Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Extenuating mycotoxin contamination in spices: detection, regulatory frameworks and preventive strategies

DOI
https://doi.org/10.14719/pst.5816
Submitted
14 October 2024
Published
30-12-2024 — Updated on 30-01-2025
Versions

Abstract

Mycotoxins are secondary metabolites produced by fungi, primarily from the genera Aspergillus, Fusarium, Penicillium and Alternaria. The attention is on the existence of mycotoxin compounds in food substances that jeopardize public health and it is directed to systematic regulation to overcome these issues. Pathogenic fungi, including Aspergillus, Penicillium and Fusarium species, infiltrate spice crops during the pre-harvest, postharvest and storage stages. These fungi create toxic secondary metabolites called mycotoxin. The reviews' intend to examine the prevalence, types and levels of mycotoxins commonly found in spices, including aflatoxins, ochratoxin A and fumonisins. The study highlights the factors that influence mycotoxin contamination, such as environmental conditions, agricultural practices and storage methods. Analytical techniques for detecting mycotoxins, including chromatography and immunoassays, are evaluated for efficacy and sensitivity. It also discusses the regulatory frameworks and safety standards established by international bodies like the Codex Alimentarius Commission to mitigate mycotoxin risks. In addition to these regulatory measures, mycotoxin detection needs to be addressed before framing the standards. The preventive strategies and mitigation measures, including good agricultural practices (GAP), proper drying, storage conditions and biocontrol agents, were explored based on previous research conducted earlier. This comprehensive review underscores the critical importance of implementing integrated approaches combining advanced detection methods, harmonized regulatory standards and preventive strategies to ensure the safety and quality of spices in the global food supply chain.

References

  1. Diniz do Nascimento L, Barbosa de Moraes AA, Santana da Costa K, Pereira Galúcio JM, Taube PS, Leal Costa CM, et al. Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications. Biomol. 2020;10 (7):988. https://doi.org/10.3390/biom10070988
  2. Zareshahrabadi Z, Bahmyari R, Nouraei H, Khodadadi H, Mehryar P, Asadian F, Zomorodian K. Detection of aflatoxin and ochratoxin A in spices by high-performance liquid chromatography. J Food Qual. 2020;2020(1):8858889. https://doi.org/10.1155/2020/8858889
  3. Shityakov S, Bigdelian E, Hussein AA, Hussain MB, Tripathi YC, Khan MU, Shariati MA. Phytochemical and pharmacological attributes of piperine: A bioactive ingredient of black pepper. European Jof Med Chem.2019;176:149-61.https://doi.org/10.1016j.ejmech.2019.04.002
  4. Zhang J, Tang X, Cai Y, Zhou WW. Mycotoxin contamination status of cereals in China and potential microbial decontamination methods. Metabolites. 2023;13(4):551. https://doi.org/10.3390/metabo13040551
  5. Wang L, Su D, Yuan Q, Xiao C, Hu M, Guo L, et al. Simultaneous detection of multiple mycotoxins in Radix Dipsaci and estimation of exposure risk for consumers. Sci Rep. 2024;14(1):22762. https://doi.org/10.1038/s41598-024-73597-0
  6. Aiko V, Mehta A. Prevalence of toxigenic fungi in common medicinal herbs and spices in India. 3 Biotech. 2016;6(2):159. https://doi.org/10.1007/s13205-016-0476-9
  7. Estiarte N, Crespo Crespo-Sempere A, Marín S, Ramos AJ, Worobo RW. Stability of alternariol and alternariol monomethyl ether during food processing of tomato products. Food Chem. 2018;245:951 951-57. https://doi.org/10.1016/j.foodchem.2017.11.078
  8. Al-Anati L, Petzinger E. Immunotoxic activity of ochratoxin A. J Veter Pharma therape. 2006;29(2):79-90. https://doi.org/10.1111/j.1365-2885.2006.00718.x
  9. El Darra N, Gambacorta L, Solfrizzo M. Multimycotoxins occurrence in spices and herbs commercialized in Lebanon. Food Con. 2019;95:63-70. https://doi.org/10.1016/j.foodcont.2018.07.033
  10. Campos WE, Rosas LB, Neto AP, Mello RA, Vasconcelos AA. Extended validation of a senstive and robust method for simultaneous quantification of aflatoxins B1, B2, G1 and G2 in Brazil nuts by HPLC HPLC-FLD. J Food Comp Analy. 2017;60:90 90-96. https://doi.org/10.1016/ j.jfca.2017.03.014
  11. Marchese S, Polo A, Ariano A, Velotto S, Costantini S, Severino L. Aflatoxin B1 and M1: Biological properties and their involvement in cancer development. Toxins. 2018;10(6):214. https://doi.org/10.3390/toxins10060214
  12. Chuaysrinule C, Maneeboon T, Roopkham C, Mahakarnchanakul W. Occurrence of aflatoxin-and ochratoxin A-producing Aspergillus species in Thai dried chilli. J of Agri and Food Res. 2020;2:100054. https://doi.org/10.1016/j.jafr.2020.100054
