Recent advances in genetic manipulation of crops: A promising approach to address the global food and industrial applications

Authors

  • Nirmala Nalluri Department of Biotechnology, GITAM Institute of Technology, GITAM (Deemed to be University), Visakhapatnam 530 045, Andhra Pradesh, India
  • Vasavi Rama Karri Department of Biotechnology, GITAM Institute of Technology, GITAM (Deemed to be University), Visakhapatnam 530 045, Andhra Pradesh, India

DOI:

https://doi.org/10.14719/pst.2020.7.1.659

Keywords:

Biotechnology, Crop improvement, Plant transformation, Recombinant DNA Technology, Transgenic crops

Abstract

Continuous increase in world’s population demands high food production, which has become a major challenge to the humanity. When there is sufficient amount of nutritious food to all the people there will be no problem of food scarcity. So, to increase the food production, many countries are adopting strategies of genetic engineering to enhance the crop yield. Recombinant DNA technology can be a viable source to develop genetically modified crops with enhanced resistance and improved yields to fight against malnutrition and food scarcity. With this technology, selected traits can be inserted into the plant genome, unlike traditional plant breeding, where many characters of two different crops will be combined which may lead to genetic modification at an extensive level. Present review focuses on the methods of plant transformation and outlines the scope of genetic transformation for improved crop production by transferring selected genes for biotic and abiotic stress tolerance. In addition, current study also provides information about various genetically modified crops produced worldwide and their commercialization towards various biotechnological products like GM livestock, GM microorganisms, vaccines and industrial products like bio-plastic produced from the transgenic plants.

Downloads

Download data is not yet available.

References

1. Southgate EM, Davey MR, Power JB, Merchant R. Factors affecting the genetic engineering of plants by microprojectile bombardment. Biotechnology Advances. 1995;13:31-57. https://doi.org/10.1016/0734-9750(95)02008-X

2. Wollenweber, Porter B, Lubberstedt J, Thomas. Need for multidisciplinary research towards a second green revolution - Commentary. Current opinion in plant biology. 2005;8:337-41. https://doi.org/10.1016/j.pbi.2005.03.001

3.Raymond Park J, McFarlane I, Hartley Phipps R, Ceddia G. The role of transgenic crops in sustainable development.Plant Biotechnology Journal.2011;9:2-21.https://doi.org/10.1111/j.1467-7652.2010.00565.x

4. Ahmad P, Sarwat M, Sharma S. Reactive oxygen species, antioxidants and signaling in plants. Journal of Plant Biology. 2008;51(3):167-73. https://doi.org/10.1007/BF03030694

5. Ahmad P, Nabi G, Jeleel CA, Umar S. Free radical production, oxidative damage and antioxidant defense mechanisms in plants under abiotic stress. In: Ahmad P, Umar S, editors. Oxidative stress: role of antioxidants in plants. New Delhi: Studium Press Pvt. Ltd; 2011.p.19-53.

6. Ahmad P, Prasad MNV. Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability. New York, NY: Springer Science Business Media. 2012a; LLC 10.1007/978-1-4614-0634-1. https://doi.org/10.1007/978-1-4614-0634-1

7.Vinod Kumar B, Raja TK, Wani MR, Sheikh SA, Lone MA, Gowher Nabi, et al. Transgenic plants as green factories for vaccine production. 2013;12(43):6147-58. https://doi.org/10.5897/AJB2012.2925

8. Kant S, Bi YM, Rothstein SJ. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. Journal of Experimental Botany. 2011;62:1499-1509. https://doi.org/10.1093/jxb/erq297

9.Vianna GR, Aragao FJL, Rech EL. A minimal DNA cassette as a vector for genetic transformation of soybean (Glycine max) Genet Mol Res. 2011;10:382-90. https://doi.org/10.4238/vol10-1gmr1058

10. Yoshida T, Kimura E, Koike S, Nojima J, Futai E, Sasagawa N, et al. Transgenic rice expressing amyloid ?peptide for oral immunization. International journal of biological sciences.2011;7(3):301-07. https://doi.org/10.7150/ijbs.7.301

11. Sharma M, Sood B. A banana or a syringe: journey to edible vaccines. World Journal of Microbiology and Biotechnology. 2011;27(3):471-77.https://doi.org/10.1007/s11274-010-0481-9

12. Twyman RM, Schillberg S, Fischer R. The production of vaccines and therapeutic antibodies in plants, In: Wang A, Ma S, editors. Molecular farming in plants: Recent advances and future prospects. Springer Science+Business Media, New York;2012.p. 145-59. https://doi.org/10.1007/978-94-007-2217-07

13. Wall RJ. New gene transfer methods. Theriogenology. 2002;57:189-201. https://doi.org/10.1016/S0093-691X(01)00666-5

14. Wheeler MB, Walters EM. Transgenic technology and applications in swine. Theriogenology. 2001;56:1345-69. https://doi.org/10.1016/S0093-691X(01)00635-5

15. Wheeler MB, Walters EM, Clark SG. Transgenic animals in biomedicine and agriculture: outlook for the future. Animal Reproduction Science. 2003;79:265-89. https://doi.org/10.1016/S0378-4320(03)00168-4

16. Naqvi S, Farre G, Sanahuja G, Capell T, Zhu CF, Christou P. When more is better: multigene engineering in plants. Trends in Plant Science. 2010;15:48-56. https://doi.org/10.1016/j.tplants.2009.09.010

17. Zaynab M, Pan D, Fatima M. Transcriptomic approach to address low germination rat in Cyclobalnopsis gilva seeds. South African Journal of Botany. 2018;119:286-94. https://doi.org/10.1016/j.sajb.2018.09.024

18. Jackson DA, Symons RH, PaulBerg. Biochemical method for inserting new genetic information into DNA of simian virus 40: Circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proceedings of the National Academy of Sciences. 1972;69:2904-09. https://doi.org/10.1073/pnas.69.10.2904

19. Zilberman D, Holland TG, Trilnick I. Agricultural GMOs-What We Know and Where Scientists Disagree .Sustainability. 2018;10(5):1514. https://doi.org/10.3390/su10051514

20. Babaoglu M, Davey MR, Power JB. Genetic engineering of grain legumes: key transformation events. Agri Biotech Net. 2000;2:1-12.

21. Zhang C, Wohlhueter R, Zhang H. Genetically modified foods: A critical review of their promise and problems. 2016;5(3):116-23. https://doi.org/10.1016/j.fshw.2016.04.002

22. Key S, Ma JK, Drake PM. Genetically modified plants and human health. Journal of the Royal Society of Medicine. 2008;101(6):290-98. https://doi.org/10.1258/jrsm.2008.070372

23. FAO. FAOSTAT. Food and Agriculture Organization of the United Nations; 2012. Available from: http://faostat.fao.org/default.aspx

24. Clive J. Global status of commercialized Biotech/GM crops. ISAAA Briefs 43. Ithaca: International Service for the Acquisition of Agri-biotech Applications; 2011.

25. Martineau B. First fruit. The creation of the flavr tomato and the Birth of Biotech foods. MC Graw-Hill Press. 2001;269.

26. Shahid AA, Bano S, Khalid S, Samiullah TR, Bajwa KS, Ali MA. Biosafety assessment of transgenic Bt cotton on model animals, Journal of Advancements in Life Sciences-International Quarterly Journal of Biological Sciences. 2016;3(3):97-108.

27. Altpeter F, Varshney A, Abderhalden O, Douchkov D, Sautter C, Kimlehn J, et al. Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Molecular Biology. 2005;52:271-83. https://doi.org/10.1007/s11103-004-7564-7

28. Datta K, Baisakh N, Oliva N, Torrizo L, Abrigo E, Tan J, et al. Bioengineered ‘golden’ indica rice cultivars with ??carotene metabolism in the endosperm with hygromycin and mannose selection systems. Plant Biotechnology Journal. 2003;1(2):81-90. https://doi.org/10.1046/j.1467-7652.2003.00015.x

29. Datta SK. In: Biotechnology in Agriculture and Forestry. In: Pua EC, Davey MR, editors. Transgenic crops IV Vol. 5. Springer-Verlag, Berlin Heidelberg; 2007.p.1-31.

