006

65. Ghannoum, O. C4 photosynthesis and water stress. Ann Bot. 2008;103(4):635-44. https://doi.org/10.1093/aob/mcn093

66. Jaleel CA, Manivannan P, Kishorekumar A, Sankar B, Gopi R, Somasundaram R, et al. Alterations in osmoregulation, antioxidant enzymes and indole alkaloid levels in Catharanthus roseus exposed to water deficit. Colloids and Surfaces B: Biointerfaces. 2007;59(2):150-57. https://doi.org/10.1016/j.colsurfb.2007.05.001

67. Prochazkova D, Sairam RK, Srivastava GC, Singh DV. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci. 2001;161:765-71. https://doi.org/10.1016/S0168-9452(01)00462-9

68. Havaux M. Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci. 1998;3:147-151. https://doi.org/10.1016/S1360-1385(98)01200-X

69. Anjum SA, Tanveer M, Hussain S, Ashraf U, Khan I, Wang L. Alteration in growth, leaf gas exchange, and photosynthetic pigments of maize plants under combined cadmium and arsenic stress. Water Air Soil Pollut. 2017; 228:13. https://doi.org/10.1007/s11270-016-3187-2

70. Saud S, Li X, Chen Y, Zhang L, Fahad S, Hussain S, Sadiq A, Chen Y. Silicon application increases drought tolerance of Kentucky bluegrass by improving plant water relations and morphophysiological functions. Sci. World J. 2014; https://doi.org/10.1155/2014/368694

71. Brown KW, Thomas JC. The influence of water stress preconditioning on dark respiration. Physiol Plantarum. 1980;49:205-09. https://doi.org/10.1111/j.1399-3054.1980.tb02653.x

72. Boyer JS. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol. 1970;46:233-35. https://doi.org/10.1104/pp.46.2.233

73. Rice JR, Eastin JD. Grain sorghum root response to water and temperature during reproductive development. Crop Sci. 1986;26:547-51. https://doi.org/10.2135/cropsci1986.0011183X002600030025x

74. Pheloung P, Barlow EWR. Respiration and carbohydrates accumulation in the water stressed wheat apex. J Exp Bot. 1981;32:921-31.

75. McCree KJ. Measuring of whole plant daily carbon balance. Photosynthetica. 1986;20:82-93. Available in: http://agris.fao.org/agris-search/search.do?recordID=US201301414480

76. Penning de Vries FWT, Witlage J, Kremer D. Rates of respiration and of increase in structural dry matter in young wheat, rye grass and maize plants in relation to temperature, to water stress and to their sugar content. Ann Bot. 1979;44:595-609. https://doi.org/10.1093/oxfordjournals.aob.a085772

77. Wilson DR, Van Bavel CHM, McCree KJ. Carbon balance of water deficit grain sorghum plants. Crop Sci. 1980;20:153-59. https://doi.org/10.2135/cropsci1980.0011183X002000020001x

78. Lawlor DW. Water stress induced changes in photosynthesis, photorespiration, respiration, Co2 compensation concentration of wheat. Photosynthetica. 1976;10:378-87. Available in: http://agris.fao.org/agris-search/search.do?recordID=US201301254780

79. Upchurch RP, Peterson ML, Hagan RM. Effect of soil moisture content on the rate of photosynthesis and respiration in the ladino clover (Trifolium repens L.). Plant Physiol. 1995;30:297-303. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC540651/

80. Shearman LL, Esatin JD, Sullivan CY, Kinbacher EJ. Carbon dioxide exchange in water stressed maize sorghum. Crop Sci. 1972;12:406-09. https://doi.org/10.2135/cropsci1972.0011183X001200040002x

81. Collier DE, Cummins WR. The rate of development of water deficits affects Saxifraga cernua leaf respiration. Physiol Plantarum. 1996;96:291-97. https://doi.org/10.1111/j.1399-3054.1996.tb00216.x

82. Egilla JN, Davies FT, Boutton TW. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica. 2005;43(1):135-40. https://doi.org/10.1007/s11099-005-5140-2

83. Bilal M, Rashid RM, Rehman SU, Iqbal F, Ahmed J, Abid MA, et al. Evaluation of wheat genotypes for drought tolerance. J Green Physiol Genet Genomics. 2015;1:11-21.

