Fungal metabolites: Nature’s key to antiangiogenic cancer therapies

Authors

DOI:

https://doi.org/10.14719/pst.5867

Keywords:

anti-angiogenic, cordycepin, fumagillin, green synthesis, triple-negative cancer

Abstract

Fungi have been thriving on planet Earth for millions of years, playing multiple roles in diverse ecosystems. Both free-living and endophytic fungi contain a plethora of secondary metabolites with rich bioactivity, which can be harnessed for therapeutic purposes. Many tumors grow rapidly due to the neovasculature formed by the activity of angiogenic genes. One of the strategies to curb such cancers is the use of anti-angiogenic drugs. Many fungi are treasure houses of chemicals such as fumagillin, barbatolic acid, usnic acid, trichodimerol and cordycepin. These can be utilized as anticancer drugs to reduce the neovascularization of tumors, thereby leading to the cessation of growth and the shrinkage of the tumor. This strategy could be significantly enhanced by using fungal nanoparticles synthesized through green methods, providing a more targeted treatment. By exploiting the unique properties of the tumor, these nanoparticles can offer more efficient means of delivering anticancer drugs directly to tumor sites, facilitating precise targeted therapy. This review emphasizes the significant potential of green-synthesised nanoparticles and fungal metabolites as novel molecules for targeted cancer therapy. Further research into their synergistic effects may lead to improved treatment outcomes and the development of more potent anti-angiogenic medications than those currently available.

Downloads

References

Abdelhakim HK, El-Sayed ER, Rashidi FB. Biosynthesis of zinc oxide nanoparticles with antimicrobial, anticancer, antioxidant and photocatalytic activities by the endophytic Alternaria tenuissima. J Appl Microbiol. 2020;128(6):1634–46. https://doi.org/10.1111/jam.14581

Elumalai D, Suman TY, Hemavathi M, Swetha C, Kavitha R, Arulvasu C, et al. Biofabrication of gold nanoparticles using Ganoderma lucidum and their cytotoxicity against human colon cancer cell line (HT-29). Bull Mater Sci. 2021;44(2):1–6. https://doi.org/10.1007/s12034-021-02435-0

Zhou M, Zha Z, Zheng Z, Pan Y. Cordycepin suppresses vascular inflammation, apoptosis and oxidative stress of arterial smooth muscle cell in thoracic aortic aneurysm with VEGF inhibition. Int Immunopharmacol. 2023;116:109759–9. https://doi.org/10.1016/j.intimp.2023.109759

Petrová K, Backorová M, Demcišáková Z, Petrovová E, Goga M, Vilková M, et al. Usnic acid isolated from Usnea antarctica (Du Rietz) reduced in vitro angiogenesis in VEGF- and bFGF-stimulated HUVECs and ex ovo in quail chorioallantoic mMembrane (CAM) assay. Life. 2022;12(9):444. https://doi.org/10.3390/life12091444

García-Caballero M, Marí-Beffa M, Cañedo L, Medina MÁ, Quesada AR. Toluquinol, a marine fungus metabolite, is a new angiosuppresor that interferes with the Akt pathway. Biochem Pharmacol. 2013;85(12):1727–40. https://doi.org/10.1016/j.bcp.2013.04.007

Geyer FC, Pareja F, Weigelt B, Rakha E, Ellis IO, Schnitt SJ, et al. The spectrum of triple-negative breast disease: High- and low-grade lesions. Am J Pathol. 2017;187(10):2139–51. https://doi.org/10.1016/j.ajpath.2017.03.016

Ulus G. Antiangiogenic properties of lichen secondary metabolites. Phytother Res. 2021;35(6):3046–58. https://doi.org/10.1002/ptr.7023

Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J Clin Med. 2019;9(1):84. https://doi.org/10.3390/jcm9010084

Karamysheva AF. Mechanisms of angiogenesis. Biochemistry (Mosc). 2008;73(7):751–62. https://doi.org/10.1134/s0006297908070031

Chen X, Song E. The theory of tumor ecosystem. Cancer Commun. 2022;42(7):587–608. https://doi.org/10.1002/cac2.12316

