Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Cutting-edge genetic techniques for optimizing eggplant (Solanum melongena) cultivar performance

DOI
https://doi.org/10.14719/pst.7197
Submitted
18 January 2025
Published
24-05-2025
Versions

Abstract

Brinjal (Solanum melongena L.), a crucial solanaceous vegetable crop, faces significant challenges from biotic stressors like pests and diseases, as well as abiotic stressors such as drought and salinity. Conventional breeding methods are limited in effectively addressing these complex traits. Nevertheless, advancements in molecular breeding, genetic engineering and tissue culture techniques have revolutionized brinjal improvement. Marker-assisted selection (MAS) has enabled the identification and incorporation of quantitative trait loci (QTLs) associated with resistance to bacterial wilt, shoot and fruit borer and enhanced yield attributes. Genetic engineering approaches, such as the development of Bt brinjal, have provided effective pest resistance while minimizing pesticide dependency. Tissue culture methods, including anther culture, have facilitated the rapid development of double haploid (DH) lines with improved fruit quality and tolerance to low temperatures. These biotechnological tools present promising solutions to mitigate stress factors while improving yield, quality and sustainability in brinjal cultivation. Future research should focus on integrating CRISPR/Cas9 gene editing with MAS to accelerate trait-specific improvements and utilize wild relatives for novel gene introgression.

References

  1. 1. Meyer RS, Little DP, Whitaker BD, Litt A. The genetics of eggplant nutrition. In: Chapman M, editor. The Eggplant Genome. Compendium of Plant Genomes. Springer, Cham; 2019. p. 23-32. https://doi.org/10.1007/978-3-319-99208-2_3
  2. 2. Sihachakr D, Daunay M, Serraf I, Chaput M, Mussio I, Haicour R, et al. Somatic hybridization of eggplant (Solanum melongena L.) with its close and wild relatives. In: Bajaj YPS, editor. Somatic hybridization in crop improvement I. Biotechnology in agriculture and forestry. Vol. 27. Berlin, Heidelberg: Springer; 1994. p. 255-78. https://doi.org/10.1007/978-3-642-57945-5_17
  3. 3. Sidhu M, Dhatt A, Sandhu J, Gosal S. Biolistic transformation of cry 1Ac gene in eggplant (Solanum melongena L.). International Journal of Agriculture, Environment and Biotechnology. 2014;7(4):679-87. https://doi.org/10.5958/2230-732X.2014.01375.8
  4. 4. Chen J, Jiang S, Yang G, Li L, Li J, Yang F. The MYB transcription factor SmMYB113 directly regulates ethylene-dependent flower abscission in eggplant. Plant Physiology and Biochemistry. 2024;209:108544. https://doi.org/10.1016/j.plaphy.2024.108544
  5. 5. Frary A, Doganlar S, Daunay M. Eggplant. In: Kole C, editor. Vegetables. Genome mapping and molecular breeding in plants. Vol. 5. Berlin, Heidelberg: Springer. Springer; 2007. p. 287-313. https://doi.org/10.1007/978-3-540-34536-7_9
  6. 6. Bahar NH, Lo M, Sanjaya M, Van Vianen J, Alexander P, Ickowitz A, et al. Meeting the food security challenge for nine billion people in 2050: What impact on forests? Global Environmental Change. 2020;62:102056. https://doi.org/10.1016/j.gloenvcha.2020.102056
  7. 7. Ranil RH, Prohens J, Aubriot X, Niran H, Plazas M, Fonseka RM, et al. Solanum insanum L.(subgenus Leptostemonum Bitter, Solanaceae), the neglected wild progenitor of eggplant (S. melongena L.): a review of taxonomy, characteristics and uses aimed at its enhancement for improved eggplant breeding. Genetic Resources and Crop Evolution. 2017;64:1707-22.
  8. 8. Rotino GL, Sala T, Toppino L. Eggplant. In: Alien gene transfer in crop plants. Vol. 2: Achievements and impacts. Springer; 2014. p. 381-409.