84. Dhanda S, Sethi G, Behl R. Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci. 2004;190:6-12. https://doi.org/10.1111/j.1439-037X.2004.00592.x

85. Farshadfar E, Farshadfar M, Moradi F. Screening Agronomic, Physiological and Metabolite Indicators of Drought Tolerance in Bread Wheat (Triticum aestivum L). Am J Sci Res. 2011;38:88-96. Available in: http://www.globalsciencebooks.info/Online/GSBOnline/images/2011/IJPB_5(1)/IJPB_5(1)42-47o.pdf

86. Sairam RK, Saxena DC. Oxidative stress and antioxidant in wheat genotypes: possible mechanism of water stress tolerance. J Agron Crop Sci. 2000;184:55-61. https://doi.org/10.1046/j.1439-037x.2000.00358.x

87. Aziz O, Hussain S, Rizwan M, Riaz M, Bashir S, Lin L, Mehmood S, Imran M, Yaseen R, Lu G. Increasing water productivity, nitrogen economy, and grain yield of rice by water saving irrigation and fertilizer-N management. Environ. Sci. Pollut. Res. 2018; 1-5. https://doi.org/10.1007/s11356-018-1855-z

88. Siddique MRB, Hamid A, Islam MS. Drought stress effects on water relations of wheat. Bot Bull Acad Sin. 2001;41:35-39. Available in: https://ejournal.sinica.edu.tw/bbas/content/2000/1/bot11-06.html

89. Nayyar H, Gupta D. Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot. 2006;58:106-13. https://doi.org/10.1016/j.envexpbot.2005.06.021

90. Nerd A, Nobel PS. E?ects of drought on water relations and nonstructural carbohydrates in cladodes of Opuntia ?cus-indica. Physiol Plant. 1991;81:495-500. https://doi.org/10.1111/j.1399-3054.1991.tb05090.x

91. Abbate PE, Dardanellib JL, Cantareroc MG, Maturanoc M, Melchiorid RJM, Sueroa EE. Climatic and water availability e?ects on water-use e?ciency in wheat. Crop Sci. 2004;44:474-83. https://doi.org/10.2135/cropsci2004.4740

92. Roohi E, Tahmasebi-Sarvestani Z, Modarres-Sanavy SAM, Siosemardeh A. Comparative Study on the effect of soil water stress on photosynthetic function of triticale, bread wheat, and barley. J Agr Sci Tech. 2003;15:215-28. Available in: http://hehp.modares.ac.ir/article-23-10280-en.pdf

93. Purwanto E. Photosynthesis activity of soybean (Glycine max L.) under drought stress. Agrosains J. 2003;5(1):13-18.

94. Levitt. Responses of plants to environmental stresses. Physiological Ecology Series. Academic, Michigan. 1980. Available in: https://www.cabdirect.org/cabdirect/abstract/19802605739

95. Turner NC. Drought resistance: a comparison of two research frameworks. In: Saxena NP editor. Management of Agricultural Drought: Agronomic and Genetic Options. Science Publishers, Inc: 2003. p. 89-102.

96. Bhatia VS, Jumrani K, Pandey GP. Developing drought tolerance in soybean using physiological approaches. Soybean Res. 2014;12:1-19. Available in: http://soybeanresearch.in/pdf/2014-Issue1.pdf

97. Blum A. Breeding methods for drought resistance plants under stress In: Jones H. G, Flowers TJ, Jones MB editors. Biochemistry, Physiology and Ecology and their Application to Plant Improvement. Cambridge University Press, Cambridge: 1989. p. 197-215.