  13. Van Egmond HP, Jonker MA. Worldwide regulations for mycotoxins in food and feed in 2003. https://doi.org/10.2520/myco1975.2003.Suppl3_1
  14. Kabak B, Dobson AD. Mycotoxins in spices and herbs-An update. Critical reviews in food Sci and Nutri. 2017;57(1):18-34. https://doi.org/10.1080/10408398.2013.772891
  15. JM JJ, Zhang M, Thiruvengadam M. Determination of mycotoxins by HPLC, LC-ESI-MS/MS and MALDI-TOF MS in Fusarium species-infected sugarcane. Microbial Pathogenesis. 2018;123:98-110. https://doi.org/10.1016/j.micpath.2018.06.045
  16. Beyene AM, Du X, Schrunk DE, Ensley S, Rumbeiha WK. High-performance liquid chromatography and Enzyme-Linked Immunosorbent Assay techniques for detection and quantification of aflatoxin B 1 in feed samples: A comparative study. BMC Res Notes. 2019;12:1-6. https://doi.org/10.1186/s13104-019-4538-z
  17. Hendel E, Ramirez S, Gott P, Raj MG, Hofstetter U. PSII-22 trends in mycotoxin contamination in United States corn. J of Animal Sci. 2020;98(Supplement_3):172-73. https://doi.org/10.1093/jas/skaa054.306
  18. Tarazona A, Gómez JV, Mateo F, Jimenez M, Romera D, Mateo EM. Study on mycotoxin contamination of maize kernels in Spain. Food Control. 2020;118:107370. https://doi.org/10.1016/j.foodcont.2020.107370
  19. Chen M, Qileng A, Liang H, Lei H, Liu W, Liu Y. Advances in immunoassay-based strategies for mycotoxin detection in food: From single-mode immunosensors to dual-mode immunosensors. Compre Rev in Food Sci and Food Safety. 2023 Mar;22(2):1285-311. https://doi.org/10.1111/1541-4337.13111
  20. Pickova D, Ostry V, Malir J, Toman J, Malir F. A review on mycotoxins and microfungi in spices in the light of the last five years. Toxins. 2020;12(12):789. https://doi.org/10.3390/toxins12120789
  21. Gambacorta L, Magistà D, Perrone G, Murgolo S, Logrieco AF, Solfrizzo M. Co-occurrence of toxigenic moulds, aflatoxins, ochratoxin A, Fusarium and Alternaria mycotoxins in fresh sweet peppers (Capsicum annuum) and their processed products. World Mycotoxin J. 2018;11(1):159-74. https://doi.org/10.3920/wmj2017.2271
  22. Khan MI, Asgher M, Khan NA. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physio and Biochem. 2014;80:67-74. https://doi.org/10.1016/j.plaphy.2014.03.026
  23. Singh P, Cotty PJ. Aflatoxin contamination of dried red chilies: Contrasts between the United States and Nigeria, two markets differing in regulation enforcement. Food Control. 2017;80:374-79. https://doi.org/10.1016/j.foodcont.2017.05.014
  24. Mandeel QA. Fungal contamination of some imported spices. Mycopathologia. 2005;159:291-98. https://doi.org/10.1007/s11046-004-5496-z
  25. Yogendrarajah P, Jacxsens L, De Saeger S, De Meulenaer B. Co-occurrence of multiple mycotoxins in dry chilli (Capsicum annum L.) samples from the markets of Sri Lanka and Belgium. Food Control. 2014;46:26-34. https://doi.org/10.1016/j.foodcont.2014.04.043
  26. Agropedia. Area and production of chilli in world 2008-09. 2017 [updated 2024 Jun 23; cited 2024 Jun 30]. Available from: agropedia.iitk.ac.in
  27. Vysali P, Subramanyam K, Kasi IK. A study on the management of biotic and abiotic threats in chilli crop cultivation. Pharma Inno J. 2021;10(12):1741 1741-48.
  28. Thangjam B, Chanu WT, Mayanglambam B. Fungal diseases of chili and their management.
  29. Rao PV, Gan SH. Cinnamon: a multifaceted medicinal plant. Evidence-Based Compl and Alter Med. 2014;2014(1):642942. https://doi.org/10.1155/2014/642942
  30. Nabavi SF, Di Lorenzo A, Izadi M, Sobarzo Sobarzo-Sánchez E, Daglia M, Nabavi SM. Antibacterial effects of cinnamon: From farm to food, cosmetic and pharmaceutical industries. Nutri. 2015;7(9):7729 7729-48. https://doi.org/10.3390/nu7095359
  31. Jeswal P, Kumar D. Natural occurrence of toxigenic mycoflora and ochratoxin A and aflatoxins in commonly used spices from Bihar state (India). J of Environ Sci Toxico and Food Tech. 2015;9(2):50-55. https://doi.org/10.1155/2015/242486
  32. Garcia MV, Parussolo G, Moro CB, Bernardi AO, Copetti MV. Fungi in spices and mycotoxigenic potential of some Aspergilli isolated. Food Microbiology. 2018;73:93 93-98. https://doi.org/10.1016/j.fm.2018.01.013
  33. Nurtjahja K, Zuhra CF, Sembiring H, Bungsu A, Simanullang J, Silalahi JE, et al. Fungal contamination spices from Indonesia with emphasis on Aspergillus flavus. Czech J of Food Sci. 2019;37(5). https://doi.org/10.17221/18/2019-CJFS
  34. Temu TB, Masenga G, Obure J, Mosha D, Mahande MJ. Maternal and obstetric risk factors associated with preterm delivery at a referral hospital in northern northern-eastern Tanzania. Asian Pacific J of Reprod. 2016;5(5):365 365-70. https://doi.org/10.1016/j.apjr.2016.07.009
  35. Zafar S, Khan MK, Perveen S, Iqbal M, AL-Huqail AA. In: Zia-Ul-Haq M, AL-Huqail AA, Riaz M, Gohar UF, editors. Essentials of medicinal and aromatic crops. Cham: Springer International Publishing; 2023. p. 483-514 https://doi.org/10.1007/978-3-031-35403-8_19