  9. 9. Jiang F, Doudna JA. CRISPR–Cas9 structures and mechanisms. Annual Review of Biophysics. 2017;46:505-29. https://doi.org/10.1146/annurev-biophys-062215-010822
  10. 10. Das T, Anand U, Pal T, Mandal S, Kumar M, Radha, et al. Exploring the potential of CRISPR/Cas genome editing for vegetable crop improvement: An overview of challenges and approaches. Biotechnology and Bioengineering. 2023;120(5):1215-28. https://doi.org/10.1002/bit.28344
  11. 11. Kumar H, Lata R, Khan U, Gond SK. Biotechnological approaches for crop movement and production. In: Rajput VD, Singh A, Ghazaryan K, Minkina TM, Abdel Rahman M, editors. Sustainable agriculture: nanotechnology and biotechnology for crop production and protection. Al-Tawaha, Berlin, Boston: De Gruyter; 2024. p. 335. https://doi.org/10.1515/9783111234694-018
  12. 12. Nagar KL, Rana D, Barela A, Rahangdale S. Study of genetic diversity and genetic advance in brinjal for morpho-economic traits (Solanum melongena L.). The International Journal of Climate Change. 2024;14(3):437-44. https://doi.org/10.9734/ijecc/2024/v14i34054
  13. 13. Akanksha, Tiwari JK, Bhuvneswari S, Karkute SG, Tiwari SK, Singh M. Brinjal: breeding and genomics. Vegetable Science. 2023:166-76. https://doi.org/10.61180/vegsci.2023.v50.spl.04
  14. 14. Rawat N. Combining ability analysis for fruit yield and related traits in Brinjal (Solanum melongena L.) using Line × Tester mating design. Plant Science Today. 2025;12(1):1-8. https://doi.org/10.14719/pst.5176
  15. 15. Sreekar K. Biotechnology and its implications in brinjal improvement: A review. Journal of Pharmacognosy and Phytochemistry. 2020;9(6):1096-102.
  16. 16. Khatun M, Borphukan B, Alam I, Keya CA, Khan H, Reddy MK, et al. An improved Agrobacterium mediated transformation and regeneration protocol for successful genetic engineering and genome editing in eggplant. Scientia Horticulturae. 2022;293:110716. https://doi.org/10.1016/j.scienta.2021.110716
  17. 17. Bainsla NK, Singh S, Singh PK, Kumar K, Singh AK, Gautam RK. Genetic behaviour of bacterial wilt resistance in brinjal (Solanum melongena L.) in tropics of Andaman and Nicobar Islands of India. American Journal of Plant Sciences. 2016;7(02):333. https://doi.org/10.4236/ajps.2016.72033
  18. 18. Boyaci HF, Unlu A, Abak K. Genetic analysis of resistance to wilt caused by Fusarium (Fusarium oxysporum melongenae) in eggplant (Solanum melongena). Indian Journal of Agricultural Sciences. 2011;81(9):812-5.
  19. 19. Barchi L, Toppino L, Valentino D, Bassolino L, Portis E, Lanteri S, et al. QTL analysis reveals new eggplant loci involved in resistance to fungal wilts. Euphytica. 2018;214:1-15. https://doi.org/10.1007/s10681-017-2102-2
  20. 20. Talukder P, Dutta D, Ghosh E, Bose I, Bhattacharjee S. Role of plant secondary metabolites in combating pest induced stress in brinjal (Solanum melongena L.). Journal of Environmental Engineering and Landscape Management. 2021;29(4):449-53.