30. Mackill D. Rice improvement in the genomics Era. In: Datta SK, editors, Howarth, New York; 2006.p.1-14.

31. Sahrawat AK, Becker D. Lutticke S, Lorz H. Genetic improvement of wheat via alien gene transfer, an assessment. Plant Science. 2003;165(5):1147-68. https://doi.org/10.1016/S0168-9452(03)00323-6

32. Sharma M, Charak KS, Ramanaiah TV. Agricultural biotechnology research in India: Status and policies. Current Science. 2003;84:297-302. https://doi.org/10.1029/2003EO320008

33. Vasil IK. The story of transgenic cereals: The challenge, the debate, and the solution-A historical perspective. In vitro cellular and developmental biology plant. 2005;41:577-83. https://doi.org/10.1079/IVP2005654

34. Kamthan, Chaudhuri A, Kamthan A, Datta M, Asis. Genetically modified (GM) crops: milestones and new advances in crop improvement. Theoretical and Applied Genetics. 2016;129. 10.1007/s00122-016-2747-6. https://doi.org/10.1007/s00122-016-2747-6

35. Que Q, Chilton MD, de Fontes CM, He C, Nuccio M, Zhu T, et al. Trait stacking in transgenic crops: challenges and opportunities. GM Crops. 2010;1(4):220-29. https://doi.org/10.4161/gmcr.1.4.13439

36. Samanta MK, Dey A, Gayen S. CRISPR/Cas9: An advanced tool for editing plant genomes. Transgenic Research. 2016;25:561-73. https://doi.org/10.1007/s11248-016-9953-5

37. Molina R, Montoya G, Prieto J. Meganucleases and their biomedical applications, eLS. 2011; https://doi.org/10.1002/9780470015902.a0023179

38. D Halluin K, Vanderstraeten C, Van Hulle J, Rosolowska J, Brande IVD, Pennewaert A, et al. Targeted molecular trait stacking in cotton through targeted double strand break induction. Plant biotechnology journal. 2013;11:933-41. https://doi.org/10.1111/pbi.12085

39. Cigan AM, Singh M, Benn G, Feigenbutz L, Kumar M, Cho MJ, et al. Targeted mutagenesis of a conserved anther-expressed P450 gene confers male sterility in monocots. Plant Biotechnology Journal. 2017;15(3):379-89. https://doi.org/10.1111/pbi.12633

40. Urnov FD, Rebar EJ, Holmes MC, Steve Zhang H, Gregory PD. Genome editing with engineered zinc finger nucleases. Nature reviews of genetics. 2010;11:636-46. https://doi.org/10.1038/nrg2842

41. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, et al. Precise genome modification in the crop species Zea mays using zinc?finger nucleases. Nature. 2009;459:437-41. https://doi.org/10.1038/nature07992

42. Wolt JD, Wang K, Yang BT. The Regulatory Status of Genome?edited Crops. Plant Biotechnology Journal.2016;14:510-18. https://doi.org/10.1111/pbi.12444

43. Okuzaki A, Toriyama K. Chimeric/RNA/DNA Oligonucleotide directed gene targeting in rice. Plant cell reproduction. 2004;22:509-12. https://doi.org/10.1007/s00299-003-0698-2

44. Zhu T, Peterson DJ, Tagliani L, Clair GS, Baszczynski LC, Ben Bowen. Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides Proceedings of the National Academy of Sciences USA. 1999;96:8768-73. https://doi.org/10.1073/pnas.96.15.8768

45. Pennisi E. The tale of the TALEs. Science. 2012;338:1408-11. https://doi.org/10.1126/science.338.6113.1408

46. Li T, Liu B, Spalding MH, Weeks DP, Bing Yang. High?efficiency TALEN?based gene editing produces disease?resistant rice. Nature Biotechnology. 2012;30:390-92. https://doi.org/10.1038/nbt.2199

47. Huan W, Coffman A, Clasen BM, Demorest ZL, Anita Lowy, Erin Ray, et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family Plant Biotechnology Journal. 2014;12:934-40. https://doi.org/10.1111/pbi.12201

48. Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Brinch-Pedersen H, et al. ‘TAL effector nucleases induce mutations at a pre?selected location in the genome of primary barley transformants. Plant Molecular Biology. 2013;83:279-85. https://doi.org/10.1007/s11103-013-0078-4

49. Kuzma J, Kokotovich A, Kuzhabekova A. Attitudes towards governance of gene editing. Asian Biotechnology and Development Review. 2016;18:69-92.

50. Jiang W, Zhou H, Bi H, Michael Fromm, Bing Yang, Weeks DP. Demonstration of CRISPR/Cas9/sgRNA?mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research. 2013;41:e188. https://doi.org/10.1093/nar/gkt780

51. Shi Jinrui, Gao Huirong, Wang Hongyu, Lafitte HR, Archibald RL, Meizhu Yang, et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant biotechnology journal. 2016;15. https://doi.org/10.1111/pbi.12603

52. Biotech crop adoption leads to greater sustainability and socioeconomic opportunities for global farmers and citizens [Internet]. PG Economics & ISAAA[updated 2018 June 26]. Available from: http:// www.pgeconomics.co.uk

53. James C. Global status of commercialized biotech and gm crops: 2010. International Service for the acquisition of agribiotech applications. Ithaca, NY: ISAA;2010.

54. James C. Global status of commercialized Biotech/GM crops. ISAAA Breifs 51; 2015.

55. Brookes G, Barfoot P. GM Crops: Global Socio?economic and Environmental Impacts: 1996-2016. UK: PG Economics Ltd. 2018.

56. State of food Security and Nutrition in the World (formerly SOFI). Global Report on Food Crises; 2018. Canberra: The Department; 2018. Available from: http://www.fsinplatform.org@FSIN_News

57. World Health Organization. World health statistics 2016: monitoring health for the SDGs, sustainable development goals. World Health Organization. 2016; https://apps.who.int/iris/handle/10665/206498

58. Tim S, Craig H, Janet R, Brian L, Richard W, Robert W, et al. Creating a sustainable food future. A menu of solutions to sustainably feed more than 9 billion people by 2050. World resources report 2013-14. interim findings: World Resources Institute; 2014.

59. Hansen G, Wright MS. Recent advances in the transformation of plants. Trends in Plant Science. 1999;4:226-31. https://doi.org/10.1016/S1360-1385(99)01412-0

60. Shillito R, Saul M, Paszkowski J, Muller M, Potrykus I. High efficiency direct transfer to plants. Biotechnology. 1985;3:1099-1103. https://doi.org/10.1038/nbt1285-1099

61. Potrykus I. Gene transfer to plants: Assessment of published approaches and results. Annu. Rev. Plant Physiol. Plant Molecular Biology. 1991;42:205-25. https://doi.org/10.1146/annurev.pp.42.060191.001225

62. De la Pena A, Lorz H, Schell J. Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature. 1987;325:274-76. https://doi.org/10.1038/325274a0

63. Fromm M, Taylor L, Walbot V. Expression of genes transferred into monocotyledonous and dicotyledonous plant cells by electroporation. Proceedings of the National Academy of Sciences USA. 1985;82:5824-28. https://doi.org/10.1073/pnas.82.17.5824

64. Fromm M, Taylor L, Walbot V. Stable transformation of maize after gene transfer by electroporation. Nature. 1986;319:791-93. https://doi.org/10.1038/319791a0

65. Lorz H, Baker B, Schell J. Gene transfer to cereal cells mediated by protoplast transformation. Molecular General Genetics. 1985;199:473-97. https://doi.org/10.1007/BF00330256

66. Arencibia A, Molina P, de la Riva G, Selman-Housein G. Production of transgenic sugarcane (Saccharum officinarum L.) plants by intact cell electroporation. Plant Cell Reports. 1995;14:305-3\09. https://doi.org/10.1007/BF00232033

67. Uchimiya H, Fushimi T, Hashimoto H, Harada H, Syono K, Sugawara Y. Expression of a foreign gene in callus derived from DNA-treated protoplasts of rice (Oryza sativa L.). Mol Gen Genet. 1986;204:204-07. https://doi.org/10.1007/BF00425499

68. Sanford J. The biolistic process. Trends in Biotechnology. 1988;6:299-302. https://doi.org/10.1016/0167-7799(88)90023-6

69. Nester EW, Gordon MP, Amasino RM, Yanofsky MF. Crown gall: a molecular and physiological analysis. Annual Review of Plant Physiology. 1984;35:387-413. https://doi.org/10.1146/annurev.pp.35.060184.002131

70. Binns AN, Thomashow MF. Cell biology of Agrobacterium infection and transformation of plants. Annual Review of Microbiology. 1988;42:575-606. https://doi.org/10.1146/annurev.mi.42.100188.003043

71. Gutierrez-Mora A, Santacruz-Ruvalcaba F, Cabrera-Ponce JL, Rodriguez-Garay B. Genetic improvement of plants in vitro. 2003; e-Gnosis 1:Art 4.