  36. Zinedine A, Soriano JM, Juan C, Mojemmi B, Molto JC, Bouklouze A, et al. Incidence of ochratoxin A in rice and dried fruits from Rabat and Salé area, Morocco. Food Additives and Contaminants. 2007;24(3):285-91. https://doi.org/10.1080/02652030600967230
  37. Bircan C. The determination of aflatoxins in spices by immunoaffinity column extraction using HPLC. Inter Journal of Food Sci and Tech. 2005;40(9):929-34. https://doi.org/10.1111/j.1365-2621.2005.01025.x
  38. Syamilah N, Nurul AS, Effarizah ME, Norlia M. Mycotoxins and mycotoxigenic fungi in spices and mixed spices: A review. Food Res. 2022;6:30-46. https://doi.org/10.26656/fr.2017.6(4).971
  39. Duarte SC, Pena A, Lino CM. Human ochratoxin A biomarkers biomarkers-From exposure to effect. Critical Rev in Toxicology. 2011;41(3):187 187-212. https://doi.org/10.3109/10408444.2010.529103
  40. Benkerroum N. Chronic and acute toxicities of aflatoxins: Mechanisms of action. Inter J of Environ Res and Public Health. 2020;17(2):423. https://doi.org/10.3390/ijerph17020423
  41. Richard JL. Some major mycotoxins and their mycotoxicoses-An overview. Inter J of Food Microbiology. 2007;119(1-2):3-10. https://doi.org/10.1016/j.ijfoodmicro.2007.07.019
  42. Steyn PS. Mycotoxins, general view, chemistry and structure. Toxic Lett. 1995;82:843-51. https://doi.org/10.1016/0378-4274(95)03525-7
  43. Turner NW, Subrahmanyam S, Piletsky SA. Analytical methods for determination of mycotoxins: a review. Analytica Chimica Acta. 2009;632(2):168-80. https://doi.org/10.1016/j.aca.2008.11.010
  44. Kumar A, Rana R, Saklani R, Kumar M, Yadav PK, Tiwari A, Chourasia MK. Technology transfer of a validated RP RP-HPLC method for the simultaneous estimation of andrographolide and paclitaxel in application to pharmaceutical nanoformulation. J of Chromat Sci. 2024;62(4):356 356-63. https://doi.org/10.1093/chromsci/bmad070
  45. Mahato DK, Devi S, Pandhi S, Sharma B, Maurya KK, Mishra S, et al. Occurrence, impact on agriculture, human health and management strategies of zearalenone in food and feed: A review. Toxins. 2021;13(2):92. https://doi.org/10.3390/toxins13020092
  46. Rheeder JP, Marasas WF, Vismer HF. Production of fumonisin analogs by Fusarium species. App and Environ Microbiology. 2002;68(5):2101-05.https://doi.org/10.1128/AEM.68.5.2101-2105.2002
  47. Qu L, Wang L, Ji H, Fang Y, Lei P, Zhang X, et al. Toxic mechanism and biological detoxification of fumonisins. Toxins. 2022;14(3):182. https://doi.org/10.3390/toxins14030182
  48. Afsah-Hejri L, Jinap S, Hajeb P, Radu S, Shakibazadeh SH. A review on mycotoxins in food and feed: Malaysia case study. Compreh Rev in Food Sci and Food Safety. 2013;12(6):629-51. https://doi.org/10.1111/1541-4337.12029
  49. Balló A, Busznyákné SK, Czétány P, Márk L, Török A, Szántó Á, Máté G. Estrogenic and non-estrogenic disruptor effect of zearalenone on male reproduction: a review. Inter J of Mol Sci. 2023;24(2):1578. https://doi.org/10.3390/ijms24021578
  50. Silva LJ, Pereira AM, Pena A, Lino CM. Citrinin in foods and supplements: A review of occurrence and analytical methodologies. Foods. 2020;10(1):14. https://doi.org/10.3390/foods10010014
  51. Alshannaq A, Yu JH. Occurrence, toxicity and analysis of major mycotoxins in food. Inter J Environ Res Public Health. 2017;14(6):632. https://doi.org/10.3390/ijerph14060632
  52. Li Y, Wang Y, Jiang Z, Yang C, Wu Y, Wu A, et al. Apoptosis mediated by crosstalk between mitochondria and endoplasmic reticulum: A possible cause of citrinin disruption of the intestinal barrier. Ecotoxicology and Environ Safety. 2024;284:116877. https://doi.org/10.1016/j.ecoenv.2024.116877
  53. Bottalico A, Perrone G. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe: mycotoxins in plant disease: under the aegis of COST Action 835 'agriculturally important toxigenic fungi 1998-2003. EU project (QLK 1-CT-1998-01380) and ISPP' Fusarium Committee'. 2002:611-24. https://doi.org/10.1007/978-94-010-0001-7_2
  54. Beal MA, Habauzit D, Khoury L, Audebert M. Human next-generation risk assessment of trichothecene toxicity. Food and Chemical Toxicology. 2024;192:114916. https://doi.org/10.1016/j.fct.2024.114916
  55. Ali N, Hashim NH, Shuib NS. Natural occurrence of aflatoxins and ochratoxin A in processed spices marketed in Malaysia. Food Additives and Contaminants: Part A. 2015;32(4):518 518-32. https:// doi.org/10.1080/19440049.2015.1011712
  56. Martinez-Miranda MM, Rosero-Moreano M, Taborda-Ocampo G. Occurrence, dietary exposure and risk assessment of aflatoxins in arepa, bread and rice. Food Control. 2019;98:359-66. https://doi.org/10.1016/j.foodcont.2018.11.046
  57. Payne GA, Brown MP. Genetics and physiology of aflatoxin biosynthesis. Ann Rev of Phytopathology. 1998;36(1):329-62. https://doi.org/10.1146/annurev.phyto.36.1.329
