Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Technology-driven chickpea yield estimation using remote sensing and crop modeling

DOI
https://doi.org/10.14719/pst.6859
Submitted
22 December 2024
Published
26-05-2025
Versions

Abstract

This study estimated chickpea area and yield in Vidisha district, Madhya Pradesh, during Rabi 2022-23 by integrating Sentinel-1A SAR satellite data with the CROPGRO-Chickpea crop simulation model. Sentinel-1A VH-polarized GRD data (20 m spatial resolution) were processed using MAPscape software at 12-day intervals. Temporal backscatter analysis identified distinct growth-stage signatures, enabling accurate crop classification. The total classified chickpea area was 109112 ha. Classification accuracy was 86.8 %, with a Kappa coefficient of 0.74. The DSSAT model simulated chickpea growth and yield, with maximum Leaf Area Index ranging from 1.8 to 4.9 and yields from 1410 to 2449 kg ha-1. Remote sensing-based chickpea yield estimates ranged between 1420 and 2330 kg ha-1. Validation showed strong agreement between observed and simulated values, with accuracies of 89.1 % for LAI and 91.7 % for yield. This study underscores the effectiveness of integrating remote sensing and crop modelling for precise, scalable agricultural monitoring, supporting sustainable crop management and food security.

References

  1. 1. Jukanti AK, Gaur PM, Gowda C, Chibbar RN. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br J Nutr. 2012;108(S1):S11–26. https://doi.org/10.1017/S0007114512000797
  2. 2. Lark TJ, Schelly IH, Gibbs HK. Accuracy, bias and improvements in mapping crops and cropland across the United States using the USDA Cropland Data Layer. Remote Sens. 2021;13(5):968. https://doi.org/10.3390/rs13050968
  3. 3. Gaur PM, Tripathi S, Gowda CL, Rao GR, Sharma H, Pande S, et al. Chickpea seed production manual. Tropical Legumes II Project. 2010. p. 28. Available from: https://oar.icrisat.org/id/eprint/10276
  4. 4. Merga B, Haji JJ. Economic importance of chickpea: production, value and world trade. Cogent Food Agric. 2019;5(1):1615718. https://doi.org/10.1080/23311932.2019.1615718
  5. 5. Directorate of Economics and Statistics, Ministry of Agriculture and Farmers Welfare, Government of India [Internet]. New Delhi: GOI; 2021 [cited 2025 Feb 24].
  6. 6. Karthikeyan L, Chawla I, Mishra AK. A review of remote sensing applications in agriculture for food security: crop growth and yield, irrigation and crop losses. J Hydrol. 2020;586:124905. https://doi.org/10.1016/j.jhydrol.2020.124905
  7. 7. Peng D, Huang J, Li C, Liu L, Huang W, Wang F, et al. Modelling paddy rice yield using MODIS data. Agric For Meteorol. 2014;184:107–16. https://doi.org/10.1016/j.agrformet.2013.09.006
  8. 8. Setiyono TD, Quicho ED, Gatti L, Campos-Taberner M, Busetto L, Collivignarelli F, et al. Spatial rice yield estimation based on MODIS and Sentinel-1 SAR data and ORYZA crop growth model. Remote Sens. 2018;10(2):293. https://doi.org/10.3390/rs10020293
  9. 9. Pazhanivelan S, Geethalakshmi V, Tamilmounika R, Sudarmanian N, Kaliaperumal R, Ramalingam K, et al. Spatial rice yield estimation using multiple linear regression analysis, semi-physical approach and assimilating SAR satellite-derived products with DSSAT crop simulation model. Agron. 2022;12(9):2008. https://doi.org/10.3390/agronomy12092008
  10. 10. Raviz J, Mabalay MR, Laborte A, Nelson A, Holecz F, Quilang EJ, et al. Mapping rice areas in Mindanao using the first images from Sentinel-1A: The PRISM Project experience. In: 36th Asian Conference on Remote Sensing (ACRS); 2015 Oct 19; Manila. p. 19-23.
  11. 11. Holecz F, Barbieri M, Collivignarelli F, Gatti L, Nelson A, Setiyono TD, et al. An operational remote sensing based service for rice production estimation at national scale. In: Proceedings of the living planet symposium; 2013 Sep.