Zuazo-Gaztelu I, Casanovas O. Unraveling the role of angiogenesis in cancer ecosystems. Front Oncol. 2018;8:248. https://doi.org/10.3389/fonc.2018.00248

Luo Q, Wang J, Zhao W, Peng Z, Liu X, Li B, et al. Vasculogenic mimicry in carcinogenesis and clinical applications. J Hematol Oncol. 2020;13(1):19. https://doi.org/10.1186/s13045-020-00858-6

Kontomanolis EN, Koutras A, Syllaios A, Schizas D, Mastoraki A, Garmpis N, et al. Role of oncogenes and tumor-suppressor genes in carcinogenesis: A review. Anticancer Res. 2020;40(11):6009–15. https://doi.org/10.21873/anticanres.14622

Ahir BK, Engelhard HH, Lakka SS. Tumor development and angiogenesis in adult brain tumor: Glioblastoma. Mol Neurobiol. 2020;57(5):2461–78. https://doi.org/10.1007/s12035-020-01892-8

Eelen G, Treps L, Li X, Carmeliet P. Basic and therapeutic aspects of angiogenesis updated. Circ Res. 2020;127(2):310–29. https://doi.org/10.1161/circresaha.120.316851

Giacca M, Zacchigna S. VEGF gene therapy: Therapeutic angiogenesis in the clinic and beyond. Gene Ther. 2012;19(6):622–29. https://doi.org/10.1038/gt.2012.17

Leone P, Buonavoglia A, Fasano R, Solimando AG, De Re V, Cicco S, et al. Insights into the regulation of tumor angiogenesis by micro-RNAs. J Clin Med. 2019;8(12):2030. https://doi.org/10.3390/jcm8122030

Hao Y, Baker D, Ten Dijke P. TGF-beta-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci. 2019;20(11):2767. https://doi.org/10.3390/ijms20112767

Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77(9):1745–70. https://doi.org/10.1007/s00018-019-03351-7

Liu G, Chen T, Ding Z, Wang Y, Wei Y, Wei X. Inhibition of FGF-FGFR and VEGF-VEGFR signalling in cancer treatment. Cell Prolif. 2021;54(4):e13009. https://doi.org/10.1111/cpr.13009

Akwii RG, Sajib MS, Zahra FT, Mikelis CM. Role of angiopoietin-2 in vascular physiology and pathophysiology. Cells. 2019;8(5):471. https://doi.org/10.3390/cells8050471

Gillen J, Richardson D, Moore K. Angiopoietin-1 and angiopoietin-2 inhibitors: Clinical development. Curr Oncol Rep. 2019;21(3):1–7. https://doi.org/10.1007/s11912-019-0771-9

Razmi N, Baradaran B, Hejazi M, Hasanzadeh M, Mosafer J, Mokhtarzadeh A, et al. Recent advances on aptamer-based biosensors to detection of platelet-derived growth factor. Biosens Bioelectron. 2018;113:58–71. https://doi.org/10.1016/j.bios.2018.04.048

Serwe A, Anke T, Erkel G. The fungal secondary metabolite trichodimerol inhibits TGF-beta dependent cellular effects and tube formation of MDA-MB-231 cells. Invest New Drugs. 2009;27(6):491–502. https://doi.org/10.1007/s10637-008-9201-9

Conrado R, Gomes TC, Roque GSC, De Souza AO. Overview of bioactive fungal secondary metabolites: Cytotoxic and antimicrobial compounds. Antibiotics. 2022;11(11):1604. https://doi.org/10.3390/antibiotics11111604

Gimla M, Herman-Antosiewicz A. Multifaceted properties of usnic acid in disrupting cancer hallmarks. Biomedicines. 2024;12(10):2199. https://doi.org/10.3390/biomedicines12102199

Gimla M, Pyrczak-Felczykowska A, Malinowska M, Hac A, Narajczyk M, Bylinska I, et al. The pyrazole derivative of usnic acid inhibits the proliferation of pancreatic cancer cells in vitro and in vivo. Cancer Cell Int. 2023;23(1):210. https://doi.org/10.1186/s12935-023-03054-x