98. Boyer SJ. Advances in drought tolerance in plants. Adv Agron. 1996;56:187-218.

99. Barnabas B, Jager K, Feher A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Env. 2008;31:11-38. https://doi.org/10.1111/j.1365-3040.2007.01727.x

100. Bodner G, Nakhforoosh A, Kaul HP. Management of crop water under drought: a review. Agron Sustain Dev. 2015;35:401-42. https://doi.org/10.1007/s13593-015-0283-4

101. Kramer PJ. Drought, stress, and the origin of adaptations. In: Turner NC, Kramer PJ editors. Adaptations of Plants to Water and High Temperature Stress. John-Wiley & Sons, New York: 1980. p. 7-20. Available in: https://www.cabdirect.org/cabdirect/abstract/19810718581

102. Morgan PW. E?ects of abiotic stresses on plant hormone systems, in: Stress Responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, Inc. 1990. p. 113-46.

103. Turner NC, Wright GC, Siddique KHM. Adaptation of grain legumes (pulses) to water-limited environments. Adv Agron. 2001;71:123-31. https://doi.org/10.1016/S0065-2113(01)71015-2

104. Ashraf M, Bokhari MH, Chishti SN. Variation in osmotic adjustment of accessions of lentil lens culinaris medic. In response to drought stress. Acta Bot Neerl. 1992;41:51-62. https://doi.org/10.1111/j.1438-8677.1992.tb01310.x

105. Hudak CM, Patterson RP. Root distribution and soil moisture depletion of a drought resistant soybean plant introduction. Agron J. 1996;88:478-485. https://doi.org/10.2134/agronj1996.00021962008800030020x

106. Sponchiado BN, White JW, Castillo JA, Jones PG. Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Exp Agr. 1989;25:249-57. https://doi.org/10.1017/S0014479700016756

107. Rhodes D, Samaras Y. Genetic control of osmoregulation in plants. In: Strange, K. Boca Raton editors. Cellular and molecular physiology of cell volume regulation, CRC Press: 1994. p. 347-61.

108. Demiral T, Turkan I. Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J Plant Physiol. 2004;161:1089-1110. https://doi.org/10.1016/j.jplph.2004.03.009

109. Hussain S, Khan F, Hussain HA, Nie L. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front. Plant Sci. 2016; https://doi.org/10.3389/fpls.2016.00116

110. Szabo L, Savoure A. Proline: a multifunctional amino acid. Trends Plant Sci. 2010;15(2):89-97. https://doi.org/10.1016/j.tplants.2009.11.009

111. Nayyar H, Walia DP. Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biol Plant. 2003;46:275-79. https://doi.org/10.1023/A:1022867030790

112. Fukai S, Sittisuang P, Chanphengsay M. Increasing production of rain fed low land rice in drought prone environments: a case study in Thailand and Laos. Plant Prod Sci. 1998;1:75-82. https://doi.org/10.1626/pps.1.75

113. El Nadi AH. The significance of leaf area in evapotranspiration. Ann Bot. 1974;38:607-611. https://doi.org/10.1093/oxfordjournals.aob.a084846

114. Korres NE, Norsworthy JK, Tehranchian P, Gitsopoulos TK, Loka DA, Oosterhuis DM, et al. Cultivars to face climate change effects on crops and weeds: a review. Agron Sustain Dev. 2016;36(1):12. https://doi.org/10.1007/s13593-016-0350-5

115. Sekhon HS, Singh G, Sharma P, Bains TS. Water use efficiency under stress environments. In: Climate change and management of cool season grain legume crops. Springer Netherlands: 2010. p. 207-27.

116. Mahmood A, Ihsan MZ, Khaliq A, Hussain S, Cheema ZA, Naeem M, Daur I, Alghabari F. Crop residues mulch as organic weed management strategy in maize. Clean Soil Air Water 2016; 4:317–24 https://doi.org/10.1002/clen.201500155

117. Jensen CR. Some options for securing water resources for agricultural production. In Cracow-Plant-Stress Conference. 2013. p. 9-25.