  58. Abbas H, Zablotowicz R, Bruns H. Modelling the colonization of maize by toxigenic and non-toxigenic Aspergillus flavus strains: implications for biological control. World Mycotoxin J. 2008;1(3):333-40. https://doi.org/10.3920/WMJ2008.x036
  59. Hell K, Cardwell KF, Setamou M, Poehling HM. The influence of storage practices on aflatoxin contamination in maize in four agroecological zones of Benin, West Africa. J of Stored Products Res. 2000;36(4):365-82. https://doi.org/10.1016/S0022-474X(99)00056-9
  60. Wei Y, Yin X, Zhao M, Zhang J, Li T, Zhang Y, et al. Metabolomics analysis reveals the mechanism underlying the improvement in the color and taste of yellow tea after optimized yellowing. Food Chem. 2023;428:136785. https://doi.org/10.1016/j.foodchem.2023.136785
  61. Nguegwouo E, Sone LE, Tchuenchieu A, Tene HM, Mounchigam E, Njayou NF, Nama GM. Ochratoxin A in black pepper, white pepper and clove sold in Yaoundé (Cameroon) markets: contamination levels and consumers' practices increasing health risk. InterJ of Food Contamination. 2018;5:1 1-7. https://doi.org/10.1186/s40550 s40550-017017-00630063-9
  62. Bhatnagar D, Yu J, Ehrlich KC. Toxins of filamentous fungi. Fungal Allergy and Pathogenicity. 2002;81:167-206. https://doi.org/10.1159/000058867
  63. Desjardins AE. Fusarium mycotoxins: chemistry, genetics and biology; APS Press: St. Paul, MN, USA; 2006.
  64. Logrieco A, Visconti A. An overview on toxigenic fungi and mycotoxins in Europe; Springer: New York, NY, USA; 2004. https://doi.org/10.1007/978-1-4020-2646-1
  65. Medina Á, Valle-Algarra FM, Mateo R, Gimeno-Adelantado JV, Mateo F, Jiménez M. Survey of the mycobiota of spanish malting barley and evaluation of the mycotoxin producing potential of species of Alternaria, Aspergillus and Fusarium. Inter J of Food Microbiology. 2006;108(2):196-203.https:doi.org/10.1016/.ijfoodmicro.2005.12.003
  66. Kong W, Xie T, Li J, Wei J, Qiu F, Qi A, et al. Analysis of fumonisins B 1 and B 2 in spices and aromatic and medicinal herbs by HPLC-FLD with on-line post-column derivatization and positive confirmation by LC-MS/MS. Analyst. 2012;137(13):3166-74. https://doi.org/10.1039/c2an35164a
  67. Wa?kiewicz A, Beszterda M, Bocianowski J, Goli?ski P. Natural occurrence of fumonisins and ochratoxin A in some herbs and spices commercialized in Poland analyzed by UPLC–MS/MS method. Food Microbiology. 2013;36(2):426-31. https://doi.org/10.1016/j.fm.2013.07.006
  68. Yazar S, Omurtag GZ. Fumonisins, trichothecenes and zearalenone in cereals. Inter J of Mol Sci. 2008;9(11):2062-90. https://doi.org/10.3390/ijms9112062
  69. Glenn AE. Mycotoxigenic Fusarium species in animal feed. Animal Feed Sci and Tech. 2007;137(3-4):213-40. https://doi.org/10.1016/j.anifeedsci.2007.06.003
  70. Liu X, Guan X. Xing F, Lv C, Dai X, Liu Y. Effect of water activity and temperature on the growth of Aspergillus flavus, the expression of aflatoxin biosynthetic genes and aflatoxin production in shelled peanuts. Food Control 2017;82:325-32. https://doi.org/10.1016/j.foodcont.2017.07.012
  71. Abdel-Hadi A, Schmidt-Heydt M, Parra R, Geisen R, Magan N. A systems approach to model the relationship between aflatoxin gene cluster expression, environmental factors, growth and toxin production by Aspergillus flavus. J R Soc Interface. 2012;9:757-67. https://doi.org/10.1098/rsif.2011.0482
  72. Bernáldez V, Cordoba JJ, Magan N, Peromingo B, Rodríguez A. The influence of ecophysiological factors on growth, aflR gene expression and aflatoxin B1 production by a type of strain of Aspergillus flavus. LWT Food Sci Technol. 2017;83:283-91. https://doi.org/10.1016/j.lwt.2017.05.030
  73. Tejero P, Martín A, Rodríguez A, Galván AI, Ruiz-Moyano S, Hernández A. In vitro biological control of Aspergillus flavus by Hanseniaspora opuntiae L479 and Hanseniaspora uvarum L793, producers of antifungal volatile organic compounds. Toxins. 2021;13:663. https://doi.org/10.3390/toxins13090663
  74. Bhatnagar D, Cary JW, Ehrlich K, Yu J, Cleveland TE. Understanding the genetics of regulation of aflatoxin production and Aspergillus flavus development. Mycopathologia. 2006;162:155. https://doi.org/10.1007/s11046-006-0050-9
  75. Thanushree MP, Sailendri D, Yoha KS, Moses JA, Anandharamakrishnan C. Mycotoxin contamination in food: An exposition on spices. Trends in Food Sci and Tech. 2019;93:69-80. https://doi.org/10.1016/j.tifs.2019.08.010
  76. Kumar V, Basu MS, Rajendran TP. Mycotoxin research and mycoflora in some commercially important agricultural commodities. Crop Prot. 2008 Jun 1;27(6):891-905. https://doi.org/10.1016/j.cropro.2007.12.011
  77. Rodríguez EC, Fiueroa IP, Mercado CAR. Feasibility analysis of drying process habanero chili using a hybrid hybrid-solarsolar-fluidized bed dryer in Yucatan Mexico. J Energy Power Eng. 2013;7:1898 1898-1908.