72. Bundock PA, den Dulk-Ras A, Beijerbergen A, Hooykaas PJJ. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO Journal. 1995;14:3206-14. https://doi.org/10.1002/j.1460-2075.1995.tb07323.x

73. Chan MT, Chang HH, Ho SL, Tong WF, Yu SM. Plant Molecular Biology. 1993;22:491-506. https://doi.org/10.1007/BF00015978

74. Koncz C, Nemeth K, Redei GP, Schell J. Homology recognition during T-DNA integration into the plant genome. In Homologous Recombination and Gone Silencing in Plants In: Paszkowski, J, editors. Dordrecht: Kluwer Academic Publishers; 1994, p. 167-89. https://doi.org/10.1007/978-94-011-1094-5_9

75. Hansen G, Shillito RD, Chilton MD. Tstrand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proceedings of the National Academy of Sciences USA. 1997;94:11726-30. https://doi.org/10.1073/pnas.94.21.11726

76. Enriquez-Obregon GA, Vazquez-Padron RI, PrietoSamsonov DL, Perez M, Selman-Housein G. Genetic transformation of sugarcane by Agrobacterium tumefaciens using antioxidants compounds. Biotecnologia Aplicada. 1997;14:169-74.

77. Enriquez-Obregon GA, Vazquez-padron RI, Prietosansonov DL, de la Riva GA, Selman Housein G. Herbicide resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium mediated transformation. Planta. 1998;206:20-27. https://doi.org/10.1007/s004250050369

78. Mathur J, Koncz C. PEG-mediated protoplast transformation with naked DNA. Methods in Molecular Biology. 1998;82:267-76. https://doi.org/10.1385/0-89603-391-0:267

79. Baltes NJ, Gil-Humanes J, Voytas DF. Chapter One - Genome Engineering and Agriculture: Opportunities and Challenges. Progress in Molecular Biology and Translational Science. 2017;149:1-26. https://doi.org/10.1016/bs.pmbts.2017.03.011

80. Yao Q, Cong L, Chang JL, Li KX, Yang GX, He GY. Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. Journal of Experimental Botany. 2006;57(14):3737-46. https://doi.org/10.1093/jxb/erl145

81. Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, et al. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Molecular Breeding. 2001;7:25-33. https://doi.org/10.1023/A:1009687511633

82. Behrooz Darbani, Safar Farajnia, Mahmoud Toorchi, Saeed Zakerbostanabad, Shahin Noeparvar, Neal Stewart C Jr. DNA-Delivery Methods to Produce Transgenic Plants. Biotechnology. 2008;7:385-402. https://doi.org/10.3923/biotech.2008.385.402

83. Feldmann KA, Marks MD. Agrobacterium mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Molecular and General Genetics.1987;208:1-9. https://doi.org/10.1007/BF00330414

84. Bent A. Arabidopsis in Planta Transformation. Uses, Mechanisms and Prospects for Transformation of other Species. Plant Physiology. 2000;124:1540-47. https://doi.org/10.1104/pp.124.4.1540

85. Jan SA, Shinwari ZK, Shah SH, Shahzad A, Zia M, Ahmad N. In-planta transformation: Recent advances. Romanian Biotechnological Letters. 2016;21:11085-91.

86. Daniell H, Kumar S, Dufourmantel N. Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends in Biotechnology. 2005;23(5):238-45. https://doi.org/10.1016/j.tibtech.2005.03.008

87. Kumar S, Dhingra A, Daniell H. Plastid expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance. Plant Physiology. 2004;136:2843-54. https://doi.org/10.1104/pp.104.045187

88. Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo JM, Tissot G. Generation of fertile transplastomic soybean. Plant Molecular Biology. 2004;55:479-89.

89. Tjokrukusumo D, Heinrich T, Wylie S, Potter R, Mc Comb J. Vacuum infiltration of Petunia hybrida pollen with Agrobacterium tumefaciens to achieve plant transformation. Plant Cell Reports. 2000;19:792-97. https://doi.org/10.1007/s002990050009

90. Wang JX, Sun Y, Cui G, Hu J. Transgenic maize plants obtained by pollen-mediated transformation. Acta Botanica Sinica. 2001;43:275–79.

91. Wang J, Li Y, Liang C. Recovery of transgenic plants by pollen mediated transformation in Brassica juncea. Transgenic Research. 2008;17:417-24. https://doi.org/10.1007/s11248-007-9115-x

92. Karri Vasavi rama, Bharadwaja Kirti. Tandem combination of Trigonella foenum-graecum defensin (Tfgd2) and Raphanus sativus antifungal protein (RsAFP2) generates a more potent antifungal protein. Functional & integrative genomics. 2013;13 :435-43. https://doi.org/10.1007/s10142-013-0334-3

93. Bleasdale JKA, Salter Peter John. The Complete Know and Grow Vegetables. Oxford University Press. Oxford University Press; 1991.

94. Beckie HJ, Harker KN, Hall LM, Warwick SI, Legere A, Sikkema PH, et al. A decade of herbicide-resistant crops in Canada. Canadian Journal of Plant Science. 2006;86(4):1243-64. https://doi.org/10.4141/P05-193

95. Green JM. Current state of herbicides in herbicide-resistant crops. Pest Management Science. 2014; 70(9):1351-57. https://doi.org/10.1002/ps.3727

96. Tsaftaris A. The development of herbicide tolerant crops. Field Crops Research. 1996;45: 115-23. https://doi.org/10.1016/0378-4290(95)00064-X

97. Mulwa, Richard Mwanza, Mwanza LM. Biotechnology approaches to developing herbicide tolerance/selectivity in crops. African Journal of Biotechnology. 2006;5: 396-404.

98. Sankula S, Marmon G, Blumenthal E. Biotechnology derived crops planted in 2004. Impacts on US agriculture, NCFAP (National Center for Food and Agricultural Policy), Washington. 2005. 101 p.

99. Brookes G, Barfoot P. Environmental impacts of genetically modified (GM) crop use 1996-2013: Impacts on pesticide use and carbon emissions. GM Crops Food. 2015; 6(2):103-33. https://doi.org/10.1080/21645698.2015.1025193

100. Kim HA, Utomo SD, Kwon SY, Min SR, Kim JS, Yoo HS, et al. The development of herbicide-resistant maize: stable Agrobacterium-mediated transformation of maize using explants of type II embryogenic calli. Plant Biotechnology Reports. 2009;3:277-83. https://doi.org/10.1007/s11816-009-0099-2

101. Green JM, Castle LA. Transitioning from single to multiple herbicide-resistant crops. In: Nandula VK, editor. Glyphosate Resistance in Crops and Weeds: History, Development, and Management. John Wiley & Sons, Inc.; Hoboken, NJ, USA;2010. p.67-92. https://doi.org/10.1002/9780470634394.ch4

102. Latif A, Rao AQ, Khan MA, Shahid L, Bajwa KS, Ashraf MA, et al. Herbicide-resistant cotton (Gossypium hirsutum) plants: an alternative way of manual weed removal. BMC Research Notes. 2015;8:453. https://doi.org/10.1186/s13104-015-1397-0

103. Tingzhang Hu. A glutathione s-transferase confers herbicide tolerance in rice. Crop Breeding and Applied Biotechnology. 2014;14:76-81. https://doi.org/10.1590/1984-70332014v14n2a14

104. Brookes G, Barfoot P. GM crops: global socio-economic and environmental impacts 1996-2013. 2015. http://www.pgeconomics.co.uk/page/38/ Accessed 28 Sept 2015.