  21. 21. Plazas M, Andujar I, Vilanova S, Hurtado M, Gramazio P, Herraiz FJ, et al. Breeding for chlorogenic acid content in eggplant: interest and prospects. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2013;41(1):26-35. https://doi.org/10.15835/nbha4119036
  22. 22. Anvesh S, Delvadiya I, Thota H, Yasaswini M. Analyzing genetic variation and graphical representation (Wr-Vr) in brinjal (Solanum melongena L.) using the Hayman approach in the Northwestern Region of India. Indian Journal of Agricultural Research. 2025;59(3):447-53. https://doi.org/10.18805/IJARe.A-6231
  23. 23. Subramanyam K, Rajesh M, Jaganath B, Vasuki A, Theboral J, Elayaraja D, et al. Assessment of factors influencing the Agrobacterium-mediated in planta seed transformation of brinjal (Solanum melongena L.). Applied Biochemistry and Biotechnology. 2013;171:450-68. https://doi.org/10.1007/s12010-013-0359-z
  24. 24. Bhat SG, Arulananthu G, Rajesh G, Ramesh N. Agrobacterium-mediated transformation of brinjal (Solanum melongena L.) using fungal resistant gene. Electronic Journal of Plant Breeding. 2020;11(1):160-8. https://doi.org/10.37992/2020.1101.029
  25. 25. Kuswaha C, Singh L, Vyas R, Singh PK, Rathore T, Yadav A, et al. Study about the genetic variability, heritability and genetic advance for yield and yield attributing traits of brinjal (Solanum melongena L.). The International Journal of Climate Change. 2023;13(11):4566-74. https://doi.org/10.9734/ijecc/2023/v13i113636
  26. 26. Pandiyaraj P, Singh T, Pandav AK, Sreegayathri E, Das A, Mudhalvan S, et al. Breeding for bacterial wilt disease resistance in brinjal. International Journal of Plant & Soil Science. 2024;36(3):129-34. https://doi.org/10.9734/ijpss/2024/v36i34407
  27. 27. Pitchai P, Singh TH, Lakshmana Reddy D. Bacterial wilt in brinjal: Source of resistance, inheritance of resistance and molecular markers linked to resistance loci. Environment Conservation Journal. 2024;25(2):611-8. https://doi.org/10.36953/ECJ.24512690
  28. 28. Prabhavathi VR, Rajam MV. Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnology. 2007;24(3):273-82. https://doi.org/10.1007/s10681-017-2102-2
  29. 29. Singh D, Haicour R, Sihachakr D, Rajam MV. Expression of rice chitinase gene in transgenic eggplant confers resistance to fungal wilts. Indian Journal of Biotechnology. 2015;14:233-40.
  30. 30. Xing J, Chin C-K. Modification of fatty acids in eggplant affects its resistance to Verticilliumdahliae. Physiological and Molecular Plant Pathology. 2000;56(5):217-25. https://doi.org/10.1006/pmpp.2000.0268
  31. 31. Singh D, Ambroise A, Haicour R, Sihachakr D, Rajam MV. Increased resistance to fungal wilts in transgenic eggplant expressing alfalfa glucanase gene. Physiology and Molecular Biology of Plants. 2014;20:143-50. https://doi.org/10.1007/s12298-014-0225-7
  32. 32. Kiranmai C, Pullaiah T, Rajam M. Genetically modified brinjal (Solanum melongena L.) and beyond. Genetically modified crops: current status, prospects and challenges. Vol. 2. Springer; 2021. p. 31-52. https://doi.org/10.1007/s12298-014-0225-7
  33. 33. Darwish NA, Khan RS, Ntui VO, Nakamura I, Mii M. Generation of selectable marker-free transgenic eggplant resistant to Alternaria solani using the R/RS site-specific recombination system. Plant Cell Reports. 2014;33:411-21. https://doi.org/10.1007/s00299-013-1541-z
  34. 34. Pratap D, Kumar S, Raj SK, Sharma AK. Agrobacterium-mediated transformation of eggplant (Solanum melongena L.) using cotyledon explants and coat protein gene of Cucumber mosaic virus. Indian Journal of Biotechnology. 2011;10(1):19-24.