  78. Yu Q, Romagnoli A, Al-Duri B, Xie D, Ding Y, Li Y. Heat storage performance analysis and parameter design for encapsulated phase change materials. Energy Conv and Manag. 2018 Feb 1;157:619-30. https://doi.org/10.1016/j.enconman.2017.12.040
  79. Hammami W, Fiori S, Al Thani R, Kali NA, Balmas V, Migheli Q, Jaoua S. Fungal and aflatoxin contamination of marketed spices. Food Control. 2014;37:177-81. https://doi.org/10.1016/j.foodcont.2013.09.027
  80. Pakshir K, Farazmand F, Ghasemi F, Mirhendi H, Zomorodian K, Kharazi M, et al. Translation elongation factor 1-alpha gene as a marker for diagnosing of candidal onychomycosis. Curr Med Mycology. 2020;6(1):15. https://doi.org/10.18502/cmm.6.1.2503
  81. Pitt JI, Hocking AD. Fungi and food spoilage. Springer United States; 2009. https://doi.org/10.1007/978-0-387-92207-2
  82. Yogendrarajah P, Deschuyffeleer N, Jacxsens L, Sneyers PJ, Maene P, De Saeger S, et al. Mycological quality and mycotoxin contamination of Sri Lankan peppers (Piper nigrum L.) and subsequent exposure assessment. Food Control. 2014;41:219-30. https://doi.org/10.1016/j.foodcont.2014.01.025
  83. Vyhnánek T, Haná?ek P, Šafránková I, Djordjevi? B, Beranová H, Trojan V, Havel L. Molecular detection of fungi in paprika, chili powder and black pepper. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 2018. https:// doi.org/10.11118/actaun201866040927
  84. Reddy KR, Salleh B, Saad B, Abbas HK, Abel CA, Shier WT. An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev. 2010;29(1):3-26. https:// doi.org/10.3109/15569541003598553
  85. Singh P, Cotty PJ. Characterization of Aspergilli from dried red chilies (Capsicum spp.): insights into the etiology of aflatoxin contamination. Inter J of Food Microbiology. 2019;289:145-53. https://doi.org/10.1016/j.ijfoodmicro.2018.08.025
  86. Adetunji MC, Aroyeun SO, Osho MB, Sulyok M, Krska R, Mwanza M. Fungal metabolite and mycotoxins profile of cashew nut from selected locations in two African countries. Food Additives and Contaminants Part A. 2019;36 (12):1847-59. https://doi.org/10.1080/19440049.2019.1662951
  87. Pardo E, Marin S, Ramos AJ, Sanchis V. Ecophysiology of ochratoxigenic Aspergillus ochraceus and Penicillium verrucosum isolates. Predictive models for fungal spoilage prevention–a review. Food Additives and Contaminants. 2006;23(4):398-410. https:// doi.org/10.1080/02652030500376102
  88. Kompas T, Pham VH, Che TN. The effects of climate change on GDP by country and the global economic gains from complying with the Paris climate accord. Earths Future. 2018;6:1153-73. https:// doi.org/10.1029/2018EF000922
  89. Bhat R, Rai RV, Karim AA. Mycotoxins in food and feed: Present status and future concerns. Comp Rev Food Sci Food Saf. 2010;9:57- 81. https://doi.org/10.1111/j.1541-4337.2009.00094.x. https:// doi.org/10.1111/j.1541-4337.2009.00094.x