Lin YT, Liang SM, Wu YJ, Wu YJ, Lu YJ, Jan YJ, et al. Cordycepin suppresses endothelial cell proliferation, migration, angiogenesis, and tumor growth by regulating focal adhesion kinase and p53. Cancers. 2019;11(2):168. https://doi.org/10.3390/cancers11020168

Quiñonero F, Ortigosa-Palomo A, Ortiz R, Melguizo C, Prados J. Fungi-derived bioactive compounds as potential therapeutic agents for pancreatic cancer: A systematic review. Microorganisms. 2024;12(8):1527. https://doi.org/10.3390/microorganisms12081527

Torres-Vargas JA, Cheng-Sánchez I, Martínez-Poveda B, Medina MÁ, Sarabia F, García-Caballero M, et al. Characterization of the activity and the mechanism of action of a new toluquinol derivative with improved potential as an antiangiogenic drug. Biomed Pharmacother. 2022;155:113759–69. https://doi.org/10.1016/j.biopha.2022.113759

Nagabhishek SN, Madankumar A. A novel apoptosis-inducing metabolite isolated from marine sponge symbiont Monascus sp. NMK7 attenuates cell proliferation, migration and ROS stress-mediated apoptosis in breast cancer cells. RSC Adv. 2019;9(11):5878–90. https://doi.org/10.1039/C8RA09886G

Nagabhishek SN, Kumar AM, B S, Balakrishnan A, Katakia YT, Chatterjee S, et al. A marine sponge associated fungal metabolite monacolin X suppresses angiogenesis by down regulating VEGFR2 signaling. RSC Adv. 2019;9(46):26646–67. https://doi.org/10.1039/C9RA05262C

Tan LTH, Chan KG, Pusparajah P, Lee WL, Chuah LH, Khan TM, et al. Targeting membrane lipid a potential cancer cure? Front Pharmacol. 2017;8:12. https://doi.org/10.3389/fphar.2017.00012

Morrison R, Lodge T, Evidente A, Kiss R, Townley H. Ophiobolin A, a sesterpenoid fungal phytotoxin, displays different mechanisms of cell death in mammalian cells depending upon the cancer cell origin. Int J Oncol. 2017;50(3):773–86. https://doi.org/10.3892/ijo.2017.3858

Varol M. Anti-breast cancer and anti-angiogenic potential of a lichen-derived small-molecule: Barbatolic acid. Cytotechnology. 2018;70(6):1565–73. https://doi.org/10.1007/s10616-018-0249-x

Solárová Z, Liskova A, Samec M, Kubatka P, Büsselberg D, Solár P. Anticancer potential of lichens’ secondary metabolites. Biomolecules. 2020;10(1):87. https://doi.org/10.3390/biom10010087

Guruceaga X, Perez-Cuesta U, Abad-Diaz de Cerio A, Gonzalez O, Alonso RM, Hernando FL, et al. Fumagillin, a mycotoxin of Aspergillus fumigatus: Biosynthesis, biological activities, detection, and applications. Toxins. 2019;12(1):7. https://doi.org/10.3390/toxins12010007

Hou L, Mori D, Takase Y, Meihua P, Kai K, Tokunaga O. Fumagillin inhibits colorectal cancer growth and metastasis in mice: in vivo and in vitro study of anti-angiogenesis. Pathol Int. 2009;59(7):448–61. https://doi.org/10.1111/j.1440-1827.2009.02393.x

Deshmukh D, Hsu YF, Chiu CC, Jadhao M, Hsu SCN, Hu SY, et al. Antiangiogenic potential of Lepista nuda extract suppressing MAPK/p38 signaling-mediated developmental angiogenesis in zebrafish and HUVECs. Biomed Pharmacother. 2023;159:114219. https://doi.org/10.1016/j.biopha.2023.114219

Bertollo AG, Mingoti MED, Plissari ME, Betti G, Roman Junior WA, Luzardo AR, et al. Agaricus blazei Murrill mushroom: A review on the prevention and treatment of cancer. Pharmac Res-Modern Chinese Med. 2022;2:100032. https://doi.org/10.1016/j.prmcm.2021.100032