  35. 35. Ribeiro AdO, Pereira E, Galvan T, Picanco M, Picoli EdT, Da Silva D, et al. Effect of eggplant transformed with oryzacystatin gene on Myzus persicae and Macrosiphum euphorbiae. Journal of Applied Entomology. 2006;130(2):84-90. https://doi.org/10.1111/j.1439-0418.2005.01021.x
  36. 36. Karkute SG, Singh AK, Divekar PA, Gupta N, Tiwari SK. Identification and in-silico characterization of RPN10 gene as a candidate for genome editing to develop little leaf disease resistance in brinjal. Vegetable Science. 2023;50(2):282-7. https://doi.org/10.61180/vegsci.2023.v50.i2.03
  37. 37. Kumar S. Transgenic manipulation of polyamine biosynthesis in Solanum melongena and Chlamydomonas reinhardtii. PhD Thesis, University of Delhi, Delhi; 2003.
  38. 38. Rajam M, Kumar SV. Eggplant. In: Pua EC, Davey MR, editors. Transgenic crops IV. Biotechnology in agriculture and forestry. Vol. 59. Berlin, Heidelberg: Springer; 2007. https://doi.org/10.1007/978-3-540-36752-9_11
  39. 39. Rotino G, Gleddie S. Transformation of eggplant (Solanum melongena L.) using a binary Agrobacterium tumefaciens vector. Plant Cell Reports. 1990;9(1):26-9. https://doi.org/10.1007/BF00232129
  40. 40. Kashyap V, Kumar SV, Collonnier C, Fusari F, Haicour R, Rotino G, et al. Biotechnology of eggplant. Scientia Horticulturae. 2003;97(1):1-25. https://doi.org/10.1016/S0304-4238(02)00140-1
  41. 41. Frijters A, Simons G, Varga G, Quaedvlieg N, de Both M. The Mi-1 gene confers resistance to the root-knot nematode Meloidogyne incognita in transgenic eggplant. VIIIth Conf. Plant and Animal Genome, San Diego, CA, USA; 2000.
  42. 42. Goggin FL, Jia L, Shah G, Hebert S, Williamson VM, Ullman DE. Heterologous expression of the Mi-1.2 gene from tomato confers resistance against nematodes but not aphids in eggplant. Molecular Plant-Microbe Interactions. 2006;19(4):383-8. https://doi.org/10.1094/MPMI-19-0383
  43. 43. Aronson AI, Beckman W, Dunn P. Bacillus thuringiensis and related insect pathogens. Microbiological Reviews. 1986;50(1):1-24. https://doi.org/10.1128/mr.50.1.1-24.1986
  44. 44. Whiteley HR, Schnepf HE. The molecular biology of parasporal crystal body formation in Bacillus thuringiensis. Annual Reviews in Microbiology. 1986;40(1):549-76. https://doi.org/10.1146/annurev.mi.40.100186.003001
  45. 45. Jadhav M, Jadhav A, Pawar B, Kale A, Kute N. Agrobacterium-mediated genetic transformation of brinjal with cry1F gene for resistance against shoot and fruit borer. Journal of Crop Improvement. 2015;29(5):518-27. https://doi.org/10.1080/15427528.2015.1055022
  46. 46. Kumar PA, Mandaokar A, Sreenivasu K, Chakrabarti SK, Bisaria S, Sharma SR, et al. Insect-resistant transgenic brinjal plants. Molecular Breeding. 1998;4:33-7. https://doi.org/10.1023/A:1009694016179
  47. 47. Kumar P, Sharma R. Genetic engineering of insect-resistant crop plants with Bacillus thuringiensis crystal protein genes. Journal of Plant Biochemistry and Biotechnology. 1994;3:3-8. https://doi.org/10.1007/BF03321940