  90. Kricher JC. Tropical ecology. Princeton University Press; 2011 Feb 28.
  91. Prakash V. Spices: Leafy spices. CRC Press; 2019. https:// doi.org/10.1201/9781351073967
  92. García-López MT. Biocontrol agents to reduce aflatoxins in nuts: inoculum dynamic studies, varietal resistance to the pathogen and characterization of the population of Aspergillus spp. section Flavi in Spain. PhD [dissertation]. Cordoba: University of Cordoba; 2022. Available from: https://helvia.uco.es/bitstream/ handle/10396/24032/2022000002556.pdf?sequence=1&isAllowed=y
  93. Barac A. Mycotoxins and human disease. Clinically relevant mycoses: a practical approach. 2019:213-25. https:// doi.org/10.1007/978-3-319-92300-0_14
  94. Khodaei D, Javanmardi F, Khaneghah AM. The global overview of the occurrence of mycotoxins in cereals: A three-year survey. Current Opinion in Food Sci. 2021;39:36-42. https://doi.org/10.1016/ j.cofs.2020.12.012
  95. Tanaka K, Sago Y, Zheng Y, Nakagawa H, Kushiro M. Mycotoxins in rice. Inter J of Food Microbiology. 2007;119(1-2):59-66. https:// doi.org/10.1016/j.ijfoodmicro.2007.08.002
  96. Kumar P, Kamle M, Mahato DK, editors. In: Mycotoxins in food and feed: detection and management strategies. CRC Press; 2023. https://doi.org/10.1201/9781003242208
  97. Ja?evi? V, Dumanovi? J, Alomar SY, Resanovi? R, Milovanovi? Z, Nepovimova E, et al. Research update on aflatoxins toxicity, metabolism, distribution and detection: A concise overview. Toxicology. 2023;492:153549. https://doi.org/10.1016/ j.tox.2023.153549
  98. Martins IJ. Overnutrition determines LPS regulation of mycotoxin induced neurotoxicity in neurodegenerative diseases. Inter J of Mol Sci. 2015;16(12):29554-73. https://doi.org/10.3390/ijms161226190
  99. Zhang K, Schaab MR, Southwood G, Tor ER, Aston LS, Song W, et al. A collaborative study: Determination of mycotoxins in corn, peanut butter and wheat flour using stable isotope dilution assay (SIDA) and liquid chromatography–tandem mass spectrometry (LC-MS/ MS). J of Agri and Food Chem. 2017 Aug 23;65(33):7138-52. https:// doi.org/10.1021/acs.jafc.6b04872
  100. Jiang YI, Jolly PE, Ellis WO, Wang JS, Phillips TD, Williams JH. Aflatoxin B1 albumin adduct levels and cellular immune status in Ghanaians. Inter Immun. 2005;17(6):807-14. https:// doi.org/10.1093/intimm/dxh262
  101. Rodríguez-Vargas A, Franco-Vásquez AM, Triana-Cerón M, Alam- Rojas SN, Escobar-Wilches DC, Corzo G, et al. Immunological crossreactivity and preclinical assessment of a colombian anticoral antivenom against the venoms of three Micrurus species. Toxins. 2024;16(2):104. https://doi.org/10.3390/toxins16020104
  102. Janik E, Niemcewicz M, Podogrocki M, Ceremuga M, Gorniak L, Stela M, Bijak M. The existing methods and novel approaches in mycotoxins' detection. Molecules. 2021;26(13):3981. https:// doi.org/10.3390/molecules26133981
  103. Zhang L, Dou XW, Zhang C, Logrieco AF, Yang MH. A review of current methods for analysis of mycotoxins in herbal medicines. Toxins. 2018;10(2):65. https://doi.org/10.3390/toxins10020065
  104. Gurav NP, Medhe S. Analysis of aflatoxins B1, B2, G1 and G2 in peanuts: validation study. Anal Chem An Indian J. 2018;17(2):126.
  105. Miklós G, Angeli C, Ambrus Á, Nagy A, Kardos V, Zentai A, et al. Detection of aflatoxins in different matrices and food-chain positions. Front in Microbiology. 2020;11:1916. https:// doi.org/10.3389/fmicb.2020.01916
  106. Malachová A, Stránská M, Václavíková M, Elliott CT, Black C, Meneely J, et al. Advanced LC–MS-based methods to study the cooccurrence and metabolization of multiple mycotoxins in cereals and cereal-based food. Anal and Bioanal Chem. 2018;410:801-25. https://doi.org/10.1007/s00216-017-0750-7
  107. Pascale M, De Girolamo A, Lippolis V, Stroka J, Mol HG, Lattanzio VM. Performance evaluation of LC-MS methods for multimycotoxin determination. J of AOAC Inter. 2019;102(6):1708-20. https:// doi.org/10.5740/jaoacint.19-0068
  108. Dongare MV, Kohale NB, Rathod SB. A review of chromatograph: Principal, classification, application. Int J Humanit Soc Sci Manag. 2023;3(2):367-73.
  109. Kumar P, Mahato DK, Gupta A, Pandey S, Paul V, Saurabh V, et al. Nivalenol mycotoxin concerns in foods: an overview on occurrence, impact on human and animal health and its detection and management strategies. Toxins. 2022;14(8):527. https:// doi.org/10.3390/toxins14080527
  110. Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in analysis and detection of major mycotoxins in foods. Foods. 2020;9(4):518. https://doi.org/10.3390/foods9040518
  111. Mehta M. A comparative qualitative and quantitative estimation of catechin by HPTLC in Arjunarishta–an ayurvedic formulation. IJRAR. 2020;7(2):112-19.