Li CY, Chang CC, Tsai YH, El-Shazly M, Wu CC, Wang SW, et al. Anti-inflammatory, antiplatelet aggregation, and antiangiogenesis polyketides from Epicoccum sorghinum: Toward an understating of its biological activities and potential applications. ACS Omega. 2020;5(19):11092–9. https://doi.org/10.1021/acsomega.0c01000

Huang TT, Lan YW, Ko YF, Chen CM, Lai HC, Ojcius DM, et al. Antrodia cinnamomea produces anti-angiogenic effects by inhibiting the VEGFR2 signaling pathway. J Ethnopharmacol. 2018;220:239–49. https://doi.org/10.1016/j.jep.2018.03.041

Chen SC, Lu MK, Cheng JJ, Wang DL. Antiangiogenic activities of polysaccharides isolated from medicinal fungi. FEMS Microbiol Lett. 2005;249(2):247–54. https://doi.org/10.1016/j.femsle.2005.06.033

Trivedi S, Patel K, Belgamwar V, Wadher K. Functional polysaccharide lentinan: Role in anti-cancer therapies and management of carcinomas. Pharmac Res - Modern Chinese Med. 2022;2:100045. https://doi.org/10.1016/j.prmcm.2022.100045

Han JM, Jang J, Jang J, Ahn JS, Jung HJ. Antiangiogenic potentials of ahpatinins obtained from a Streptomyces species. Oncol Rep. 2019;43(2):625–34. https://doi.org/10.3892/or.2019.7446

Lin S, Ching LT, Chen J, Cheung PCK. Antioxidant and anti-angiogenic effects of mushroom phenolics-rich fractions. J Funct Foods. 2015;17:802–15. https://doi.org/10.1016/j.jff.2015.06.015

Gebreyohannes G, Sbhatu DB. Wild mushrooms: A hidden treasure of novel bioactive compounds. Int J Anal Chem. 2023;2023:1–20. https://doi.org/10.1155/2023/6694961

Zeb M, Li WM, Heiss C, Black I, Tackaberry LE, Massicotte HB, et al. Isolation and characterization of an anti-proliferative polysaccharide from the North American fungus Echinodontium tinctorium. Sci Rep. 2022;12(1):1–12. https://doi.org/10.1038/s41598-022-21697-0

Jung HJ, Shim JS, Lee J, Song YM, Park KC, Choi SH, et al. Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxia-induced reactive oxygen species production and cellular oxygen sensing. J Biol Chem. 2010;285(15):11584–95. https://doi.org/10.1074/jbc.m109.087809

Narita K, Minami A, Ozaki T, Liu C, Kodama M, Oikawa H. Total biosynthesis of antiangiogenic agent (-)-terpestacin by artificial reconstitution of the biosynthetic machinery in Aspergillus oryzae. J Org Chem. 2018;83(13):7042–48. https://doi.org/10.1021/acs.joc.7b03220

Vidal I, Torres-Vargas JA, Sánchez JM, Trigal M, García-Caballero M, Medina MÁ, et al. Danthron, an anthraquinone isolated from a marine fungus, is a new inhibitor of angiogenesis exhibiting interesting antitumor and antioxidant properties. Antioxidants (Basel). 2023;12(5):1101. https://doi.org/10.3390/antiox12051101

Shaaban M, El-Metwally MM, Mekawey AAI, Abdelwahab AB, Soltan MM. Monascin and monascinol, azaphilonoid pigments from Mortierella polycephala AM1: In silico and in vitro targeting of the angiogenic VEGFR2 kinase. Z Naturforsch C J Biosci. 2022;77(1–2):11–19. https://doi.org/10.1515/znc-2021-0095

Gamage CDB, Lee K, Park SY, Varli M, Lee CW, Kim SM, et al. Phthalides isolated from the endolichenic Arthrinium sp. EL000127 exhibits antiangiogenic activity. ACS Omega. 2023;8(13):12548–57. https://doi.org/10.1021/acsomega.3c00876