105. Reddy KN, Nandula. Herbicide resistant crops: History, development and current technologies Indian Journal of Agronomy. 2012;57(1):1-7.

106. Padgette SR, Kolacz KH, Delannay X, Re DB, Lavallee BJ, Tinius CN, et al. Crop Science. 1995;35:1451-61. https://doi.org/10.2135/cropsci1995.0011183X003500050032x

107. Bonny S. Genetically Modified Glyphosate-Tolerant Soybean in the USA: Adoption Factors, Impacts and Prospect- A Review. 2009 https://doi.org/10.1051/agro:2007044

108. Heap I. The International Survey of Herbicide Resistant Weeds. Online. Internet. Wednesday, December 18, 2019. Available www.weedscience.org

109. Huang J, Hu R, Pray C, Qiao F, Rozelle S. Agricultural economics. 2003;29:55-67. https://doi.org/10.1111/j.1574-0862.2003.tb00147.x

110. De Block MD, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, et al. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. The European Molecular Biology Organization Journal. 1987;6:2513-18. https://doi.org/10.1002/j.1460-2075.1987.tb02537.x

111. Benbrook CM. Impacts of genetically engineered crops on pesticide use in the United States: the first eight years. Bio Tech Info Net. Technical Paper Number 6. 2003; http://www.biotech-info.net/technicalpaper6.html

112. Forster VA. Crop Biotechnology. 2002;829:17-22. https://doi.org/10.1021/bk-2002-0829.ch003

113. Srivastava N, Gupta VK, Pati R, Gaur RK. Genetically by Modified Crops: An Overview. Biotechnology. 2011;10(2):136-48. https://doi.org/10.3923/biotech.2011.136.148

114. Arun Khurana. Plant Protection, Quarantine and Storage in India. Employment news [Internet]. 2017;26. Available from: https://www.e-employmentnews.co.in

115. Hyde J, Martin MA, Preckel PV, Edwards CR. The economics of Bt cotton: valuing protection from the European corn borer. Applied Economic Perspectives and Policy. 1999;21(2):442-54. https://doi.org/10.2307/1349890

116. Bravo A, Gomez I, Porta H,Garcia?Gomez BI, Almazan CR, Pardo L, et al. Evolution of Bacillus thuringiensisCry toxins insecticidal activity. Microbial Biotechnology. 2013;6(1):17-26. https://doi.org/10.1111/j.1751-7915.2012.00342.x

117. Bravo A, Gill SS, Soberon M. Mode of action of Bacillus thuringiensisCry and Cyt toxins and their potential for insect control. Toxicon. 2007;49:423-35. https://doi.org/10.1016/j.toxicon.2006.11.022

118. Hofte H, Whiteley HR. Insecticidal Crystal Proteins of Bacillus thuringiensis. Microbiology Reviews. 1989;53:242–55.

119. Bradley D, Harkey MA, Kim MK, Biever KD, Bauer LS. The insectidal CryIB crystal protein of Bacillus thuringiensis ssp. thuringiensis has dual specificity to Coleopteran and Lepidopteran larvae. Journal of Invertebrate Pathology. 1995;65:162-73. https://doi.org/10.1006/jipa.1995.1024

120. Genissel A, Leple JC, Millet N, Augustin S, Jouanin L, Pilate G. High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a synthetic cry3Aa gene from Bacillusthuringiensis ssp tenebrionis. Molecular Breeding. 2003;11:103-10. https://doi.org/10.1023/A:1022453220496

121. Bravo A, Likitvivatanavong S, Gill SS, Soberon M. Bacillus thuringiensis: a story of a successful bio insecticide. Insect Biochemistry and Molecular Biology. 2011;41:423-31. https://doi.org/10.1016/j.ibmb.2011.02.006

122. Pray CE, Huang J, Ma D, Qiao F. Impact of Bt cotton in China. World Development. 2001; 29:813-25. https://doi.org/10.1016/S0305-750X(01)00010-9

123. Lu Y, Wu K, Jiang Y, Guo Y, Desneux N. Wide spread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature. 2012;487:362-65. https://doi.org/10.1038/nature11153

124. Whitfield J. Transgenic cotton a winner in India. Nature News Service, Macmillan Magazines Ltd. Feb. 7, 2003.

125. Huang J, Pray C, Rozelle S. Enhancing the crops to feed the poor. Nature. 2002;418:678-84. https://doi.org/10.1038/nature01015

126. Ramesh S, Nagadhara D, Reddy VD, Rao KV. Production of transgenic indica rice resistant to yellow stem borer and sap-sucking insects, using super-binary vectors of Agrobacterium tumefaciens. Plant Science. 2004;166:1077-85. https://doi.org/10.1016/j.plantsci.2003.12.028

127. High SM, Cohen MB, Shu QY, Altosaar I. Achieving successful deployment of Bt rice. Trends in Plant Science. 2004;9(6):286-92. https://doi.org/10.1016/j.tplants.2004.04.002

128. Bashir K, Husnain T, Fatima T, Latif Z, Mehdi S, Riazuddin S. Field evaluation and risk assessment of transgenic indica basmati rice. Molecular Breeding. 2004a;13(4):301-12. https://doi.org/10.1023/B:MOLB.0000034078.54872.25

129. ISAAA. Global Status of Commercialized Biotech/GM Crops in 2017: Biotech Crop Adoption Surges as Economic Benefits Accumulate in 22 Years. ISAAA Brief No. 53. 2017; ISAAA: Ithaca, NY. Available from: http://www.isaaa.org/resources/publications/briefs/53/download/isaaa-brief-53-2017.pdf

130. Palma L, Munoz D, Berry C, Murillo J, Caballero P. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins (Basel). 2014;6(12):3296-3325. Published 2014 Dec 11. https://doi.org/10.3390/toxins6123296

131. Sanchis V. From microbial sprays to insect-resistant transgenic plants: History of the biospesticide Bacillus thuringiensis. A review. Agronomy for Sustainable Development. 2011;31:217-31. https://doi.org/10.1051/agro/2010027

132. Wang G, Dong Y, Liu X, Yao G, Yu X, Yang M. The Current Status and Development of Insect-Resistant Genetically Engineered Poplar in China. Front Plant Science. 2018; 9:1408. https://doi.org/10.3389/fpls.2018.01408

133. Abramovitch RB, Martin GB. Strategies used by bacterial pathogens to suppress plant defenses. Current Opinion Plant Biology. 2004;7:356-64. https://doi.org/10.1016/j.pbi.2004.05.002

134. Feys BJ, Parker JE. Interplay of signaling pathways in plant disease resistance. Trends in Genetics. 2000;16(10):449-55. https://doi.org/10.1016/S0168-9525(00)02107-7

135. Gurr SJ, Rushton PJ. Engineering plants with increased disease resistance: what are we going to express? Trends in Biotechnology. 2005;23(6):275-82. https://doi.org/10.1016/j.tibtech.2005.04.007

136. Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP. Signaling in Plant-Microbe Interactions. Science. 1997;276:726-33. https://doi.org/10.1126/science.276.5313.726

137. Dangl JL, Jones JD. Nature. 2001;411:826-33. https://doi.org/10.1038/35081161

138. Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, et al. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proceedings of the National Academy of Sciences of the USA. 1999; 96:14153-58. https://doi.org/10.1073/pnas.96.24.14153

139. Rani NS, Prasad GSV, Subba Rao LV, Sudharshan I, Pandey MK, Babu VR, et al. High yielding rice varieties of India Technical bulletin No. 33, Directorate of Rice Research, Rajendranagar, Hyderabad 500030, Andhra Pradesh, India. 2008, p. 188.

