Unveiling phytostimulation abilities and antifungal metabolites of Trichoderma spp. from avocado rhizosphere soil

Authors

  • Ayyandurai M Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625 104, Tamil Nadu, India https://orcid.org/0000-0002-0443-9067
  • Sangeetha A Department of Plant Pathology, Anbil Dharmalingam Agricultural College and Research Institute (ADAC&RI), Tamil Nadu Agricultural University, Tiruchirappalli 641 003, Tamil Nadu, India https://orcid.org/0000-0001-6355-9483

DOI:

https://doi.org/10.14719/pst.6010

Keywords:

antifungal compounds, biochemical characterization, GC-MS analysis, rhizosphere isolation, Trichoderma sp., TLC

Abstract

Trichoderma spp. is a beneficial fungus with agricultural significance, known for its role in plant health enhancement and disease control. This study explores the characterization and phytostimulation abilities of Trichoderma species isolated from avocado plant rhizosphere soil. Ten Trichoderma isolates were obtained through isolation and purification. Their cultural characteristics, such as rapid colony growth and green conidial zones, were assessed, confirming their identity as Trichoderma spp. Biochemical tests revealed their abilities in indole acetic acid (IAA) production (10.2-27.4 µg/mL), phosphate solubilization (17.3-35.8 µg/mL), siderophore production and ammonia production Genomic deoxyribonucleic acid (DNA) extraction and polymerase chain reaction (PCR) amplification using universal primers (ITS1 and ITS4) confirmed their molecular identity, with amplicon sizes ranging from 550 bp to 650 bp. Metabolite analysis of TI-3 via GC-MS uncovered bioactive compounds, including Palmitic acid, 6-pentyl-2H-pyran-2-one, quinoline, phenol, 2-(6-hydrazino-3-pyridazinyl) and heptadecane. Thin Layer Chromatography (TLC) identified distinct antifungal compounds, with an Rf value of 0.84 for chitinase analysis. These findings highlight the multifaceted potential of Trichoderma spp. in promoting plant health and management of diseases, offering valuable insights for sustainable agricultural practices in avocado cultivation.

Downloads

Download data is not yet available.

References

Woo SL, Hermosa R, Lorito M, Monte E. Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nature Reviews Microbiology. 2023;21(5):312-26. https://doi.org/10.1038/s41579-022-00819-5

Alfiky A, Weisskopf L. Deciphering Trichoderma–plant–pathogen interactions for better development of biocontrol applications. Journal of Fungi. 2021;7(1):61. https://doi.org/10.3390/jof7010061

Mukherjee PK, Mendoza-Mendoza A, Zeilinger S, Horwitz BA. Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biology Reviews. 2022;39:15-33. https://doi.org/10.1016/j.fbr.2021.11.004

Olowe OM, Nicola L, Asemoloye MD, Akanmu AO, Babalola OO. Trichoderma: Potential bio-resource for the management of tomato root rot diseases in Africa. Microbiological Research. 2022;257:126978. https://doi.org/10.1016/j.micres.2022.126978

Guzmán-Guzmán P, Kumar A, de Los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda MD, Fadiji AE, et al. Trichoderma species: Our best fungal allies in the biocontrol of plant diseases - A review. Plants. 2023;12(3):432. https://doi.org/10.3390/plants12030432

Esparza-Reynoso S, Ruíz-Herrera LF, Pelagio-Flores R, Macías-Rodríguez LI, Martínez-Trujillo M, López-Coria M, et al. Trichoderma atroviride-emitted volatiles improve growth of Arabidopsis seedlings through modulation of sucrose transport and metabolism. Plant, Cell & Environment. 2021;44(6):1961-76. https://doi.org/10.1111/pce.14014

Elad Y, Chet I. Improved selective media for isolation of Trichoderma spp. or Fusarium spp. Phytoparasitica. 1983;11:55-8.

Rifai MA. A revision of the genus Trichoderma. Mycological Papers. 1969;116:1-56.

Khamna S, Yokota A, Lumyong S. Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid, and siderophore production. World Journal of Microbiology and Biotechnology. 2009;25(4):649-55. https://doi.org/10.1007/s11274-008-9933-x

Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry. 1987;160:47-56.

Hartmann A, Singh M, Klingmüller W. Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Canadian Journal of Microbiology. 1983;29(8):916-23. https://doi.org/10.1139/m83-147

Gordon SA, Paleg LG. Quantitative measurement of indole acetic acid. Physiologia Plantarum. 1957;10:37-48.

King EJ. The colorimetric determination of phosphorus. Biochemical Journal. 1932;26(2):292-97. https://doi.org/10.1042/bj0260292

Dye DW. The inadequacy of the usual determinative tests for the identification of Xanthomonas spp. New Zealand Journal of Science. 1962;5(4).