  112. Adebo OA, Njobeh PB, Adebiyi JA, Kayitesi E. Co-influence of fermentation time and temperature on physicochemical properties, bioactive components and microstructure of ting (a Southern African food) from whole grain sorghum. Food Biosci. 2018;25:118- 27. https://doi.org/10.1016/j.fbio.2018.08.007
  113. Gbashi S, Madala NE, De Saeger S, De Boevre M, Njobeh PB. Numerical optimization of temperature-time degradation of multiple mycotoxins. Food and Chem Toxicology. 2019;125:289- 304. https://doi.org/10.1016/j.fct.2019.01.009
  114. Lin L, Zhang J, Wang P, Wang Y, Chen J. Thin-layer chromatography of mycotoxins and comparison with other chromatographic methods. J of Chromat A. 1998 Jul 31;815(1):3-20. https:// doi.org/10.1016/S0021-9673(98)00204-0
  115. Shephard GS, Sydenham EW, Thiel PG, Gelderblom WCA. Quantitative determination of fumonisins B1 and B2 by highperformance liquid chromatography with fluorescence detection. J of Liquid Chromat. 1990;13(10):2077-87. https:// doi.org/10.1080/01483919008049014
  116. Trucksess MW, Stack ME, Nesheim S, Albert RH, Romer TR. Multifunctional column coupled with liquid chromatography for determination of aflatoxins B1, B2, G1 and G2 in corn, almonds, brazil nuts, peanuts and pistachio nuts: collaborative study. J of AOAC Inter. 1994;77(6):1512-21. https://doi.org/10.1093/ jaoac/77.6.1512
  117. Rahmani A, Jinap S, Khatib A, Tan CP. Simultaneous determination of aflatoxins, ochratoxin A and zearalenone in cereals using a validated RP-HPLC method and PHRED derivatization system. J of Liquid Chromat and Related Tech. 2013;36(5):600-17. https:// doi.org/10.1080/10826076.2012.670182
  118. Wang Y, Xing L, Zhang J, Ma X, Weng R. Determination of endogenous phenolic compounds in honey by HPLC-MS/MS. LWT. 2023;183:114951. https://doi.org/10.1016/j.lwt.2023.114951
  119. Lu Q, Guo MY, Tian J, Luo JY, Yang MH. A comprehensive study on multi-mycotoxin screening, changes of mycotoxin residues and fungal community analysis from barley germination to malt. International Journal of Food Microbiology. 2022;372:109678. https://doi.org/10.1016/j.ijfoodmicro.2022.109678
  120. Andersson JA, Andersson CA, Frandsen RJ. Applying parallel factor analysis models to HPLC diode array detector datasets reveals strain dependent relation of polyketide biosynthesis in Fusarium graminearum, Fusarium culmorum and Fusarium pseudograminearum. Analytica Chimica Acta. 2009;647(2):243-48. https://doi.org/10.1016/j.aca.2009.06.025
  121. Soleimany F, Jinap S, Abas FJ. Determination of mycotoxins in cereals by liquid chromatography tandem mass spectrometry. Food Chem. 2012;130(4):1055-60. https://doi.org/10.1016/ j.foodchem.2011.07.131
  122. Kunz BM, Wanko F, Kemmlein S, Bahlmann A, Rohn S, Maul R. Development of a rapid multi-mycotoxin LC-MS/MS stable isotope dilution analysis for grain legumes and its application on 66 market samples. Food Control. 2020;109:106949. https://doi.org/10.1016/ j.foodcont.2019.106949
  123. Zhao X, Wang S, Wu Q, et al. Development of a multi-mycotoxin detection method based on LC-MS/MS and its application in fungalcontaminated food samples. Food Control. 2017.
  124. Rodríguez-Carrasco Y, Moltó JC, Mañes J, Berrada H. Development of microextraction techniques in combination with GC–MS/MS for the determination of mycotoxins and metabolites in human urine. J of Separation Sci. 2017;40(7):1572-82. https://doi.org/10.1002/ jssc.201601131
  125. Anfossi C, Giovannoli L, Baggiani C. Mycotoxin detection. Curr Opin Biotechnol. 2016;37:120-26. https://doi.org/10.1016/j.copbio.2015.11.005
  126. Sulyok M, Krska R, Schuhmacher R. Application of an LC–MS/MS based multi-mycotoxin method for the semi-quantitative determination of mycotoxins occurring in different types of food infected by moulds. Food Chem. 2010;119(1):408-16. https:// doi.org/10.1016/j.foodchem.2009.07.042
  127. Ren Y, Zhang Y, Shao S, Cai Z, Feng L, Pan H, Wang Z. Simultaneous determination of multi-component mycotoxin contaminants in foods and feeds by ultra-performance liquid chromatographytandem mass spectrometry. J Chromatogr A. 2007;1143(1-2):48-64. https://doi.org/10.1016/j.chroma.2006.12.064
  128. Younis MR, Wang C, Younis MA, Xia XH. Use of biosensors for mycotoxins analysis in foodstuff. Nanobiosensors: From Design to Applications. 2020:171-201. https://doi.org/10.1002/9783527345137.ch8
  129. Melinte G, Hosu O, Cristea C, Marrazza G. DNA sensing technology a useful food scanning tool. TrAC Trends in Anal Chem 2022;154:116679. https://doi.org/10.1016/j.trac.2022.116679
  130. Ottoboni M, Pinotti L, Tretola M, Giromini C, Fusi E, Rebucci R, et al. Combining E-nose and lateral flow immunoassays (LFIAs) for rapid occurrence/co-occurrence aflatoxin and fumonisin detection in maize. Toxins. 2018;10(10):416. https://doi.org/10.3390/ toxins10100416
  131. Lippolis V, Cervellieri S, Damascelli A, Pascale M, Di Gioia A, Longobardi F, De Girolamo A. Rapid prediction of deoxynivalenol contamination in wheat bran by MOS-based electronic nose and characterization of the relevant pattern of volatile compounds. J of the Scie of Food and Agri. 2018;98(13):4955-62. https:// doi.org/10.1002/jsfa.9028
  132. Xia X, Wang H, Yang H, Deng S, Deng R, Dong Y, He Q. Dual-terminal stemmed aptamer beacon for label-free detection of aflatoxin B1 in broad bean paste and peanut oil via aggregation-induced emission. Journal of Agricultural and Food Chemistry. 2018;66(46):12431-38. https://doi.org/10.1021/acs.jafc.8b05217
  133. Zhu Y, Xia X, Deng S, Yan B, Dong Y, Zhang K, et al. Label-free fluorescent autosensing of mycotoxins via aggregation-induced emission dye. Dyes and Pigments. 2019;170:107572. https:// doi.org/10.1016/j.dyepig.2019.107572
  134. González-Jartín JM, de Castro Alves L, Piñeiro Y, Alfonso A, Alvariño R, Gomez MG, et al. Magnetic nanostructured agents for the mitigation of mycotoxins and cyanotoxins in the food chain. Food Chemi. 2024:140004. https://doi.org/10.1016/j.foodchem.2024.140004
  135. Guidance for industry: Action levels for poisonous or deleterious substances in human food and animal feed. FDA. (accessed on 28 Aug 2022). Available online: https://www.fda.gov/regulatory-information/ search-fda-guidance-documents/guidance-industry-action-levelspoisonous- or-deleterious-substances-human-food-and-animal-feed
  136. EUR-Lex-32006R1881-EN-EUR-Lex. (accessed on 27 Aug 2022) Available online: https://eur-lex.europa.eu/eli/reg/2006/1881/oj .