140. Sundaram RM, Vishnupriya MR, Biradar SK, Laha GS, Reddy GA, Rani NS, et al. Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica. 2008;160:411-22. https://doi.org/10.1007/s10681-007-9564-6

141. Wang Y, Xue Y, Li J. Towards molecular breeding and improvement of rice in China. Trends in Plant Science. 2005;10(12):610-14. https://doi.org/10.1016/j.tplants.2005.10.008

142. Kumar V, Chattopadhyay A, Ghosh S, Irfan M, Chakraborty N, Chakraborty S, et al. Improving nutritional quality and fungal tolerance in soyabean and grass pea by expressing an oxalate decarboxylase. Plant Biotechnology Journal. 2016;14:1394-1405. https://doi.org/10.1111/pbi.12503

143. Kesarwani M, Azam M, Natarajan K, Mehta A, Datta A. Oxalate decarboxylase from Collybia velutips: molecular cloning and its over expression to confer resistance to fungal infection in transgenic tobacco and tomato. Journal of Biological Chemistry. 2000;275:7230-38.https://doi.org/10.1074/jbc.275.10.7230

144. Ding SW, Lu R. Virus-derived siRNAs and piRNAs in immunity and pathogenesis. Current Opinion in Virology. 2011;1:533-44. https://doi.org/10.1016/j.coviro.2011.10.028

145. Pelechano V, Steinmetz LM. Gene regulation by antisense transcription. Nature Reviews Genetics. 2013;14:880-93. https://doi.org/10.1038/nrg3594

146. Kamthan A, Kamthan M, Kumar A, Sharma P, Ansari S, Thakur SS, et al. A Calmodulin like EF hand protein positively regulates oxalate decarboxylase expression by interacting with E-box elements of the promoter. Science Reports. 2015;5:14578.https://doi.org/10.1038/srep14578

147. Otang NV, Kynet K, Khan RS, Ohara M, Goto Y, Wantanabe M, et al. Transgenic tobacco lines expressing defective CMV replicase derived dsRNA are resistant to CMV-O and CMV-Y. Molecular Biotechnology. 2014;56:50-63.https://doi.org/10.1007/s12033-013-9681-5

148. Peiro A, Canizares MC, Rubio L, Lopez C, Moriones E, Aramburu J, et al. The movement protein (NSm) of Tomato spotted wilt virus is the avirulence determinant in the tomato Sw5 gene-based resistance. Molecular Plant Pathology. 2014;15:802-13. https://doi.org/10.1111/mpp.12142

149. Singh A, Taneja J, Dasgupta I, Mukherjee SK. Development of plants resistant to tomato Gemini viruses using artificial trans-acting small interfering RNA. Molecular Plant Pathology. 2015; 16: 724-34. https://doi.org/10.1111/mpp.12229

150. Md. Abul Kalam Azad, Latifah Amin, Nik Marzuki Sidik. Gene Technology for Papaya Ringspot Virus Disease Management. The Scientific World Journal. 2014;11 pages. https://doi.org/10.1155/2014/768038

151. Singh HR, Hazarika P, Agarwala N, Bhatacharjee N, Bhagawati P, Gohain B, et al. Transgenic tea over-expressing Solanum tuberosum endo-1,3-beta-d-glucanase gene conferred resistance against blister blight disease. Plant Molecular Biology Reports. 2018;36:107-22. https://doi.org/10.1007/s11105-017-1063-x

152. Huang LF, Lin KH, He SL, Chen JL, Jiang JZ, Chen BH, et al. Multiple patterns of regulation and over expression of a ribonuclease-like pathogenesis-related protein gene, OsPR10a, conferring disease resistance in rice and Arabidopsis. PLoS ONE. 2016;11, e0156414. https://doi.org/10.1371/journal.pone.0156414

153. Vasavirama K, Kirti PB. Constitutive expression of a fusion gene comprising Trigonella foenum-graecum defensin (Tfgd2) and Raphanus sativus antifungal protein (RsAFP2) confers enhanced disease and insect resistance in transgenic tobacco. Plant Cell Tissue Organ culture. 2013;115:309-19. https://doi.org/10.1007/s11240-013-0363-6

154. Vasavirama K, Kirti PB. Increased resistance to late leaf spot disease in transgenic peanut using a combination of PR genes. Functional Integrated Genomics. 2012;12:625-634. https://doi.org/10.1007/s10142-012-0298-8

155. Verberne MC, Verpoorte R, Bol JF, Mercado-Blanco J, Linthorst HJM. Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nature Biotechnology. 2000; 18: 779–83. https://doi.org/10.1038/77347

156. Mourgues F, Brisset M, Chevreau E. Activity of different antibacterial peptides on Erwinia amylovora growth, and evaluation of the phytotoxicity and stability of cecropins. Plant Science. 1998;139:83-91. https://doi.org/10.1016/S0168-9452(98)00178-2

157. Deckard EL. Biotechnology and improved drought tolerance of crops. North Dakota Farm Research 46.1988;16-19.

158. Mullet J. Designing crops for resistance to environmental stress. AgBiotech News and Information 2. 1990;435-36.

159. Toenniessen GH. Potentially useful genes for rice genetic engineering. In: Khush GS, Toenniessen GH, editorss. Rice biotechnology. Wallingford: CABI Publishing; 1991;253-80.

160. Edgerton MD. Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiology. 2009;149:7-13. https://doi.org/10.1104/pp.108.130195

161. Japan. Japan Meteorological Agency. Climate change monitoring report 2014 [Internet]. Canberra: The Department; [updated 2015 Sep] Available from: http://www.jma.go.jp>jma>NMHS>ccmr>ccmr2014_low

162. Japan. Japan Meteorological Agency. Climate change monitoring report 2013 [Internet]. Canberra: The Department; [updated 2014 Sep] Available from: http://www.jma.go.jp>jma>NMHS>ccmr>ccmr2013_low

163. Boyer JS. Plant Productivity and Environment. Science. 1982;218:443-48. https://doi.org/10.1126/science.218.4571.443

164. Barnes GT. The potential for monolayers to reduce the evaporation of water from large water storages. Agricultural Water Management. 2008;95(4):339-53. https://doi.org/10.1016/j.agwat.2007.12.003

165. Bray EA, Bailey-Serres J, Weretilnyk E. In: Biochemistry and molecular biology of plants, Gruissem W et al. Editors. Am. Soc. Plant Physiol., Rockville, MD. 2000, 1158-1249.

166. Munns R. Genes and salt tolerance: bringing them together. New Phytologist. 2005;167:645-63. https://doi.org/10.1111/j.1469-8137.2005.01487.x

167. Kondrak M, Marincs F, Antal F, Juhasz Z, Banfalvi Z. Effects of yeast trehalose-6-phosphate synthase 1 gene expression and carbohydrate contents of potato leaves under drought stress conditions. BMC Plant Biology. 2012;12:74-86. https://doi.org/10.1186/1471-2229-12-74

168. Geilfus C, Zorb C, Muhling K. Salt stress differentially affects growth-mediating ?-expansins in resistant and sensitive maize (Zea mays L.). Plant Physiology and Biochemistry. 2010;48:993-98. https://doi.org/10.1016/j.plaphy.2010.09.011

169. Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003;218:1-14. https://doi.org/10.1007/s00425-003-1105-5

170. Cushman JC, Bohnert HJ. Genomic approaches to plant stress tolerance. Current Opinion in Plant Biology. 2000;3:117-24. https://doi.org/10.1016/S1369-5266(99)00052-7

171. Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annual Reviews of Plant Physiology and Plant Molecular Biology. 1996;47:377-403. https://doi.org/10.1146/annurev.arplant.47.1.377

172. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology. 2000;51:463-99. https://doi.org/10.1146/annurev.arplant.51.1.463

173. Zhu JK. Salt and drought stress signal transduction in plants. Annual Reviews of Plant Biology. 2002;53:247-73. https://doi.org/10.1146/annurev.arplant.53.091401.143329

174. Chinnusamy V, Schumaker K, Zhu JK. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany. 2004;55:225-36. https://doi.org/10.1093/jxb/erh005

175. Valliyodan B, Nguyen HT. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology. 2006;9:189-95. https://doi.org/10.1016/j.pbi.2006.01.019

176. Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways.Current Opinion in Plant Biology. 2000;3(3):217-23. https://doi.org/10.1016/S1369-5266(00)00067-4

177. Reguera M, Peleg Z, Blumwald E. Targeting, metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2012;1819(2):186-94. https://doi.org/10.1016/j.bbagrm.2011.08.005