  48. 48. Phap PD, Xuan HTL, Sudhakar D, Balasubramanian P. Engineering resistance in brinjal against nematode (Meloidogyne incognita) using cry1Ab gene from Bacillus thuringiensis Berlin. In: Van Toi V, Khoa TQD, editors. The Third International Conference on the Development of Biomedical Engineering in Vietnam. IFMBE Proceedings. Vol. 27. Berlin, Heidelberg: Springer; 2010. https://doi.org/10.1007/978-3-642-12020-6_70
  49. 49. Papolu PK, Dutta TK, Tyagi N, Urwin PE, Lilley CJ, Rao U. Expression of a cystatin transgene in eggplant provides resistance to root-knot nematode, Meloidogyne incognita. Frontiers in Plant Science. 2016;7:210986. https://doi.org/10.3389/fpls.2016.01122
  50. 50. Narendran M. Production of marker-free insect resistant transgenic brinjal (Solanum melongena L.) carrying cry2Ab gene. In: International Conference on Indigenous Vegetables and Legumes Prospectus for Fighting Poverty, Hunger and Malnutrition. ISHS Acta Horticulturae 752; 2006. https://doi.org/10.17660/ActaHortic.2007.752.100
  51. 51. Rotino G, Arpaia S, Iannacone R, Iannamico V, Mennella G, Onofaro V, et al. Agrobacterium mediated transformation of Solanum spp using a Bacillus thuringiensis gene effective against coleopteran. Plant Cell Reports. 1992;11:11-5. https://doi.org/10.1007/BF00231831
  52. 52. Pal J, Singh M, Rai M, Satpathy S, Singh D, Kumar S. Development and bioassay of Cry1Ac-transgenic eggplant (Solanum melongena L.) resistant to shoot and fruit borer. The Journal of Horticultural Science and Biotechnology. 2009;84(4):434-8. https://doi.org/10.1080/14620316.2009.11512545
  53. 53. Phad AP, Takate UB, Rawal SK, Pyati PS, Lomate PR. Targeted gene knockout via CRISPR/Cas9: precise genome editing in eggplant (Solanum melongena) through phytoene desaturase gene disruption. Journal of Crop Science and Biotechnology. 2024;27(2):249-59. https://doi.org/10.1007/s12892-023-00227-y
  54. 54. Prabhavathi V, Yadav J, Kumar P, Rajam M. Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannitol phosphodehydrogenase gene. Molecular Breeding. 2002;9:137-47. https://doi.org/10.1023/A:1026765026493
  55. 55. Sagare DB, Mohanty I. Development of moisture stress tolerant brinjal cv. Utkal Anushree (Solanum melongena L.) using Agrobacterium mediated gene transformation. Journal of Agricultural Science. 2012;4(8):141-8. https://doi.org/10.5539/jas.v4n8p141
  56. 56. Kumar SK, Sivanesan I, Murugesan K, Jeong BR, Hwang SJ. Enhancing salt tolerance in eggplant by introduction of foreign halotolerance gene, HAL1 isolated from yeast. Horticulture, Environment, and Biotechnology. 2014;55:222-9. https://doi.org/10.1007/s13580-014-0141-3
  57. 57. Gyanagoudar HS, Hatiya ST, Guhey A, Dharmappa PM, Seetharamaiah SK. A comprehensive approach for evaluating salinity stress tolerance in brinjal (Solanum melongena L.) germplasm using membership function value. Physiologia Plantarum. 2024;176(2):e14239. https://doi.org/10.1111/ppl.14239
  58. 58. Jameel J, Anwar T, Majeed S, Qureshi H, Siddiqi EH, Sana S, et al. Effect of salinity on growth and biochemical responses of brinjal varieties: implications for salt tolerance and antioxidant mechanisms. BMC Plant Biology. 2024;24(1):128. https://doi.org/10.1186/s12870-024-04836-9
  59. 59. Xiao X, Zeng Y, Cao B, Lei J, Chen Q, Meng C, et al. PSAG12-IPT overexpression in eggplant delays leaf senescence and induces abiotic stress tolerance. The Journal of Horticultural Science and Biotechnology. 2017;92(4):349-57. https://doi.org/10.1080/14620316.2017.1287529