  137. Chen Y, Meng X, Zhu Y, Shen M, Lu Y, Cheng J, Xu Y. Rapid detection of four mycotoxins in corn using a microfluidics and microarraybased immunoassay system. Talanta. 2018;186:299-305. https:// doi.org/10.1016/j.talanta.2018.04.064
  138. Commission Regulation (EU). 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off J Eur Union. 2023;119:103-57.
  139. Iha MH, Trucksess MW. Management of mycotoxins in spices. J of AOAC Inter . 2019;102(6):1732-39. https://doi.org/10.5740/ jaoacint.19-0117
  140. Moses JA, Alagusundaram K, Kavitha CV. Curing and drying of cardamom. Processed Food Industry. 2014;10:21-28.
  141. Kamle M, Mahato DK, Devi S, Lee KE, Kang SG, Kumar P. Fumonisins: Impact on agriculture, food and human health and their management strategies. Toxins. 20197;11(6):328. https:// doi.org/10.3390/toxins11060328
  142. Sharma G, Shrestha S, Kunwar S, Tseng TM. Crop diversification for improved weed management: A review. Agri. 2021;11(5):461. https://doi.org/10.3390/agriculture11050461
  143. Gupta N, Mahajan M, Jawandha SJ. Influence of pre-harvest spray of putrescine on postharvest quality of indian jujube. Indian J of Horti. 2022;79(3):305-10. https://doi.org/10.5958/0974- 0112.2022.00041.X
  144. Ansari MW, Tuteja N. Postharvest quality risks by stress/ethylene: management to mitigate. Protoplasma. 2015;252:21-32. https://doi.org/10.1007/s00709-014-0678-0
  145. Sultana B, Naseer R, Nigam P. Utilization of agro-wastes to inhibit aflatoxins synthesis by Aspergillus parasiticus: A biotreatment of three cereals for safe long-term storage. Biores Tech. 2015;197:443-50. https://doi.org/10.1016/j.biortech.2015.08.113
  146. Pandey P, Lejeune M, Biswas S, Morash D, Weimer B, Young G. A new method for converting food waste into pathogen free soil amendment for enhancing agricultural sustainability. J of Cleaner Prod.2016;112:205-13. https://doi.org/10.1016/j.jclepro.2015.09.045
  147. Tang X. Integrated approaches to managing Fusarium and other fungal pathogens in maize. Mol Pathogens. 2024;15. https://doi.org/10.5376/mp.2024.15.0010
  148. Atehnkeng J, Donner M, Ojiambo PS, Ikotun B, Augusto J, Cotty PJ, Bandyopadhyay R. Environmental distribution and genetic diversity of vegetative compatibility groups determine biocontrol strategies to mitigate aflatoxin contamination of maize by Aspergillus flavus. Microb Biotech. 2016;9(1):75-88. https://doi.org/10.1111/1751-7915.12324
  149. Santos L, Marín S, Sanchis V, Ramos AJ. In vitro effect of some fungicides on growth and aflatoxins production by Aspergillus flavus isolated from Capsicum powder. Food Add Cont: Part A. 2011;28 (1):98 98-106. https://doi.org/10.1080/19440049.2010.529622
  150. Sudha S, Naik MK, Ajithkumar K. An integrated approach for the reduction of aflatoxin contamination in chilli (Capsicum annuum L.). J Food Sci Techno. 2013;50:159-64. https://doi.org/10.1007/s13197-011-0471-4
  151. Karaaslan M, Arslan?ray Y. Aflatoxins B1, B2, G1 and G2 contamination in ground red peppers commercialized in Sanliurfa, Turkey. Environ Monitoring Assess. 2015;187:1-9. https://doi.org/10.1007/s10661-015-4402-0
  152. Iqbal Q, Amjad M, Asi MR, Arino A. Assessment of hot peppers for aflatoxin and mold proliferation during storage. J Food Protect. 2011;74(5):830-35. https://doi.org/10.4315/0362-028X.JFP-10-449
  153. Mir SA, Dar BN, Shah MA, Sofi SA, Hamdani AM, Oliveira CA, et al. Application of new technologies in decontamination of mycotoxins in cereal grains: challenges and perspectives. Food Chem Toxico. 2021;148:111976. https://doi.org/10.1016/j.fct.2021.111976
  154. Imre L. Solar drying. In: Mujumdar AS, editor. Handbook of industrial drying. CRC Press, Taylor and Francis Group, Florida; 2007. p. 307-61. https://doi.org/10.1201/9781420017618.ch13
  155. Imre L. Solar driers. In: Baker L, editor. Industrial drying of food. Blackie Academic and Professional, London;1997. pp. 210-38. 156. Murthy MVR. A review of new technologies, models and experimental investigations of solar driers. Renewable and Sustain Energy Rev. 2009;13(4):835-44. https://doi.org/10.1016/j.rser.2008.02.010

Downloads

Download data is not yet available.