178. ISAAA. Global Status of Commercialized Biotech/GM Crops: 2016. ISAAA Brief No. 52. 2016; ISAAA: Ithaca, NY. Available from: http://www.isaaa.org/resources/publications/briefs/52/download/isaaa-brief-52-2016.pdf

179. Monsanto-Company. Petition for the determination of non-regulated status for MON 87460, 2009. www.aphis.usda.gov/biotechnology/not_reg.html

180. Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, et al. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol. 2008;147:446-55. https://doi.org/10.1104/pp.108.118828

181. Deikman J, Petracek M, Heard JE. Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields. Current Opinion in Biotechnology. 2012;23:243-50. https://doi.org/10.1016/j.copbio.2011.11.003

182. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, et al. Over expressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(35):12987-92. https://doi.org/10.1073/pnas.0604882103

183. Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, et al. Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proceedings of the National Academy of Sciences, USA. 2005;102:18830-35. https://doi.org/10.1073/pnas.0509512102

184. Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, et al. Drought- and salt-tolerant plants result from over-expression of the AVP1 H+-pump. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(20):11444-49. https://doi.org/10.1073/pnas.191389398

185. Sharma D, Anshuman S. Salinity Research in India-Achievements, challenges and Future Prospects. Water and Energy International. 2015;58(6):35-45

186. Zhu JK. Plant salt tolerance. Trends in Plant Science. 2001;6:66-71. https://doi.org/10.1016/S1360-1385(00)01838-0

187. Hsieh TH, Lee JT, Charng YY, Chan MT. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiology.2002;130:618-26. https://doi.org/10.1104/pp.006783

188. Hong Z, Lakkineni K, Zhang K, Verma DPS. Removal of feedback inhibition of delta-pyrroline-5- carboxylate synthase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology. 2000;122:1129-36. https://doi.org/10.1104/pp.122.4.1129

189. Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K. A rice spotted leaf gene, Sp17,encodes a heat stress transcription factor protein. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(11):7530-35. https://doi.org/10.1073/pnas.112209199

190. Jaglo KR, Kleff S, Amunsen KL, Zhang X, Haake V, Zhang JZ, et al. Thomas how MF. Components of Arabidopsis Crepeat/dehydration response element binding factor or cold-response pathway are conserved in Brasicca napus and other plant species. Plant Physiology. 2001;127:910-17. https://doi.org/10.1104/pp.010548

191. Yamaguchi T, Blumwals E. Developing salt tolerant crop plants: Challenges and opportunities. Trends in Plant Sciences. 2005;10:615-20. https://doi.org/10.1016/j.tplants.2005.10.002

192. Brookes G, Barfoot P. GM crops: the first ten years - global socio-economic and environmental impacts in the first ten years of commercial use. The Journal of Agrobiotechnology Management & Economics. 2006; 9(3):139-51.

193. Tausz M, Sircelj H, Grill D. The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? Journal of Experimental Botany. 2004;55:1955-62. https://doi.org/10.1093/jxb/erh194

194. Singla-Pareek SL, Reddy MK, Sopory SK. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proceedings of the National Academy of Sciences of the United States of America.2003;100:14672-77. https://doi.org/10.1073/pnas.2034667100

195. Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK. Transgenic tobacco over-expressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils.Plant Physiology. 2006;140:613-23. https://doi.org/10.1104/pp.105.073734

196. Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK. Enhancing salt tolerance in a crop plant by over-expression of glyoxalase II. Transgenic Research. 2008;17:171-80. https://doi.org/10.1007/s11248-007-9082-2

197. Asif MA, Zafar Y, Iqbal J, Iqbal MM, Rashid U, Ali GM, et al. Enhanced expression of AtNHX1, in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerence. Molecular Biotechnology. 2011;49:250-56. https://doi.org/10.1007/s12033-011-9399-1

198. Guo YH, Yu YP, Wang D, Wu CA, Yang GD, Huang JG, et al. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. The New phytologist. 2009;183:62-75. https://doi.org/10.1111/j.1469-8137.2009.02838.x

199. FAOSTAT. Food and Agriculture Organization of the United Nations, Rome, Italy. 2017.

200. Sasidharan R, Bailey-Serres J, Ashikari M, Atwell BJ, Colmer TD, Fagerstedt K, et al. Community recommendations on terminology and procedures used in flooding and low oxygen stress research.New Phytol. 2017;214:1403-07. https://doi.org/10.1111/nph.14519

201. Lee SC, Mustroph A, Sasidharan R, Vashisht D, Pedersen O, Oosumi T, et al. Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia.New Phytologist. 2011;190:457-71. https://doi.org/10.1111/j.1469-8137.2010.03590.x

202. Mukhopadhyay A, Minhas D, Grover A. Callusing from rice root explants: adventitious root formation precedes callus initiation response. Current Science. 1997;73(5):465-69.

203. Minhas DA, Grover A. Towards developing transgenic rice plants tolerant to flooding stress. In: Proceedings of the Indian National Science Academy. 1999;65:33-50.

204. Dennis ES, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren FU, et al. Molecular strategies for improving waterlogging tolerance in plants. Journal of Experimental Botany. 2000;51(342):89-97. https://doi.org/10.1093/jexbot/51.342.89

205. Qunimio CA, Torrizo LB, Setter TL, Elllis M, Grover A, Abrigo EM, et al. Enhancement of submergence tolerance in transgenic rice overproducing pyruvate decarboxylase. J Plant Physiology. 2000;156:516-21. https://doi.org/10.1016/S0176-1617(00)80167-4n

206. Musrur R, Anil G, Peacock W, Elizabeth D, Marc E. Effects of manipulation of pyruvate decarboxylase and alcohol dehydrogenase levels on the submergence tolerance of rice. Functional Plant Biology. 2001;28:1231-41. https://doi.org/10.1071/PP00137

207. Dennis ES, Dolferus R, Ellis M, Rahaman M, Wu Y, Hoeren FU, et al. Molecular strategies for improving water logging tolerance in plants. Journal of Experimental Botany. 2000;51:89-97. https://doi.org/10.1093/jexbot/51.342.89

208. Levitt J. Responses of Plants to Environmental Stresses, p.497.1980; Academic Press, New York.

209. Steponkus PL. Role of the Plasma Membrane in Freezing Injury and Cold Acclimation Annual Review of Plant Physiology.1984;35(1):543-84. https://doi.org/10.1146/annurev.pp.35.060184.002551

210. Steponkus PL, Uemura M, Webb MS. A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Steponkus PL, Ed. Advances in Low-Temperature Biology. Vol. 2. London: JAI Press, Ltd.;1993.p. 211-312.

211. Hajela RK, Horvath DP, Gilmour SJ, Thomashow MF. Molecular cloning and expression of cor (cold regulated) genes in Arabidopsis thaliana. Plant Physiology. 1990;93:1246-52. https://doi.org/10.1104/pp.93.3.1246

212. Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF. Overexpression of the ArabidopsisCBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiology. 2000;124:1854-65. https://doi.org/10.1104/pp.124.4.1854

213. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology. 1999;17:287-91. https://doi.org/10.1038/7036

214. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science. 1998;280:104-06. https://doi.org/10.1126/science.280.5360.104

215. Liu Q, Ksauga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant cell. 1998;10:1391-1406. https://doi.org/10.1105/tpc.10.8.1391

216. Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, et al. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiology. 2002;129:1086-94. https://doi.org/10.1104/pp.003442

217. Kim JS, Park SJ, Kwak KJ, Kim YO, Kim JY, Song J, et al. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Research 2007;35:506-16. https://doi.org/10.1093/nar/gkl1076

218. Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, et al. Over expression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought and salt stress in transgenic Arabidopsis. Plant Physiology 2007;143:1739-51. https://doi.org/10.1104/pp.106.094532

219. Kim YO, Kim JS, Kang H. Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J. 2005;42:890-900. https://doi.org/10.1111/j.1365-313X.2005.02420.x

220. Dong CH, Hu X, Tang W, Zheng X, Kim YS, Lee B, et al. A putative Arabidopsis nucleoporin, AtNUP160, is critical for RNA export and required for plant tolerance to cold stress. Molecular Cellular Biology. 2006;26:9533-43. https://doi.org/10.1128/MCB.01063-06