118. Lipiec J, Doussan C, Nosalewicz A, Kondracka K. Effect of drought and heat stresses on plant growth and yield: a review. Int Agrophys. 2013;27(4):463-77. https://doi.org/10.2478/intag-2013-0017

119. Hussain S, Zheng M, Peng S, Fahad S, Khaliq A, Huang J, Cui K, Nie L. Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions. Sci. Rep. 2015; https://doi.org/10.1038/srep08101

120. Du LV, Tuong TP. Enhancing the performance of dry-seeded rice: effects of seed priming, seedling rate, and time of seedling. Direct seeding: research strategies and opportunities. 2002. p. 241-56.

121. Ajouri A, Asgedom H, Becker M. Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J Plant Nutr Soil Sci. 2004;167(5):630-36. https://doi.org/10.1002/jpln.200420425

122. Das JC, Choudhury AK. Effect of seed hardening, potassium fertilizer, and paraquat as anti-transpirant on rainfed wheat (Triticum aestivum L.). Indian J Agron. 1996;41:397-400.

123. Ghana SG, Schillinger WF. Seed priming winter wheat for germination, emergence, and yield. Crop Sci. 2003;43:2135-41.https://doi.org/10.2135/cropsci2003.2135

124. Akbari G, Sanavy SA, Yousefzadeh S. Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pak J Biol Sci. 2007;10:2557-61. Available in:https://scialert.net/fulltextmobile/?doi=pjbs.2007.2557.2561

125. Wahid A, Perveen M, Gelani S, Shahzad MA, Basra SMA. Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol. 2007;164:283-94. https://doi.org/10.1016/j.jplph.2006.01.005

126. Basra SMA, Farooq M, Tabassum R. Physiological and biochemical aspects of seed vigour enhancement treatments in ?ne rice (Oryza sativa L.). Seed Sci Technol. 2005;33:623-28. https://doi.org/10.15258/sst.2005.33.3.09

127. Farooq M, Basra SMA, Wahid A, Ahamad N. Changes in nutrient homeostasis and reserve metabolism during rice seed priming: consequences for seedling emergence and growth. Agric Sci China. 2010;9:191-98. https://doi.org/10.1016/S1671-2927(09)60083-3

128. Yari L, Sheidaie S. Effect of seed priming on seed germination’s behavior of rice (Oryza sativa L.). Int J Agric Sci. 2011;1:45-51. Available in: https://www.cabdirect.org/cabdirect/abstract/20123239761

129. Yuan-Yuan S, Yong-Jian S, Ming-Tian W, Xu-Yi LI, Xiang GUO, Rong HU, et al. Effects of seed priming on germination and seedling growth under water stress in rice. Acta Agron Sin. 2010;36:1931-40. https://doi.org/10.1016/S1875-2780(09)60085-7

130. Murungu FS, Nyamugafata P, Chiduza C, Clark LJ, Whalley WR. Effects of seed priming, aggregate size and soil matric potential on emergence of cotton (Gossypium hirsutum L.) and maize (Zea mays L.). Soil Tillage Res. 2003;74:161-68. https://doi.org/10.1016/j.still.2003.06.003

131. Finch-Savage WE, Dent KC, Clark LJ. Soak conditions and temperature following sowing in?uence the response of maize (Zea mays L.) seeds to on-farm priming (pre-sowing seed soak). Field Crops Res. 2004;90:361-74. https://doi.org/10.1016/j.fcr.2004.04.006

132. Foti R, Aburenia K, Tigerea A, Gotosab J, Gerec J. The ef?cacy of different seed priming osmotica on the establishment of maize (Zea mays L.) caryopses. J Arid Environ. 2008;72:1127-30. https://doi.org/10.1016/j.jaridenv.2007.11.008

133. Janmohammadi M, Moradi Dezfuli P, Sharifzadeh F. Seed invigoration techniques to improve germination and early growth of inbred line of maize under salinity and drought stress. Gen Appl Plant Physiol. 2008;34:215-26. Available in: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.399.1176

