Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

The determination of extract yield, polyphenolic content and anti-leishmanial activity of Iraqi Cordia myxa L. crude extracts obtained by two methods of extraction: A comparative study

DOI
https://doi.org/10.14719/pst.6981
Submitted
30 December 2024
Published
26-06-2025 — Updated on 01-07-2025
Versions

Abstract

Iraqi Cordia myxa known as Bumber, belongs to the family Boraginaceae. It contains diverse phytochemicals depending on the plant part used. Different parts of Cordia myxa show different phytochemicals with various pharmacological effects. The study aims to evaluate and compare the extract yields, total polyphenolic content (TPC) and total flavonoid content (TFC) of extracts obtained by optimized ultrasound-assisted extraction and conventional extraction and assess their activity against L. tropica promastigotes, responsible for cutaneous leishmaniasis in Iraq. Preliminary phytochemical investigation revealed that Iraqi Bumber leaf extract contains saponin, alkaloids, tannins, flavonoids, coumarins and phenolics. The optimum conditions for the highest extract yield were 15 min, 70 % and 40 kHz. The extract yield percentage obtained by ultrasound-assisted extraction was higher than that of conventional extraction methods at 14.8 % and 6.93 % of dry extract respectively. The TFC and TPC of the optimized extract were 4 and 3.5 times higher than the extract obtained by a conventional method, respectively. Moreover, the current study revealed that promastigote inhibition by Iraqi Bumber leaf extract acquired by optimized ultrasound-assisted extraction was 89 % with IC50 38.98 μg/mL. In comparison, inhibition by the extract obtained by the conventional extraction method was 75 % with an IC50 of 46.81 μg/mL. For the first time, the TFC and TPC of the Iraqi plants were determined, along with their anti-leishmanial activities. The Iraqi plant may be a potential antileishmanial drug or be used as an adjuvant with conventional antileishmanial treatments to increase their effectiveness, decrease side effects and shorten the treatment period.