  60. 60. Komor AC, Badran AH, Liu DR. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell. 2017;168(1):20-36. https://doi.org/10.1016/j.cell.2016.10.044
  61. 61. Paula de Toledo Thomazella D, Brail Q, Dahlbeck D, Staskawicz B. CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proceedings of the National Academy of Sciences. 2016:064824. https://doi.org/10.1101/064824
  62. 62. Collonnier C, Fock I, Mariska I, Servaes A, Vedel F, Siljak-Yakovlev S, et al. GISH confirmation of somatic hybrids between Solanum melongena and S. torvum: assessment of resistance to both fungal and bacterial wilts. Plant Physiology and Biochemistry. 2003;41(5):459-70. https://doi.org/10.1016/S0981-9428(03)00054-8
  63. 63. Rotino GL, Perri E, Zottini M, Sommer H, Spena A. Genetic engineering of parthenocarpic plants. Nature Biotechnology. 1997;15(13):1398-401. https://doi.org/10.1038/nbt1297-1398
  64. 64. Donzella G, Spena A, Rotino GL. Transgenic parthenocarpic eggplants: superior germplasm for increased winter production. Molecular Breeding. 2000;6:79-86. https://doi.org/10.1023/A:1009613529099
  65. 65. Liu X, Zhang A, Zhao J, Shang J, Zhu Z, Wu X, et al. Transcriptome profiling reveals potential genes involved in browning of fresh-cut eggplant (Solanum melongena L.). Scientific Reports. 2021;11(1):16081. https://doi.org/10.1023/A:1009613529099
  66. 66. Villanueva G, Vilanova S, Plazas M. Characterization of browning, chlorogenic acid content, and polyphenol oxidase activity in different varietal types of eggplant (Solanum melongena) for improving visual and nutritional quality. Plants. 2024;13(8):1059. https://doi.org/10.3390/plants13081059
  67. 67. Kumar SV, Rajam M. Enhanced induction of vir genes results in the improvement of Agrobacterium-mediated transformation of eggplant. Journal of Plant Biochemistry and Biotechnology. 2005;14:89-94. https://doi.org/10.1007/BF03263234
  68. 68. Kumar SV, Rajam M. Polyamines enhance Agrobacterium tumefaciens vir gene induction and T-DNA transfer. Plant Science. 2005;168(2):475-80. https://doi.org/10.1016/j.plantsci.2004.09.018
  69. 69. A, Sonone Y, Char B. Improvement in tissue culture-assisted induction of double haploidy in brinjal (Solanum melongena L.). Journal of Applied Horticulture. 2019;21(3):178-81. https://doi.org/10.37855/jah.2019.v21i03.30
  70. 70. Bhatti KH, Jamil MD, Muhammad Tufail MT. Direct organogenesis (shoot and root) of egg plant (Solanum melongena L.) through tissue culture. World Applied Sciences Journal. 2014;30(3):317-21. https://doi.org/10.5829/idosi.wasj.2014.30.03.14025
  71. 71. Ray B, Hassan L, Sarker S. In Vitro regeneration of brinjal (Solanum melongena L.) using stem and leaf explants. Journal of Bio-Science. 2009;17:155-8. https://doi.org/10.3329/jbs.v17i0.7126
  72. 72. Muthusamy A, Vidya K, Pratibha P, Rao MR, Vidhu S, Guruprasad K, et al. Establishment of an in vitro plantlet regeneration protocol for unique varieties of brinjal (Solanum melongena L.) var. Mattu Gulla and Perampalli Gulla. Indian Journal of Experimental Biology. 2014;52(1):80-8.