221. Pramanik MH, Imai R. Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Molecular Biology. 2005;58:751-62. https://doi.org/10.1007/s11103-005-7404-4

222. Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy of Sciences of the United States of America.2002;99(25):15898-903. https://doi.org/10.1073/pnas.252637799

223. Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, et al. Expression of a bi-functional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose- 6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiology. 2003;131:516-24. https://doi.org/10.1104/pp.007237

224. Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX. Over-expression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta. 2008;228:191-201. https://doi.org/10.1007/s00425-008-0729-x

225. Iordachescu M, Imai R. Trehalose biosynthesis in response to abiotic stresses. J. Integr Plant Biol 2008;50:1223-29. https://doi.org/10.1111/j.1744-7909.2008.00736.x

226. Verma C, Nanda S, Singh RK, Singh RB, Mishra S. A review on impacts of genetically modified food on human health. The Open Nutraceuticals Journal. 2011;4:3-11. https://doi.org/10.2174/1876396001104010003

227. Alberts B. Standing up for GMOs. Science. 2013;341(6152):1320. https://doi.org/10.1126/science.1245017

228. World health statistics overview. Monitoring health for the SDGs, sustainable development goals. Geneva (Switzerland). [Internet]. WHO; 2019. Available from: https://www.who.int>gho>world_health_statistics>2019

229. Potrykus I. The ‘Golden Rice’ tale. In Vitro Cellular & Developmental Biology-Plant. 2001;37:93-100. https://doi.org/10.1007/s11627-001-0019-9

230. Goldbas A. GMOS: what are they? International Journal of Childbirth Education. 2014;29(3):20.

231. Lucas DM, Tailor ML, Hartnell GF, Nemeth MA, Glenn KC, Davis SW. Broiler performance and carcass characteristics when fed diets containing lysine maize (LYS038) or LYO38 x MON 810), control of conventional reference maize. Poultry Science. 2007;86:2152-61. https://doi.org/10.1093/ps/86.10.2152

232. He XY, Tang MZ, Luo YB, Li X, Cao SS, Yu JJ, et al. A 90-day toxicology study of transgenic lysine-rich maize grain (Y642) in Sprague-Dawley rats. Food and Chemical Toxicology. 2009;47:425-432. https://doi.org/10.1016/j.fct.2008.11.032

233. Edwards HM, Douglas MW, Parsons CM, Baker DH. Protein and energy evaluation of soybean meals processed from genetically modified high-protein soybeans. Poultry Science. 2000;79:525-27. https://doi.org/10.1093/ps/79.4.525

234. Ravindran V, Tabe LM, Molvig L, Higgins TZV, Bryden WL. Nutritional evaluation of transgenic high-methionine lupins (Lupinus angustifolius) with broiler chickens. Journal of the Science of Food and Agriculture.2002;82:280-85. https://doi.org/10.1002/jsfa.1030

235. Poirier Y. Production of polyesters in transgenic plants. Advances in Biochemical Engineering/Biotechnology. 2001;71:209-240. https://doi.org/10.1007/3-540-40021-4_7

236. Hiatt A, Pauly M. Monoclonal antibodies from plants: a new speed record. Proceedings of the National Academy of Sciences of the United States of America.2006;103:14645-46. https://doi.org/10.1073/pnas.0607089103

237. Stoger E, Sack M, Nicholson L, Fischer R, Christou P. Recent progress in plantibody technology. Current Pharmaceutical Design. 2005;11:2439-57. https://doi.org/10.2174/1381612054367535

238. Dyer JM, Stymne S, Green AG, Carlsson AS. High-value oils from plants. Plant Journal. 2008;54:640-55. https://doi.org/10.1111/j.1365-313X.2008.03430.x

239. Damude HG, Kinney AJ. Enhancing plant seed oils for human nutrition. Plant Physiology. 2008;147:962-68. https://doi.org/10.1104/pp.108.121681

240. Avise JC. The Hope, Hype, and Reality of Genetic Engineering: remarkable stories from agriculture, industry, medicine, and the environment. Oxford University press; 2004.

241. Houwat I, Osowski V. MSU scientists work to make biodegradable plastic from sunlight. Environment + Science & Technology [Internet]. 2017 Oct 26. Available from: https://msutoday.msu.edu/news/2017/msu-scientists-work-to-make-biodegradable-plastic-from-sunlight

242. Osanai T, Oikawa A, Numata K, Kuwahara A, Iijima H, Doi Y, et al. Pathway-level acceleration of glycogen catabolism by response regulator in the Cyanobacterium Synechocystis sp. PCC 6803. Plant Physiology. 2014;164(4):1831-41 https://doi.org/10.1104/pp.113.232025

243. Ma JKC, Hein MB. Antibody production and engineering in plants. In: Collins GB & Shepherd RJ (eds) Engineering Plants for Commercial Products and Applications.1996;792:72-81. https://doi.org/10.1111/j.1749-6632.1996.tb32493.x

244. Cabanes-Macheteau M, Fitchette-Laine AC, Loutelier-Bourhis C, Lange C, Vine N, Ma J, et al. N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology. 1999;9:365-72. https://doi.org/10.1093/glycob/9.4.365

245. Tackett CO, Mason HS. A review of oral vaccination with transgenic vegetables. Microbes and Infection. 1999;1:777-83. https://doi.org/10.1016/S1286-4579(99)80080-X

246. Della-Cioppa G, Grill LK. Production of novel compounds in higher plants by transfection with RNA viral vectors. In: Collins GB, Sheperd RJ, editors. Engineering plants for commercial products and applications, New York Academy of Sciences, NY 1996, p.57-61. https://doi.org/10.1111/j.1749-6632.1996.tb32491.x

247. Hiatt AC, Cafferkey R, Bowdish K. Production of antibodies in plants. Nature. 1989;42:6-78

248. Dalsgaard K, Uttenthal A, Jones TD, Xu F, Merryweather A, Hamilton WDO, et al. Plant-derived vaccine protects target animals against a viral disease. Nature Biotechnology. 1997;15:248-52. https://doi.org/10.1038/nbt0397-248

249. Mushegian AR, Shepard RJ. Genetic elements of plant viruses as tools for genetic engineering. Microbiology. Reviews. 1995;59:548-78.

250. Beachy RN, Fitchen JH, Hein MB. Use of plant viruses for delivery of vaccine epitopes, In: Collins GB, Sheperd RJ, editors. Engineering plants for commercial products and applications, New York Academy of Sciences, NY;1996:43-49. https://doi.org/10.1111/j.1749-6632.1996.tb32489.x

251. Fischer R, Twyman RM, Schillberg S. Production of antibodies in plants and their use for global health. Vaccine. 2003;21:820-25. https://doi.org/10.1016/S0264-410X(02)00607-2

252. Barta A, Sommergruber K, Thompson D, Hartmuth K, Matzke MA, Matzke AJM. The expression of a nopaline synthase human growth hormone chimeric gene in transformed tobacco and sunflower callus tissue. Plant Molecular Biology. 1986;6:347-57. https://doi.org/10.1007/BF00034942

253. Lico C, Santi L, Twyman RM, Pezzotti M, Avesani L. The use of plants for the production of therapeutic human peptides. Plant Cell Reports.2012;31:439-51. https://doi.org/10.1007/s00299-011-1215-7

254. Merlin M, Gecchele E, Capaldi S, Pezzotti M, Avesani L. Comparative evaluation of recombinant protein production in different biofactories: the green perspective. BioMed Research International. 2014; Article ID 136419, 14 pages. https://doi.org/10.1155/2014/136419

255. Twyman RM, Schillberg S, Fischer R. Transgenic plants in the biopharmaceutical market. Expert Opinion on Emerging Drugs. 2005;10:185-218. https://doi.org/10.1517/14728214.10.1.185

256. Shoseyov O, Posen Y, Grynspan F. Human collagen produced in plants, more than just another molecule. Bioengineered. 2014;5:49-52. https://doi.org/10.4161/bioe.26002