Zolan ME, Pukkila PJ. Inheritance of DNA methylation in Coprinus cinereus. Molecular and Cellular Biology. 1986;6:195-200.

White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications. 1990. p. 315-322.

Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution. 2021;38(7):3022-27. https://doi.org/10.1093/molbev/msab120

Fried B, Sherma B. Thin-Layer Chromatography, revised and expanded. CRC Press; 1999. https://doi.org/10.1201/9780203910214

Hiller K, Hangebrauk J, Jäger C, Spura J, Schreiber K, Schomburg D. Metabolite detector: comprehensive analysis tool for targeted and nontargeted GC/MS-based metabolome analysis. Analytical Chemistry. 2009;81(9):3429-39. https://doi.org/10.1021/ac802689c

Gomez KA. Statistical procedures for agricultural research. John NewYork: Wiley and Sons. 1984.Rashmi S, Radhika MP, Savitha MK. Antagonistic activity of rhizosphere fungi against early blight of tomato caused by Alternaria alternata. Journal of Advanced Scientific Research. 2020;11(3):326-29.

Sharma K, Singh U. Cultural and morphological characterization of rhizospheric isolates of fungal antagonist Trichoderma. Journal of Applied and Natural Science. 2014;6(2):451-56. https://doi.org/10.31018/jans.v6i2.481

Wu Q, Sun R, Ni M, Yu J, Li Y, Yu C, et al. Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS One. 2017;12(6). https://doi.org/10.1371/journal.pone.0179957

Shahid M, Singh A, Srivastava M, Rastogi S, Pathak N. Sequencing of 28S rRNA gene for identification of Trichoderma longibrachiatum 28CP/7444 species in soil sample. International Journal of Biotechnology for Wellness Industries. 2013;2(2):84. https://doi.org/10.6000/1927-3037.2013.02.02.4

Shahid M, Srivastava M, Kumar V, Singh A, Sharma A, Pandey S, et al. Phylogenetic diversity analysis of Trichoderma species based on internal transcribed spacer (ITS) marker. African Journal of Biotechnology. 2014;13(3). https://doi.org/10.5897/AJB2013.13075

Castle A, Speranzini D, Rghei N, Alm G, Rinker D, Bissett J. Morphological and molecular identification of Trichoderma isolates on North American mushroom farms. Applied and Environmental Microbiology. 1998;64(1):133-37. https://doi.org/10.1128/AEM.64.1.133-137.1998

Rai S, Kashyap PL, Kumar S, Srivastava AK, Ramteke PW. Identification, characterization, and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. SpringerPlus. 2016;5:1-16.

Azarmi R, Hajieghrari B, Giglou A. Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. African Journal of Biotechnology. 2011;10(31):5850-55. https://doi.org/10.5897/AJB10.1600

Prasad R, Sagar BV, Devi GU, Triveni S, Rao SK, Chari D. Isolation and screening of bacterial and fungal isolates for plant growth-promoting properties from tomato (Lycopersicon esculentum Mill.). International Journal of Current Microbiology and Applied Sciences. 2017;6(8):753-61. https://doi.org/10.20546/ijcmas.2017.608.096

Guey N, Kumar K, Dangue A, Arama M. Bioproduction of indole-3-acetic acid by Trichoderma strains isolated from agricultural field soils in Senegal. World Journal of Pharmaceutical Research. 2018;7(17):817-25.

Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio JS, López-Bucio J. Enhanced plant immunity using Trichoderma. In: Biotechnology and Biology of Trichoderma. Elsevier; 2014. p. 495-504. https://doi.org/10.1016/B978-0-444-59576-8.00036-9

Zhao L, Wang F, Zhang Y, Zhang J. Involvement of Trichoderma asperellum strain T6 in regulating iron acquisition in plants. Journal of Basic Microbiology. 2014;54(S1). https://doi.org/10.1002/jobm.201400148

Khan RA, Najeeb S, Hussain S, Xie B, Li Y. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms. 2020;8(6):817. https://doi.org/10.3390/microorganisms8060817

Rabinal CA, Bhat S. Profiling of Trichoderma koningii IABT1252's secondary metabolites by thin-layer chromatography and their antifungal activity. The Bioscan. 2017;12(1):163-68.

Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. Trichoderma–plant–pathogen interactions. Soil Biol. Biochem. 008;40(1):1-10. https://doi.org/10.1016/j.soilbio.2007.07.002

Published

03-03-2025

How to Cite

1.
Ayyandurai M, Sangeetha A. Unveiling phytostimulation abilities and antifungal metabolites of Trichoderma spp. from avocado rhizosphere soil. Plant Sci. Today [Internet]. 2025 Mar. 3 [cited 2025 Apr. 7];12(sp1). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/6010

Most read articles by the same author(s)