  73. 73. Fassuliotis G. Regeneration of whole plants from isolated stem parenchyma cells of Solanum sisymbriifolium. Journal of the American Society for Horticultural Science. 1975;100(6):636-8. https://doi.org/10.21273/JASHS.100.6.636
  74. 74. Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum. 1962;15(3):473-97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  75. 75. Yamada T, Nakagawa H, Sinoto Y. Studies on the differentiation in cultured cells. I. Embryogenesis in three strains of Solanum callus. Botanical Magazine Tokyo. 1967;80:68-74. https://doi.org/10.15281/jplantres1887.80.68
  76. 76. Singh Yadav J, Venkat Rajam M. Temporal regulation of somatic embryogenesis by adjusting cellular polyamine content in eggplant. Plant Physiology. 1998;116(2):617-25. https://doi.org/10.1104/pp.116.2.617
  77. 77. Sharma P, Rajam MV. Genotype, explant and position effects on organogenesis and somatic embryogenesis in eggplant (Solanum melongena L.). Journal of Experimental Botany. 1995;46(1):135-41. https://doi.org/10.1093/jxb/46.1.135
  78. 78. Afele JC, Tabei Y, Yamada T, Momiyama T, Takaiwa F, Kayano T, et al. Identification of mRNAs differentially expressed between embryogenic and non-embryogenic cultivars of eggplant during somatic embryogenesis. JARQ. 1996;30:175-9.
  79. 79. Mariani P (1992) Eggplant somatic embryogenesis combined with synthetic seed technology. Genetics and Breeding on Capiscum and Eggplant. 1992:289-94.
  80. 80. Sidhu M, Dhatt A, Sidhu G. Plant regeneration in eggplant (Solanum melongena L.): A review. African Journal of Biotechnology 2014;13(6):714-22. https://doi.org/10.5897/AJBX2013.13521
  81. 81. Zhang M, Chen Y, Liu F, Zhang Y, Lian Y. Optimization on regeneration protocol for genetic transformation of eggplant. Journal of Changjiang Vegetables. 2014;14:15-20. https://doi.org/10.3390/e20010014
  82. 82. Satish L, Rameshkumar R, Rathinapriya P, Pandian S, Rency AS, Sunitha T, et al. Effect of seaweed liquid extracts and plant growth regulators on in vitro mass propagation of brinjal (Solanum melongena L.) through hypocotyl and leaf disc explants. Journal of Applied Phycology. 2015;27:993-1002. https://doi.org/10.1007/s10811-014-0375-6
  83. 83. Emrani Dehkehan M, Moieni A, Movahedi Z. Effects of BAP, Kin and NH4NO3 concentration on the eggplant anther culture (Solanum melongena L.). Iranian Journal of Field Crop Science. 2017;48(3):877-88.
  84. 84. Farooqui MA, Rao A, Jayasree T, Sadanandam A. Induction of atrazine resistance and somatic embryogenesis in Solanum melongena. Theoretical and Applied Genetics. 1997;95:702-5. https://doi.org/10.1007/s001220050615
  85. 85. Kumar A, Biswas S. Biochemical evidences of induced resistance in tomato plant against Fusarium with through inorganic chemicals. Journal of Mycopathological Research. 2010;48(2):213-9.
  86. 86. Gawade B, Sirohi A. Induction of resistance in eggplant (Solanum melongena) by salicylic acid against root-knot nematode, Meloidogyne incognita. Indian Journal of Nematology. 2011;41(2):201-5.
  87. 87. Mahesh H, Sharada M. Histopathological response of resistance induced by salicylic acid during brinjal (Solanum melongena L.)-Verticillium dahliae interaction. Journal of Applied Biology and Biotechnology. 2018;6(2):61-5.
  88. 88. Rizza F, Mennella G, Collonnier C, Sihachakr D, Kashyap V, Rajam M, et al. Androgenic dihaploids from somatic hybrids between Solanum melongena and S. aethiopicum group gilo as a source of resistance to Fusarium oxysporum f. sp. melongenae. Plant Cell Reports. 2002;20:1022-32. https://doi.org/10.1007/s00299-001-0429-5

Downloads

Download data is not yet available.