257. Hennegan K, Yang D, Nguyen D, Wu L, Goding J, Huang J, et al. Improvement of human lysozyme expression in transgenic rice grain by combining wheat (Triticum aestivum) puroindoline b and rice (Oryza sativa) Gt1 promoters and signal peptides. Transgenic Research. 2005;14:583-92. https://doi.org/10.1007/s11248-004-6702-y

258. Yang D, Guo F, Liu B, Huang N, Watkins S. Expression and localization of human lysozyme in the endosperm of transgenic rice. Planta. 2002;216:597-603. https://doi.org/10.1007/s00425-002-0919-x

259. Van Dussen L, Zimran A, Akkerman E, Aerts J, Petakov M, Elstein D, et al. Taliglucerase alfa leads to favorable bone marrow responses in patients with type I Gaucher disease. Blood Cells, Molecules, and Diseases. 2013;50:206-11. https://doi.org/10.1016/j.bcmd.2012.11.001

260. Zimran A, Brill-Almon E, Chertkoff R, Petakov M, Blanco-Favela F, Munoz E, et al. Pivotal trial with plant cell-expressed recombinant glucocerebrosidase, taliglucerase alfa, a novel enzyme replacement therapy for Gaucher disease. Blood. 2011;118:5767-73. https://doi.org/10.1182/blood-2011-07-366955

261. Giddings G, Allison G, Brooks D, Carter A. Transgenic plants as factories for biopharmaceuticals. Nature Biotechnology. 2000;18(11):1151-55. https://doi.org/10.1038/81132

262. Mason HS, Arntzen CJ. Transgenic plants as vaccine production systems. Trends in Biotechnology. 1995;13:388-92. https://doi.org/10.1016/S0167-7799(00)88986-6

263. Walmsley AM, Arntzen CJ. Plants for delivery of edible vaccines. Current Opinion in Biotechnology. 2000;11:126-129. https://doi.org/10.1016/S0958-1669(00)00070-7

264. Saxena J, Rawat S. Edible vaccines. Advances in Biotechnology. 2014;207-26. https://doi.org/10.1007/978-81-322-1554-7_12

265. Penney CA, Thomas DR, Deen SS, Walmsley AM. Plant-made vaccines in support of the Millennium Development Goals. Plant Cell Reports. 2011;30(5):789-98. https://doi.org/10.1007/s00299-010-0995-5

266. Aboul-Ata AAE, Vitti A, Nuzzaci M, El-Attar AK, Piazzolla G, Tortorella C, et al. Plant-based vaccines: novel and low-cost possible route for mediterranean innovative vaccination strategies. Advances in Virus Research. 2014;89:1-37. https://doi.org/10.1016/B978-0-12-800172-1.00001-X

267. Kim MY, Yang MS, Kim TG. Expression of dengue virus e glycoprotein domain III in non-nicotine transgenic tobacco plants,” Biotechnology and Bioprocess Engineering. 2009;14(6):725-30. https://doi.org/10.1007/s12257-009-3011-6

268. Guan ZJ, Guo B, Huo YL, Guan ZP, Dai JK, Wei YH. Recent advances and safety issues of transgenic plant derived vaccines. Applied Microbiology and Biotechnology. 2013;97(7):2817-40. https://doi.org/10.1007/s00253-012-4566-2

269. Joshi SG, Schaart JG, Groenwold R, Jacobsen E, Schouten HJ, Krens FA. Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Molecular Biology. 2011;75:579-91. https://doi.org/10.1007/s11103-011-9749-1

270. Weeks JT, Ye J, Rommens CM. Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Research. 2008;17:587-97. https://doi.org/10.1007/s11248-007-9132-9

271. Rommens CM, Yan H, Swords K, Richael C, Ye J. Low acrylamide French fries and potato chips. Plant Biotechnology Journal. 2008;6:843-53. https://doi.org/10.1111/j.1467-7652.2008.00363.x

272. Holme IB, Dionisio G, Brinch-Pedersen H, Wendt T, Madsen CK, Vincze E, et al. Cisgenic barley with improved phytase activity. Plant Biotechnology Journal. 2012;10: 237-47. https://doi.org/10.1111/j.1467-7652.2011.00660.x

273. Haverkort AJ, Struik PC, Visser RGF, Jacobsen E. Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Research. 2009;52:249-64. https://doi.org/10.1007/s11540-009-9136-3

274. Gadaleta A, Giancaspro A, Blechl AE, Blanco A. A transgenic durum wheat line that is free of marker genes and expresses 1DY10. Journal of Cereal Science. 2008;48:439-45. https://doi.org/10.1016/j.jcs.2007.11.005

275. Qi Y, Li X, Zhang Y, Starker CG, Baltes NJ, Zhang F, et al. Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 Genes, Genomes, Genetics. 2013;3:1707-15. https://doi.org/10.1534/g3.113.006270

276. Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, et al. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiology. 2011;156:466-73. https://doi.org/10.1104/pp.111.172981

277. Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proceedings of the National Academy of Sciences of the United States of America.2010;107:12028-33. https://doi.org/10.1073/pnas.0914991107

278. Shukla KV, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature. 2009;459:437-41. https://doi.org/10.1038/nature07992

279. Cantos C, Francisco P, Trijatmiko KR, Slamet-Loedin I, Chadha-Mohanty PK. Identification of “safe harbor” loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Frontiers in Plant Science. 2014;5: 302. https://doi.org/10.3389/fpls.2014.00302

280. Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Henrik Brinch-Pedersen, et al. TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Molecular Biology. 2013;83:279-85. https://doi.org/10.1007/s11103-013-0078-4

281. Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology. 2014;12:934-40. https://doi.org/10.1111/pbi.12201

282. Hyeong JJ, Walid F, WilfreD V, Maria G, Fredy A. RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant biotechnology journal. 2012; 10. https://doi.org/10.1111/j.1467-7652.2012.00734.x

283. Qiu JL. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology. 2014;32:947-51. https://doi.org/10.1038/nbt.2969

284. Gao H, Smith J, Yang M, Jones S, Djukanovic V, Nicholson MG, et al. Heritable targeted mutagenesis in maize using a designed endonuclease. Plant Journal. 2010;61:176-87. https://doi.org/10.1111/j.1365-313X.2009.04041.x

285. Djukanovic V, Smith J, Lowe K, Yang M, Gao H, Jones S, et al. Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Plant Journal. 2013;76:888-99. https://doi.org/10.1111/tpj.12335

286. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research. 2013;41:e188. https://doi.org/10.1093/nar/gkt780

287. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology. 2013;31:688-91. https://doi.org/10.1038/nbt.2654

288. Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, et al. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 2014;111:4632-37. https://doi.org/10.1073/pnas.1400822111

289. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology. 2013;31: 686-88. https://doi.org/10.1038/nbt.2650

290. Jia H, Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 2014;9:e93806. https://doi.org/10.1371/journal.pone.0093806

291. Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, et al. Generation of High-Amylose Rice through CRISPR/Cas9-Mediated Targeted Mutagenesis of Starch Branching Enzymes. Frontiers in Plant Science. 2017;8. https://doi.org/10.3389/fpls.2017.00298

292. Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, et al. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant Journal. 2017;91(4):714-24. https://doi.org/10.1111/tpj.13599

293. Geibler R, Scholze H, Hahn S, Streubel J, Bonas U, Behrens SE, et al. Transcriptional activators of human genes with programmable DNA-specificity. PLoS One. 2011;6:e19509. https://doi.org/10.1371/journal.pone.0019509

294. Mahfouz MM, Li L, Piatek M, Fang X, Mansour H, Bangarusamy DK, et al. Targeted transcriptional repression using a chimeric TALE–SRDX repressor protein. Plant Molecular Biology. 2012;78:311-21. https://doi.org/10.1007/s11103-011-9866-x

Downloads

Published

08-01-2020

How to Cite

1.
Nalluri N, Karri VR. Recent advances in genetic manipulation of crops: A promising approach to address the global food and industrial applications. Plant Sci. Today [Internet]. 2020 Jan. 8 [cited 2024 Nov. 4];7(1):70-92. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/659

Issue

Section

Review Articles

Similar Articles

You may also start an advanced similarity search for this article.