Hsi ao YH, Wang SW, Cheng CH, Pang KL, Leu JY, Chang SH, et al. Chemical constituents and anti-angiogenic principles from a marine algicolous Penicillium sumatraense SC29. Molecules. 2022;27(24):8940. https://doi.org/10.3390/molecules27248940

Liu Y, Guo ZJ, Zhou XW. Chinese cordyceps: Bioactive components, antitumor effects and underlying mechanism- A review. Molecules. 2022;27(19):6576. https://doi.org/10.3390/molecules27196576

Anjum S, Vyas A, Sofi T. Fungi-mediated synthesis of nanoparticles: Characterization process and agricultural applications. J Sci Food Agric. 2023;103(10):4727–41. https://doi.org/10.1002/jsfa.12496

Clarance P, Luvankar B, Sales J, Khusro A, Agastian P, Tack JC, et al. Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in vitro anticancer and biomedical applications. Saudi J Biol Sci. 2020;27(2):706–12. https://doi.org/10.1016/j.sjbs.2019.12.026

Majeed S, Danish M, Binti Zahrudin AH, Dash GK. Biosynthesis and characterization of silver nanoparticles from fungal species and its antibacterial and anticancer effect. Karbala Int J Modern Sci. 2018;4(1):86–92. https://doi.org/10.1016/j.kijoms.2017.11.002

Ratan ZA, Haidere MF, Nurunnabi M, Shahriar SM, Ahammad AJS, Shim YY, et al. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers. 2020;12(4):855. https://doi.org/10.3390/cancers12040855

Galal GF, Abd-Elhalim BT, Abou-Taleb KA, Haroun AA, Gamal RF. Toxicity assessment of green synthesized Cu nanoparticles by cell-free extract of Pseudomonas silesiensis as antitumor cancer and antimicrobial. Annals of Agric Sci. 2021;66(1):8–15. https://doi.org/10.1016/j.aoas.2021.01.006

Hammad SE, El-Rouby MN, Abdel-Aziz MM, El-Sayyad GS, Elshikh HH. Endophytic fungi–assisted biomass synthesis of gold, and zinc oxide nanoparticles for increasing antibacterial, and anticancer activities. Biomass Conv Bioref. 2023;1–18. https://doi.org/10.1007/s13399-023-04954-8

Fouda A, Hassan SED, Eid AM, Abdel-Rahman MA, Hamza MF. Light enhanced the antimicrobial, anticancer, and catalytic activities of selenium nanoparticles fabricated by endophytic fungal strain, Penicillium crustosum EP-1. Sci Rep. 2022;12:11834. https://doi.org/10.1038/s41598-022-15903-2

Mani VM, Kalaivani S, Sabarathinam S, Vasuki M, Soundari AJPG, Ayyappa Das MP, et al. Copper oxide nanoparticles synthesized from an endophytic fungus Aspergillus terreus: Bioactivity and anti-cancer evaluations. Environ Res. 2021;201:111502. https://doi.org/10.1016/j.envres.2021.111502

Pasha A, Kumbhakar DV, Sana SS, Ravinder D, Lakshmi BV, Kalangi SK, et al. Role of biosynthesized Ag-NPs using Aspergillus niger (MK503444.1) in antimicrobial, anti-cancer and anti-angiogenic activities. Front Pharmacol. 2022;12:812474. https://doi.org/10.3389/fphar.2021.812474

Munawer U, Raghavendra VB, Ningaraju S, Krishna KL, Ghosh AR, Melappa G, et al. Biofabrication of gold nanoparticles mediated by the endophytic Cladosporium species: Photodegradation, in vitro anticancer activity and in vivo antitumor studies. Int J Pharm. 2020;588:119729. https://doi.org/10.1016/j.ijpharm.2020.119729

Göksen Tosun N, Kaplan Ö, Türkekul I, Gökçe I, Özgür A. Green synthesis of silver nanoparticles using Schizophyllum commune and Geopora sumneriana extracts and evaluation of their anticancer and antimicrobial activities. Particulate Sci Tech. 2021;40(7):801–11. https://doi.org/10.1080/02726351.2021.2010846