134. Patade VY, Sujata B, Suprasanna P. Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agric Ecosyst Environ. 2009;134:24-28. https://doi.org/10.1016/j.agee.2009.07.003

135. Casenave EC, Toselli ME. Hydropriming as a pre-treatment for cotton germination under thermal and water stress conditions. Seed Sci Technol. 2007;35:88-98. https://doi.org/10.15258/sst.2007.35.1.08

136. Kaur S, Gupta AK, Kaur N. Effect of osmo- and hydropriming of chickpea on seedling growth and carbohydrate metabolism under water de?cit stress. Plant Growth Regul. 2002;37:17-22. https://doi.org/10.1023/A:1020310008830

137. Kaur S, Gupta AK, Kaur N. Seed priming increases crop yield possibly by modulating enzymes of sucrose metabolism in chickpea. J Agron Crop Sci. 2005;19:81-87. https://doi.org/10.1111/j.1439-037X.2004.00140.x

138. Elkoca E, Haliloglu K, Esitken A, Ercisli S. Hydro- and osmopriming improve chickpea germination. Acta Agric Scand Sect B Soil Plant Sci. 2007;57:193-200. https://doi.org/10.1080/09064710600914087

139. Srivastava AK, Lokhande VH, Patade VY, Suprasanna P, Sjahril R, D’Souza SF. Comparative evaluation of hydro-, chemo-, and hormonal priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiol Plant. 2010;32:1135-44. https://doi.org/10.1007/s11738-010-0505-y

140. Srivastava AK, Suprasanna P, Srivastava S, D’Souza SF. Thiourea mediated regulation in the expression pro?le of aquaporins and its impact on water homeostasis under salinity stress in Brassica juncea roots. Plant Sci. 2010;178:517-22. https://doi.org/10.1016/j.plantsci.2010.02.015

141. Omidi H, Khazaei F, Hamzi Alvanagh S, Heidari-Sharifabad H. Improvement of seed germination traits in canola (Brassica napus L.) as affected by saline and drought stresses. Plant Ecol Physiol. 2009;3:151-58. Available in: http://thaiscience.info/Journals/Article/IJAT/10842423.pdf

142. Nonami H. Plant water relations and control of cell elongation at low water potentials. J Plant Res. 1998;111:373-82. https://doi.org/10.1007/BF02507801

143. Anjum F, Yaseen M, Rasul E, Wahid A, Anjum S. Water stress in barley (Hordeum vulgare L.). II. Effect on chemical composition and chlorophyll contents. Pak J Agric Sci. 2003;40:45-49. Available in: https://www.pakjas.com.pk/papers/536.pdf

144. Foyer CH, Noctor G. Oxygen processing in photosynthesis: regulation and signaling. New Phytologist. 2000;146:359-88.

145. Efeo?lu B, Ekmekci Y, Cicek N. Physiological responses of three maize cultivars to drought stress and recovery. S Afr J Bot. 2009;75(1):34-42. https://doi.org/10.1016/j.sajb.2008.06.005

146. Guo YY, Yu HY, Kong DS, Yan F, Zhang YJ. Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum Murr. seedlings. Photosynthetica. 2016;54(4):524-31.https://doi.org/10.1007/s11099-016-0206-x

147. Hussain S, Khaliq A, Tanveer M, Matloob A, Hussain HA. Aspirin priming circumvents the salinity-induced effects on wheat emergence and seedling growth by regulating starch metabolism and antioxidant enzyme activities. Acta Physiol. Plant. 2018; 40:68 https://doi.org/10.1007/s11738-018-2644-5.