References

  1. 1. Orhan IE. Biotechnological production of plant secondary metabolites. Bentham ebook. 2012:107. https://doi.org/10.2174/97816080511441120101
  2. 2. USDA, ARS, National Genetic Resources Program. Germplasm Resources Information Network (GRIN). Beltsville (MD): National Germplasm Resources Laboratory; 2015 [cited 2024 Jul 6]. Available from: https://npgsweb.ars-grin.gov/
  3. 3. Rashed K, Luo MT, Zhang LT, Zheng YT. Evaluation of anti-HIV-1 activity of Cordia myxa L., and phytochemical profile. Banats J Biotechnol. 2015;5(10):75–82. https://doi.org/10.7904/2068-4738-V(9)-51
  4. 4. Al-Snafi AE. The Pharmacological and Therapeutic Importance of Cordia myxa- A review. IOSR J Pharm. 2016;6(6):47–57.
  5. 5. Al-Obaidi MJ L, Ibrahim K, Adnan T, Abd Al Hadi E, Akram E, Qazi Z, et al. Epidemiological study to investigate a possible vector of visceral leishmaniasis in the central region of Iraq. Al-Mustansiriyah J Sci. 2013;26(6):1–12.
  6. 6. Aljeboori, TI , Evans D. 1980. Leishmania spp. in Iraq. Electrophoretic isoenzyme patterns. II. Cutaneous leishmaniasis. Trans R Soc Trop Med Hyg. 1980;74(2):178–84. https://doi.org/10.1016/10035-9203(80)90239-4
  7. 7. Brunette GW, Kozarsky PE, Cohen NJ, Gershman MD, Magill AJ, Ostroff SM, et.al. Communicable disease control centre. Health information for international travel: the yellow book. New York, NY: Oxford University Press; 2016. p. 688. https://doi.org/10.4269/ajtmh.16-0627
  8. 8. Al-Obaidi MJ, Abd Al-Hussein MY, Ihsan M. Al-Saqur, Survey study on the prevalence of cutaneous leishmaniasis in Iraq. IJS. 2016;57(3C):2181–87.
  9. 9. Yuval YR, Enk CD, Murad S, Yofe V, Gozal D, Pessach VM. Intralesional sodium stibogluconate under inhaled anaesthesia for the treatment of cutaneous leishmaniasis in children: A retrospective cohort. J Am Acad Dermatol. 2019;81(4):1013–15. https://doi.org/10.1016/j.jaad.2019.01.083
  10. 10. Tiwari BK. Ultrasound: A clean, green extraction technology. Trends Ana. Chem. 2015;(71):100–09. https://doi.org/10.1016/j.trac.2015.04.013
  11. 11. Al-Ogaili N. The evaluation of total flavonoids, total phenolic content and biological activity of Iraqi Lipedium sativum L. crude extract obtained by optimized ultrasound-assisted extraction conditions. PST. 2024;11(2):214–20. https://doi.org/10.14719/pst.2975
  12. 12. Bargah RK. Preliminary test of phytochemical screening of crude ethanolic and aqueous extract of Moringa pterygosperma Gaertn. J Pharmacogn Phytochem. 2015;4(1):7–9.
  13. 13. Patel A. Estimation of flavonoid, polyphenolic content and in vitro antioxidant capacity of leaves of Tephrosia purpurea Linn. (Leguminosae). Int J Pharma Sci and Res. 2010;1(1):66–77.
  14. 14. Shi P, Du W, Wang Y, Teng X, Chen X, Ye L. Total phenolic, flavonoid content, and antioxidant activity of bulbs, leaves, and flowers made from Eleutherine bulbosa (Mill.) Urb. Int J Food Sci Nutr. 2019;7(1):148–54. https://doi.org/
  15. 10.1002/fsn3.834
  16. 15. Fumarola L, Spinelli R, Brandonisio O. In vitro assays for evaluation of drug activity against Leishmania spp. Microbiol Res. 2004;(155):224–30. https://doi.org/10.1016/j.resmic.2004.01.001
  17. 16. Diwathe MC, Mazumdar B, Jayapal A. Ultrasound-assisted Extraction and Quantification of Antioxidant Activity and Phenolic Content of Cordia dichotoma Leaf Extracts. AIJR Abstracts. 2024:25.
  18. 17. Qu C, Yu S, Luo L, Zhao Y, Huang Y. Optimization of ultrasonic extraction of polysaccharides from Ziziphus jujuba Mill. by response surface methodology. Chem Cent J. 2013;(7):160. https://doi.org/ 10.1186/1752-153X-7-160
  19. 18. Ghafoor K, Choi YH, Jeon JY, Jo IH. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J Agric Food Chem. 2009;57(11):4988–94. https://doi.org/10.1021/jf9001439
  20. 19. Hosseini SS, Khodaiyan F, Kazemi M, Najari Z. Optimization and characterization of pectin extracted from sour orange peel by ultrasound-assisted method. Int J Biol Macromol. 2019;(125):621–29. https://doi.org/10.1016/j.ijbiomac.2018.12.096
  21. 20. Kumara K, Srivastava S, Sharanagatb VS. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason Sonochem. 2021;(70):105325. https://doi.org/10.1016/j.ultsonch.2020.105325
  22. 21. Ratananikom K, Premprayoon K. Ultrasonic-assisted extraction of phenolic compounds, flavonoids, and antioxidants from Dill (Anethum graveolens L.). Scientifica. 2022;(1):1–6. https://doi.org/10.1155/2022/3848261
  23. 22. Garcia-Castello EM, Rodriguez-Lopez AD, Mayor L, Ballesteros R, Conidi C, Cassano A. Optimization of conventional and ultrasound-assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT-Food Sci Technol. 2015;64(2):1114–22. https://doi.org/10.1016/j.lwt.2015.07.024
  24. 23. Anahí J, Enríquez B, Reyes-Ventura E, Socorro J, Rodríguez V, Moreno-Vilet L. Effect of ultrasound-assisted extraction parameters on total polyphenols and their antioxidant activity from mango residues (Mangifera indica L. var. Manililla). Sep. 2021;8:94. https://doi.org/10.3390/separations8070094
  25. 24. González-Centeno MR, Knoerzer K, Sabarez H, Simal S, Rosselló C, Femenia A. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) a response surface approach. Ultrason Sonochem. 2014;21(6):2176–84. https://doi.org/10.1016/j.ultsonch.2014.01.021
  26. 25. Liao J, Xue H, Li J, Peng L. Effects of ultrasound frequency and process variables of modified ultrasound-assisted extraction on the extraction of anthocyanin from strawberry fruit. Food Sci Technol (Campinas). 2022;42(4):e20922. https://doi.org/10.1590/fst.20922