Danagoudar A, G K P, Shantaram M, Chatterjee B, Ghosh K, Kanade SR, et al. Cancer cell specific cytotoxic potential of the silver nanoparticles synthesized using the endophytic fungus, Penicillium citrinum CGJ-C2. Materials Today Comm. 2020;25:101442. https://doi.org/10.1016/j.mtcomm.2020.101442

Govindappa M, Lavanya M, Aishwarya P, Pai K, Lunked P, Hemashekhar B, et al. Synthesis and characterization of endophytic fungi, Cladosporium perangustum mediated silver nanoparticles and their antioxidant, anticancer and nano-toxicological study. Bio Nano Sci. 2020;10(4):928–41. https://doi.org/10.1007/s12668-020-00719-z

Danagoudar A, Pratap GK, Shantaram M, Ghosh K, Kanade SR, Sannegowda LK, et al. Antioxidant, cytotoxic and anti-choline esterase activity of green silver nanoparticles synthesized using Aspergillus austroafricanus CGJ-B3 (endophytic fungus). Anal Chem Lett. 2021;11(1):15–28. https://doi.org/10.1080/22297928.2021.1883477

Rehman S, Farooq R, Jermy R, Mousa Asiri S, Ravinayagam V, Al Jindan R, et al. A wild fomes fomentarius for biomediation of one pot synthesis of titanium oxide and silver nanoparticles for antibacterial and anticancer application. Biomolecules. 2020;10(4):622. https://doi.org/10.3390/biom10040622

El-Sayed ESR, Abdelhakim HK, Zakaria Z. Extracellular biosynthesis of cobalt ferrite nanoparticles by Monascus purpureus and their antioxidant, anticancer and antimicrobial activities: Yield enhancement by gamma irradiation. Mater Sci Eng C Mater Biol Appl. 2020;107:110318. https://doi.org/10.1016/j.msec.2019.110318

Ameen F, Al-Homaidan AA, Al-Sabri A, Almansob A, AlNAdhari S. Anti-oxidant, anti-fungal and cytotoxic effects of silver nanoparticles synthesized using marine fungus Cladosporium halotolerans. Applied Nanosci. 2021;13(1):623–31. https://doi.org/10.1007/s13204-021-01874-9

Saravanakumar K, Shanmugam S, Varukattu NB, MubarakAli D, Kathiresan K, Wang MH. Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. J Photochem Photobiol B. 2019;190:103–9. https://doi.org/10.1016/j.jphotobiol.2018.11.017

Manimaran K, Balasubramani G, Ragavendran C, Natarajan D, Murugesan S. Biological applications of synthesized ZnO nanoparticles using Pleurotus djamor against mosquito larvicidal, histopathology, antibacterial, antioxidant and anticancer effect. J Clust Sci. 2020;32(6):1635–47. https://doi.org/10.1007/s10876-020-01927-z

Hu X, Saravanakumar K, Jin T, Wang MH. Mycosynthesis, characterization, anticancer and antibacterial activity of silver nanoparticles from endophytic fungus Talaromyces purpureogenus; Int J Nanomedicine. 2019;14:3427–38. https://doi.org/10.2147/ijn.s200817

Gupta P, Rai N, Verma A, Saikia D, Singh SP, Kumar R, et al. Green-based approach to synthesize silver nanoparticles using the fungal endophyte Penicillium oxalicum and their antimicrobial, antioxidant, and in vitro anticancer potential. ACS Omega. 2022;7(50):46653–73. https://doi.org/10.1021/acsomega.2c05605

How CW, Ong YS, Low SS, Pandey A, Show PL, Foo JB. How far have we explored fungi to fight cancer? Semin Cancer Biol. 2022;86:976–89. https://doi.org/10.1016/j.semcancer.2021.03.009

Rajabi M, Mousa S. The role of angiogenesis in cancer treatment. Biomedicines. 2017;5(2):34. https://doi.org/10.3390/biomedicines5020034

Asami Y, Kakeya H, Komi Y, Kojima S, Nishikawa K, Beebe K, et al. Azaspirene, a fungal product, inhibits angiogenesis by blocking Raf-1 activation. Cancer Sci. 2008;99(9):1853–58. https://doi.org/10.1111/j.1349-7006.2008.00890.x