148. Kiran S. Effects of Vermicompost on Some Morphological, Physiological and Biochemical Parameters of Lettuce (Lactuca sativa var. crispa) under Drought Stress. Not Bot Horti Agrobo. 2019;47(2):352-58.https://doi.org/10.15835/nbha47111260

149. Kavar T, Maras M, Kidric M, Sustar-Vozlic J, Meglic V. Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Mol Breed. 2007;21:159-72.https://doi.org/10.1007/s11032-007-9116-8

150. Maurel C, Chrispeels MJ. Aquaporins: a molecular entry into plant water relations. Plant Physiol. 2001;125:135-138. https://doi.org/10.1104/pp.125.1.135

151. Javot H, Maurel C. The role of aquaporins in root water uptake. Ann Bot. 2002;90:301-13. https://doi.org/10.1093/aob/mcf199

152. Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Guclu J, Vinh J, et al. Role of a single aquaporin isoform in root water uptake. Plant Cell. 2003;15:509-522. https://doi.org/10.1105/tpc.008888

153. Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G. Overexpression of a plasma membrane aquaporins in transgenic tobacco improves plant vigour under favourable growth conditions but not under drought or salt stress. Plant Cell. 2003;15:439-47. https://doi.org/10.1105/tpc.00922

154. Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants: an overview. Environ Exp Bot. 2007;61:199-23. https://doi.org/10.1016/j.envexpbot.2007.05.011

155. Choi DW, Rodriguez EM, Close TJ. Barley Cbf3 Gene identification, expression pattern, and map location. Plant Physiol. 2002;129:1781-87. https://doi.org/10.1104/pp.003046

156. Agarwal PK, Agarwal P, Reddy MK, Sopory SK. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 2006;25:1263-74. https://doi.org/10.1007/s00299-006-0204-8

157. Mathur PB, Devi MJ, Serraj R, Yamaguchi-Shinozaki K, Vadez V, Sharma KK. Evaluation of transgenic groundnut lines under water limited conditions. Int Archis Newslett. 2004;24:33-34. Available in: http://oar.icrisat.org/id/eprint/3274

158. Yamaguchi-Shinozaki K, Shinozaki K. Improving drought and cold stress tolerance in transgenic rice. Proceedings of World Rice Research Conference, Tsukuba, Japan, 5-7 November 2004.

159. Huang B, Liu JY. Cloning and functional analysis of the novel gene GhDBP3 encoding a DRE-binding transcription factor from Gossypium hirsutum. Biochim Biophys Acta. 2006;1759:263-69. https://doi.org/10.1016/j.bbaexp.2006.04.006

160. Zhao J, Ren W, Zhi D, Wang L, Xia G. Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Rep. 2007;26:1521-1528.

161. Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys. 2005;444:139-58. https://doi.org/10.1007/s00299-007-0362-3

162. Hussain S, Yin H, Peng S, Khan FA, Khan F, Huang J, Cui K, Nie L. Comparative transcriptional profiling of primed and non-primed rice seedlings under submergence stress. Front. Plant Sci. 2016; https://doi.org/10.3389/fpls.2016.01125

163. Gorantla M, Babu PR, Lachagari VBR, Reddy AMM, Wusirika R, Bennetzen JL, et al. Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. J Exp Bot. 2006;58:253-265. https://doi.org/10.1093/jxb/erl213

164. Khaliq A, Aslam F, Matloob A, Hussain S, Wahid A, Rehman H. Seed priming with selenium: consequences for emergence, seedling growth and biochemical attributes of rice. Biol. Trace Element Res. 2015; 166:236-44 https://doi.org/10.1007/s12011-015-0260-4

165. Zheng M, Tao Y, Hussain S, Jiang Q, Peng S, Huang J, et al. Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regul. 2016;78(2):167-78.https://doi.org/10.1007/s10725-015-0083-5

Downloads

Published

01-10-2019

How to Cite

1.
Hussain S, Hussain S, Qadir T, Khaliq A, Ashraf U, Parveen A, Saqib M, Rafiq M. Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Sci. Today [Internet]. 2019 Oct. 1 [cited 2024 Apr. 28];6(4):389-402. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/578

Issue

Section

Review Articles