Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Foraging ecology and evaluation of pollination potential of native pollinators of Chayote in Tamil Nadu, India

DOI
https://doi.org/10.14719/pst.6474
Submitted
2 December 2024
Published
25-06-2025
Versions

Abstract

Chayote, Sechium edule (Swartz) is cultivated throughout tropical and subtropical regions of the world as an important vegetable crop. The chayote flowers are monoecious, produce separate male and female flowers at different internodes within the same plant. Chayote crop relies on pollinators, mainly bees and other insects like butterflies, wasps and beetles for successful fruit production. The reduction in the service provided by the pollinators results in low fruit set and inferior quality of fruits. Many domesticated bee colonies are required to provide complete pollination services if native pollinators are deficient in Chayote cropping system. An experiment was conducted in 2024 at the farmers' field at Karumandurai in Salem district to compare the foraging activity and pollination efficiency of native dominant pollinators and domesticated pollinators. The results revealed that the foraging activity of Apis cerana indica (Fabricius) began at 0600 hr and ceased by 1400 hr. Tetragonula iridipennis (Smith) commences foraging at 0800 hr and stops it by 1500 hr. T. iridipennis spent an average of 26.2 sec in male flowers and 166.0 sec in female flowers, while A. cerana indica spent less time per flower with 9.7 sec in male flowers and 13.8 sec in female flowers. The maximum fruit set of 24.71 fruits/plant was obtained in a stingless bee pollination plot followed by an open pollination plot (24.42 fruits/plant). The pollinator exclusion plot (control) recorded no fruit set. 