  12. 12. De Grandi G, Leysen M, Lee J, Schuler D. Radar reflectivity estimation using multiple SAR scenes of the same target: technique and applications. IGARSS'97 IEEE Int Geosci Remote Sens Symp Proc Remote Sens. 1997;2:1047–50. https://doi.org/10.1109/IGARSS.1997.615338
  13. 13. Aspert F, Bach-Cuadra M, Cantone A, Holecz F, Thiran J-P. Time-varying segmentation for mapping of land cover changesENVISAT Symposium; 2007. https://infoscience.epfl.ch/handle/20.500.14299/7580
  14. 14. Nelson A, Setiyono T, Rala AB, Quicho ED, Raviz JV, Abonete PJ, et al. Towards an operational SAR-based rice monitoring system in Asia: examples from 13 demonstration sites across Asia in the RIICE project. Remote Sens. 2014;6(11):10773–812. https://doi.org/10.3390/rs61110773
  15. 15. Congalton RG. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ. 1991;37(1):35–46. https://doi.org/10.1016/0034-4257(91)90048-B
  16. 16. Lillesand T, Kiefer RW, Chipman J. Remote sensing and image interpretation. 7th Edition, New York: Wiley; 2015.
  17. 17. Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt L, et al. The DSSAT cropping system model. Eur J Agron. 2003;18(3-4):235–65. https://doi.org/10.1016/S1161-0301(02)00107-7
  18. 18. De Kauwe M, Disney M, Quaife T, Lewis P, Williams M. An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest. Remote Sens Environ. 2011;115(2):767–80. https://doi.org/10.1016/j.rse.2010.11.004
  19. 19. Pazhanivelan S, Kannan P, Mary PCN, Subramanian E, Jeyaraman S, Nelson A, et al. Rice crop monitoring and yield estimation through COSMO Skymed and TerraSAR-X: A SAR-based experience in India. Int Arch Photogramm Remote Sens Spatial Inf Sci. 2015;40:85–92. https://doi.org/10.5194/isprsarchives-XL-7-W3-85-2015
  20. 20. Tamilmounika R, Pazhanivelan S, Ragunath K, Sivamurugan A, Sudarmanian N, Kumaraperumal R, et al. Paddy area estimation in Cauvery Delta region using synthetic aperture radar. Eco Env Cons. 2022;28:517–22. http://doi.org/10.53550/EEC.2022.v28i01s.069
  21. 21. Venkatesan M, Pazhanivelan S, Sudarmanian N. Multi-temporal feature extraction for precise maize area mapping using time-series Sentinel-1A SAR data. Int Arch Photogramm Remote Sens Spatial Inf Sci. 2019;42:169–73. https://doi.org/10.5194/isprs-archives-XLII-3-W6-169-2019
  22. 22. Thirumeninathan S, Pazhanivelan S, Sudarmanian N, Ragunath K, Gurusamy A, Sritharan N. Rabi groundnut area estimation using synthetic aperture radar (SAR) in Thiruvannamalai district of Tamil Nadu. Legume Res Int J. 2022;45(3):319–26. https://doi.org/10.18805/LR-4746
  23. 23. Gumma MK, Kadiyala M, Panjala P, Ray SS, Akuraju VR, Dubey S, et al. Assimilation of remote sensing data into crop growth model for yield estimation: A case study from India. J Indian Soc Remote Sens. 2021;50(2):257–70. https://doi.org/10.1007/s12524-021-01341-6
  24. 24. Lin H, Chen J, Pei Z, Zhang S, Hu X. Monitoring sugarcane growth using ENVISAT ASAR data. IEEE Trans Geosci Remote Sens. 2009;47(8):2572–80. https://doi.org/10.1109/TGRS.2009.2015769
  25. 25. Chen J, Lin H, Huang C, Fang C. The relationship between the leaf area index (LAI) of rice and the C-band SAR vertical/horizontal (VV/HH) polarization ratio. Int J Remote Sens. 2009;30(8):2149–54. https://doi.org/10.1080/01431160802609700
  26. 26. Leonard A, Waldner F, Jacques DC, Defourny P. Crop identification and growth monitoring along the season with RADARSAT-2 Quad-Polarised time series in Belgium. IGARSS. 2014. http://hdl.handle.net/2078.1/147321
  27. 27. Yang H, Dobermann A, Cassman KG, Walters DT. Features, applications and limitations of the hybrid-maize simulation model. Agron J. 2006;98(3):737–48. https://doi.org/10.2134/agronj2005.0162
  28. 28. Thirumeninathan S, Pazhanivelan S, Mohan R, Pouchepparadjou A, Sudarmanian NS, Ragunath K, et al. Integrating S1A microwave remote sensing and DSSAT CROPGRO simulation model for groundnut area and yield estimation. Eur J Agron. 2024;161:127348. https://doi.org/10.1016/j.eja.2024.127348

Downloads

Download data is not yet available.