Evidente A, Kornienko A, Cimmino A, Andolfi A, Lefranc F, Mathieu V, et al. Fungal metabolites with anticancer activity. Nat Prod Rep. 2014;31(5):617–27. https://doi.org/10.1039/C3NP70078J

Khalil AT, Ovais M, Iqbal J, Ali A, Ayaz M, Abbas M, et al. Microbes-mediated synthesis strategies of metal nanoparticles and their potential role in cancer therapeutics. Semin Cancer Biol. 2022;86:693–705. https://doi.org/10.1016/j.semcancer.2021.06.006

Boroumand Moghaddam A, Namvar F, Moniri M, Md. Tahir P, Azizi S, Mohamad R. Nanoparticles biosynthesized by fungi and yeast: A review of their preparation, properties, and medical applications. Molecules. 2015;20(9):16540–65. https://doi.org/10.3390/molecules200916540

Cook KM, Figg WD. Angiogenesis inhibitors: Current strategies and future prospects. CA Cancer J Clin. 2010;60(4):222–43. https://doi.org/10.3322/caac.20075

Liu X, Wu X, Ma Y, Zhang W, Hu L, Feng X, et al. Endophytic fungi from mangrove inhibit lung cancer cell growth and angiogenesis in vitro. Oncol Rep. 2017;37(3):1793–803. https://doi.org/10.3892/or.2017.5366

Hassan MG, Elmezain WA, Baraka DM, AboElmaaty SA, Elhassanein A, Ibrahim RM, et al. Anti-cancer and anti-oxidant bioactive metabolites from Aspergillus fumigatus WA7S6 isolated from marine sources: In vitro and in silico studies. Microorganisms. 2024;12(1):127. https://doi.org/10.3390/microorganisms12010127

Poornamath BP, Sarojini S, Jayaram S, Biswas S, Kaloor A, Umesh M. Solid-state fermentation of pigment producing endophytic fungus Fusarium solani from Madiwala lake and its toxicity studies. J App Biol Biotech. 2024;12(2):264-272. https://dx.doi.org/10.7324/JABB.2024.143030

Xu J, Zeng Y, Yu C, Xu S, Tang L, Zeng X, et al. Visualization of the relationship between fungi and cancer from the perspective of bibliometric analysis. Heliyon. 2023;9(8):e18592. https://doi.org/10.1016/j.heliyon.2023.e18592

Marathe SJ, Hamzi W, Bashein AM, Deska J, Seppänen-Laakso T, Singhal RS, et al. Anti-angiogenic and anti-inflammatory activity of the summer truffle (Tuber aestivum Vittad.) extracts and a correlation with the chemical constituents identified therein. Food Res Int. 2020;137:109699. https://doi.org/10.1016/j.foodres.2020.109699

Rezghi Rami M, Meskini M, Ebadi Sharafabad B. Fungal-mediated nanoparticles for industrial applications: Synthesis and mechanism of action. J Infect Public Health. 2024;17(10):102536. https://doi.org/10.1016/j.jiph.2024.102536

Mughal B, Zaidi SZJ, Zhang X, Hassan SU. Biogenic nanoparticles: Synthesis, characterisation and applications. Appl Sci. 2021;11(6):2598. https://doi.org/10.3390/app11062598

Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020;7:193. https://doi.org/10.3389/fmolb.2020.00193

Janakiraman V, Manjunathan J, SampathKumar B, Thenmozhi M, Ramasamy P, Kannan K, et al. Applications of fungal based nanoparticles in cancer therapy– A review. Process Biochem. 2024;140:10–8. https://doi.org/10.1016/j.procbio.2024.02.002

Published

09-04-2025 — Updated on 15-04-2025

Versions

How to Cite

1.
Deepika S, Suma S, Thea C, Krishnashish D, Rohini K. Fungal metabolites: Nature’s key to antiangiogenic cancer therapies. Plant Sci. Today [Internet]. 2025 Apr. 15 [cited 2025 Apr. 29];12(2). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/5867

Issue

Section

Review Articles