References

  1. 1. Imperatriz-Fonseca VL, Nunes-Silva P. Bees, ecosystem services and the Brazilian forest code. Biota Neotropica. 2010;10:59-62. https://doi.org/10.1590/S1676-06032010000400008
  2. 2. Bezzi S, Kessler D, Diezel C, Muck A, Anssour S, Baldwin IT. Silencing NaTPI expression increases nectar germin, nectarins and hydrogen peroxide levels and inhibits nectar removal from plants in nature. Plant Physiology. 2010;152(4):2232-42. https://doi.org/10.1104/pp.109.151753
  3. 3. Arenas A, Farina WM. Learned olfactory cues affect pollen-foraging preferences in honeybees, Apis mellifera. Animal Behaviour. 2012;83(4):1023-33. https://doi.org/10.1016/j.anbehav.2012.01.026
  4. 4. Brandenburg A, Dell’Olivo A, Bshary R, Kuhlemeier C. The sweetest thing: Advances in nectar research. Current Opinion in Plant Biology. 2009;12(4):486-90. https://doi.org/10.1016/j.pbi.2009.04.002
  5. 5. Aizen MA, Feinsinger P. Bees not to be? Responses of insect pollinator faunas and flower pollination to habitat fragmentation. In: Bradshaw GA, Marquet PA, editors. How landscapes change: Human disturbance and ecosystem fragmentation in the Americas. Berlin, Heidelberg: Springer Berlin Heidelberg; 2003:111-29. https://doi.org/10.1007/978-3-662-05238-9_7
  6. 6. Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, et al. Importance of pollinators in changing landscapes for world crops. Proceedings of the royal society B: Biological Sciences. 2007;274(1608):303-13. https://doi.org/10.1098/rspb.2006.3721
  7. 7. Ollerton J. Pollinator diversity: Distribution, ecological function and conservation. Annual Review of Ecology, Evolution and Systematics. 2017;48(1):353-76. https://doi.org/10.1146/annurev-ecolsys-110316-022919
  8. 8. Cohen JE. Population growth and earth's human carrying capacity. Science. 1995;269(5222):341-6. https://doi.org/10.1126/science.7618100
  9. 9. FAOSTAT Database on production. FAO Statistics Division, Food and Agriculture Organization of the United Nations, Rome. 2019.
  10. 10. Robinson RW. Rationale and methods for producing hybrid cucurbit seed. Journal of New Seeds. 1999;1(3-4):1-47. https://doi.org/10.1300/J153v01n03_01
  11. 11. Hurd PD, Linsley EG, Whitaker TW. Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution. 1971:218-34. https://doi.org/10.2307/2406514
  12. 12. Willis DS, Kevan PG. Foraging dynamics of Peponapis pruinosa (Hymenoptera: Anthophoridae) on pumpkin (Cucurbita pepo) in Southern Ontario. The Canadian Entomologist. 1995;127(2):167-75. https://doi.org/10.4039/Ent127167-2
  13. 13. Petersen JD, Huseth AS, Nault BA. Evaluating pollination deficits in pumpkin production in New York. Environmental Entomology. 2014;43(5):1247-53. https://doi.org/10.1603/EN14085
  14. 14. Rojas-Sandoval J. “Sechium edule (Chayote)”. CABI Compendium: Invasive Species. Wallingford, UK: CAB International. 2020. https://doi.org/10.1079/ISC.49493.20203482792
  15. 15. Malerbo-Souza DT, Costa CF, Pimentel AC, Andrade MO, Siqueira RA, Silva RC, et al. Stingless bee Trigona spinipes (Hymenoptera: Apidae) behaviour on chayote flowers (Sechium edule). Acta Scientiarum Animal Sciences. 2022;45:e56760. https://doi.org/10.4025/actascianimsci.v45i1.56760
  16. 16. Roubik DW, Gutiérrez V, Cano C, Francisco E, Uca C. Native bees of the Sian Ka'an Biosphere Reserve, Quintana Roo, Mexico. 1991.
  17. 17. Hickel, ER, Ducroquet, JPHJ. Entomophilous pollination of the feijoa tree, Feijoa sellowiana (Berg), in Santa Catarina. Revista Brasileira de Fruticultura. 2000;22(1):96-101. SciELO Brazil.
  18. 18. Slaa EJ, Chaves LA, Malagodi-Braga KS, Hofstede FE. Stingless bees in applied pollination: Practice and perspectives. Apidologie. 2006;37(2):293-315. https://doi.org/10.1051/apido:2006022
  19. 19. Yogapriya A, Usharani B, Suresh K, Vellaikumar S, Shanthi M. Diversity of floral visitors in bitter gourd in Madurai district, Tamil Nadu. Indian Journal of Entomology. 2019;81(4):805-10. https://doi.org/10.5958/0974-8172.2019.00165.2
  20. 20. Balina PK, Sharma SK, Rana MK. Diversity, abundance and pollination efficiency of native bee pollinators of bitter gourd (Momordica charantia L.) in India. Journal of Apicultural Research. 2012;51(3):227-31. https://doi.org/10.3896/IBRA.1.51.3.02
  21. 21. Manchare RR, Kulkarni SR, Patil SD. Effect of bee pollination on seed yield and yield contributing characters of bitter gourd Momordica charantia L. Chemical Science Review and Letters. 2019;8(30):236-40. https://chesci.com/wp-content/uploads/2019/07/V8i30_15_CS122049121_Ravindra_236-240.pdf
  22. 22. A’yunin Q, Rauf A, Harahap IS. Foraging behaviour and pollination efficiency of Heterotrigona itama (Cockerell) and Tetragonula laeviceps (Smith) (Hymenoptera: Apidae) on chayote. Indonesian Journal of Agricultural Sciences. 2019;24(3):247-57. https://doi.org/10.18343/jipi.24.3.247
  23. 23. Mukherjee R, Deb R, Devy SM. Diversity matters: Effects of density compensation in pollination service during rainfall shift. Ecology and Evolution. 2019;9(17):9701-11. https://doi.org/10.1002/ece3.5500
  24. 24. Rashmi MA, Gandhi Gracy R, Vinutha TM, Bhat NS. Study of pollinator activity in cho-cho Sechium edule (Jacq.) Sw crop. In 2nd International Conference on Agricultural and Horticultural Sciences. 2014. http://doi.org/10.4172/2168-9881.S1.008
  25. 25. Sharma G, Partap U, Sharma DP. Pollination biology of large cardamom (Amomum subulatum Roxb.) with special emphasis on honeybees (Apis spp.) and bumble bees (Bombus spp.) pollinators. Tropical Ecology. 2019;60:507-17. https://doi.org/10.1007/s42965-020-00056-y
  26. 26. Balachandran C, Chandran S, Vinay Shrikant N, Ranachandra TV. Pollinator diversity and foraging dynamics on monsoon crop of cucurbits in a traditional landscape of South Indian west coast. Biotropia. 2017;24(1):16-27. https://doi.org/10.11598/btb.2017.24.1.480
  27. 27. Rosmiati M, Putra RE, Ruswandi A. Insects pollination of zucchini farming in Indonesia and their economic importance. Asian Journal of Plant Sciences. 2015;14(2):84. https://doi.org/10.3923/ajps.2015.84.88
  28. 28. Putra RE, Subagio J, Kinasih I, Permana AD, Rosmiati M. Wild insect visitation patterns and effects of Trigona (Tetragonula) laeviceps Smith colony additions on kabocha (Cucurbita maxima) pollination. Indonesian Journal of Entomology. 2017;14(2):69-79. https://doi.org/10.5994/jei.14.2.69
  29. 29. Putra RE, Rustam FA, Rosmiati M, Kinasih I. Impact of wild bees (Apis cerana) and stingless bees (Tetragonula laeviceps) to some crops of small-scale farm in West Java. In IOP Conference Series: Earth and Environmental Science 2020 (Vol. 593(1):012031). IOP Publishing. https://doi.org/10.1088/1755-1315/593/1/012031
  30. 30. Heard TA. The role of stingless bees in crop pollination. Annual Review of Entomology. 1999;44(1):183-206. https://doi.org/10.1146/annurev.ento.44.1.183
  31. 31. Nerson H. Effects of pollen-load on fruit yield, seed production and germination in melons, cucumbers and squash. The Journal of Horticultural Science and Biotechnology. 2009;84(5):560-6. https://doi.org/10.1080/14620316.2009.11512566
  32. 32. Collison CH. The interrelationships of honeybee activity, foraging behaviour, climatic conditions and flowering in the pollination of pickling cucumbers, Cucumis sativus L. PhD [dissertation]. Michigan State University. 1976.
  33. 33. Murali NK, Ayyaswamı SP, Govındasamy U, Muthusamy V. Foraging activity of managed bee pollinator (Apis cerana indica) in bitter gourd cropping system in India. Uludağ Arıcılık Dergisi. 2021;21(2):216-26. https://doi.org/10.31467/uluaricilik.1000935

Downloads

Download data is not yet available.