  27. 26. Mason TJ, A.J. Cobley AJ, Graves JE, Morgan D. New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Ultrason Sonochem. 2011;18(1):226–30. https://doi.org/10.1016/j.ultsonch.2010.05.008
  28. 27. Najib A, Ahmad AR, Handayani V. ELISA Test on Cordia myxa L. leaf extract for α-glucosidase inhibitor. Pharmacogn J. 2019;11(2):358–61. https://doi.org/10.5530/pj.2019.11.54
  29. 28. Sahu M, Saxena K, Sahoo J, Swain SR. Phytochemical investigation, characterization of ethanolic extract of Cordia myxa leaves using LCMS/MS and their in-silico studies for wound healing activity. IJSTM. 2023;(12)12:11–28.
  30. 29. Shamkhy BM, Abbas YK. The biological activity of alcoholic extracts of Cordia myxaplant against Klebsiella isolated from infected patients. IJFMT. 2021;15(4):1435–39. https://doi.org/10.37506/ijfmt.v15i4.16910
  31. 30. Malik A, Ahmad AR. Determination of phenolic and flavonoid contents of ethanolic extract of Kanunang leaves (Cordia myxa L.). Int J Pharmtech Res. 2014-2015; 7(2):243–46.
  32. 31. Debiasia BW, Raiserb AL, Douradoc SHA, Torresb M, Andrighettib CR, Bonacorsib C, et al. Phytochemical screening of Cordia glabrata (MART.) A.DC. extracts and their potential antioxidant, photoprotective, antimicrobial and antiviral activities. Braz J Biol. 2023;83:e248083. https://doi.org/ 10.1590/1519-6984.248083
  33. 32. Jasiem TM, ALmugdadi SFH, Aljubory IS, Latef QN. Phytochemical study and antibacterial activity of crude alkaloids and mucilage of Cordia myxa in Iraq. Int J Pharm Sci Rev Res. 2016;39(1),45:232–36.
  34. 33. Al-Maliki ADM, Aboud MN, Hameed MF. Estimation and evaluation of medicinal efficacy of maximum inhibitory concentration of alkaloids extracted from Iraqi Cordia myxa leaves against some pathogenic bacteria. J Phys Conf Ser. 2021;(2063):012020. https://doi.org/10.1088/1742-6596/2063/1/012020
  35. 34. Shwaish T, Al-Imarah FJM. Chemical composition of Cordia Myxa fruit: Phytochemical screening and identification of some bioactive compounds. Int J Adv Res. 2017;5(9):1255–60. https://doi.org/10.21474/IJAR01/5447
  36. 35. Akhtar N, Mirza B. Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arab J Chem. 2018;11(8):1223–35. https://doi.org/10.1016/j.arabjc.
  37. 2015.01.013
  38. 36. Tiwari U, Cummins E. Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Int Food Res. 2013;50(2):497–506. https://doi.org/10.1016/j.foodres.2011.09.007
  39. 37. Afzal M, Obuekwe C, Khan AR, Barakat H. Influence of Cordia myxa on chemically induced oxidative stress. FNS. 2009;39(1):6–15. https://doi.org/10.1108/00346650910930761
  40. 38. Aberoumand A, Deokule SS. Comparison of phenolic compounds of some edible plants of Iran and India. Pak J Nutr. 2008;7(4):582–85. https://doi.org/10.3923/pjn.2008.582.585
  41. 39. Al-Musawi MH, Ibrahim KM, Albukhaty S. In vitro study of antioxidant, antibacterial, and cytotoxicity properties of Cordia myxa fruit extract. Iran J Microbiol. 2022;14(1):97–103. https://doi.org/10.18502/ijm.v14i1.8810
  42. 40. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;( 65): 55–63. https://doi.org/10.1016/ 0022-1759(83)90303-4
  43. 41. Saki J, Khademvatan S, Pazyar N, Eskandari A, Tamoradi A, Nazari P. In vitro activity of Cordia myxamucilage extract against Leishmania major and L. infantumpromastigotes. Jundishapur J Microbiol. 2015;8(3):e19640. https://doi.org/10.5812/jjm.19640
  44. 42. Toutain PL, Ferran A, Bousquet-Mélou A. Species differences in pharmacokinetics and pharmacodynamics. Handb Exp Pharmacol. 2010:(199):19–48. https://doi.org/10.1007/978-3-642-10324-7_2
  45. 43. Aberoumand A. Natural compounds with antioxidant properties in selected plant foods. Int J Agric Food Sci. 2011;1(2):27–29. https://doi.org/10.5812/jjm.19640
  46. 44. Moreno D, Plano D, Baquedano Y, Jimenez-Ruiz A, Palop JA, Sanmartin C. Antileishmanial activity of imidothiocarbamates and imidoselenocarbamates. Parasitol Res. 2011;108(1):233–39. https://doi.org/10.1007/s00
  47. 436-010-2073-x
  48. 45. Antwi CA, Amisigo CM, Adjimani JP, Gwira TM. In vitro activity and mode of action of phenolic compounds on Leishmania donovani. PLOS Negl Trop Dis. 2019;13(2):e0007206. https://doi.org/10.1371/journal.pntd.0007206
  49. 46. Kostyuk V, Potapovich A, Strigunova E, Kostyuk T, Afanas'ev I. Experimental evidence that flavonoid metal complexes may act as mimics of superoxide dismutase. Arch Biochem Biophys. 2004;(428):204–08. https://doi.org/
  50. 10.1016/j.abb.2004.06.008
  51. 47. Silva-Silva JV, Moragas-Tellis CJ, Chagas MSS, Ramos de Souza PV, Freitas de Souza CS, Hardoim DJ, Taniwaki NN, et.al. Antileishmanial activity of flavones-rich fraction from Arrabidaea chica Verlot (Bignoniaceae). Front Pharmacol. 2021;(12):703985. https://doi.org/10.3389/fphar.2021.703985
  52. 48. Chauhan K, Kaur G, Kaur S. Activity of rutin, a potent flavonoid against SSG-sensitive and -resistant Leishmania donovani parasites in experimental leishmaniasis. Int Immunopharmacol. 2018;64):372–85. https://doi.org/10.1016/j.intimp.2018.09.026
  53. 49. Perez-Victoria JM, Chiquero MJ, Conseil G, Dayan G, Di Pietro A, Barron D, Castanys S, Gamarro F. Correlation between the affinity of flavonoids binding to the cytosolic site of Leishmania tropica multidrug transporter and their efficiency to revert parasite resistance to daunomycin. Biochemistry.1999;38(6):1736–43.https://doi.org/10.1021/bi982455v

Downloads

Download data is not yet available.